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Irregular applications exhibit poor performance on current computer architectures because of their inef-
ficient use of the memory hierarchy. Figure 1 shows iteration over an edge list as an example of the types of
memory references that occur in irregular applications. Run-time data and iteration reordering transforma-
tions have been shown to improve the locality of such loops and therefore the performance of the irregular
benchmarks [2, 1, 3, 10, 8, 6, 4]. Data reordering algorithms heuristically solve the graph layout problem
minimal linear arrangement [7], or optimal linear ordering [5], based on the graph with one vertex for each
data item and edges connecting data accessed within the same iteration (see the spatial locality graph in
Figure 1). Reordering the edges in this graph reorders the computation or iterations of the loop. Typically
edges are ordered as an afterthought based on some variant of the lexicographical ordering enforced by the
data. We propose that the data and iteration reordering transformations should be viewed as approximating
minimal linear arrangments on two separate hypergraphs. We posit that heuristics aimed at solving this
problem on the temporal locality hypergraph (the dual of the spatial locality hypergraph) will result in
better performance. Our preliminary results show that there is some positive correlation between the min-
imal linear arrangement metric of the spatial and temporal locality hypergraphs and previous performance
results. One simple new heuristic based on the temporal locality hypergraph shows improvement with the
linear arrangement metric, and we plan to conduct experiments to verify that using this new heuristic to
reorder iterations also improves performance.

Application performance depends on efficient memory hierarchy usage. In almost all modern computers,
whenever a memory location is referenced by a program, the data in the referenced location and nearby
locations are brought into a fast but small data cache. Any additional references to data already in the

for i=1 to N
  ... X[l[i]] ...
  ... X[r[i]] ...
endfor
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Figure 1: Example loop with two memory references. Given the shown values in the l and r index arrays,
the corresponding spatial and temporal locality graphs are shown.
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cache-line (before the cache-line is evicted from the cache) will be one or two orders of magnitude faster
then references to main memory. When such usage occurs during the execution of a program it is referred
to as spatial locality for reuse within a cache-line and temporal locality for reuse of the same element in a
cache-line.

The locality of a program can be improved by changing the order of computation (iteration reordering)
and/or the assignment of data to memory locations (data reordering) so that references to the same or
nearby locations occur relatively close in time during the execution of the program. Run-time reordering
transformations use inspector/executor strategies [9] to effectively reorder irregular applications. An inspector
traverses the memory reference pattern (eg. edges in the edge list example) at runtime, generates data-
reordering and iteration-reordering functions based on the observed pattern, creates new schedules, and
remaps affected data structures accordingly. The executor is a transformed version of the original program
that uses the schedules and remapped data structures generated by the inspector.

In general, run-time data-reordering transformations improve the spatial locality in a computation. If
each data item v is mapped to storage location σ(v), then the spatial locality metric based on minimal
linear arrangement is

∑
(v,w)∈GSL(E) |σ(v) − σ(w)|, where GSL(E) is the set of edges in the spatial locality

graph. Some common heuristics for determining the data reordering function σ are Reverse Cuthill-McKee
(RCM) [2], consecutive packing (CPACK) [3], and graph partitioning heuristics [6]. Such heuristics operate
on the spatial locality graph.

Temporal locality occurs when the same memory location is reused before its cache-line is evicted. In gen-
eral, run-time iteration reordering improves the temporal and spatial locality within an irregular application.
Using the concept of a temporal locality graph (see Figure 1), the minimal linear arrangement metric can
also be used to measure the effectiveness of an iteration reordering. Specifically, if each iteration i is mapped
to a relative time δ(i), then the temporal locality metric is

∑
(i,j)∈GT L(E) |δ(i)− δ(j)|, where GTL(E) is the

set of edges in the temporal locality graph. However, current iteration reordering heuristics are based on
a lexicographical ordering of the edges in the spatial locality graph. We argue that heuristics for iteration
reordering should instead be based on the structure of the temporal locality graph.

One argument against using temporal locality graphs is that they can be expensive to generate. Notice
that in Figure 1 many edges are introduced because data elements D and B are accessed by a number of
iterations in the loop. Due to this, we suggest that hypergraphs would more generally and efficiently represent
both the temporal and spatial locality information. Hypergraphs are also desirable because the spatial and
temporal locality hypergraphs are duals and therefore it is possible to efficiently translate between them (ie.
equivalent to switching between compressed sparse row representation and compressed sparse column).

The spatial/temporal locality metric can easily be extended to hypergraphs by summing the distances
between all data/iterations connected by the same hyperedge across all hyperedges. We found that there
is some positive correlation between the performance data reported by Strout et al. [11] and such spatial
and temporal locality metrics. We also found that a simple heuristic, consecutive packing for iteration
reordering, based on the temporal locality hypergraph resulted in a better temporal locality metric than the
lexicographical sorting based heuristics. Consecutive packing for iteration reordering packs each iteration
into a new order upon visiting the ordered hyperedges of the temporal locality hypergraph. Each hyperedge
is associated with a data element, so the current data order induces an ordering on the hyperedges. Based
on our preliminary findings, it is probable that this heuristic will result in overhead similar to lexicographical
sorting based reorderings and improved executor performance, therefore heuristics based on the temporal
hypergraph representation should be investigated further.
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