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1 Introduction

Inspired by the success of blocking to improve the performance of algorithms for sparse matrix vector multiplication [5]
and sparse direct factorization [1], we explore the benefits of blocking in related sparse graph algorithms. A natural
question is whether the benefits of local blocking extend to other sparse graph algorithms. Here we examine algorithms
for finding a maximum-weight complete matching in a sparse bipartite graph, otherwise known as the linear sum
assignment problem, or lsap. Like sparse matrix-vector products, algorithms for lsap combine data from two sources.
But rather than computing a dot product, the use a complicated max reduction or depth-first search (dfs).

Maximum weight matchings find uses in sparse matrix algorithms which could otherwise benefit from blocked
matrix representations. A matching provides statically chosen pivots for parallel sparse LU factorization [6]. The
LU factorization is followed by matrix-vector products in iterative refinement, so we would like take a blocked matrix
structure as input. Preliminary work shows that the blocked representations do not decrease performance significantly
although they do increase the number of operations performed, and so we can use a matrix data structure that improves
the iterative refinement performance.

2 Weighted Matching and the Auction Algorithm

The square matching problem (square lsap) is to maximize the trace of BT X overall permutation matrices X:

Primal: maximize
X∈<n×n

TrBT X

subject to X1c = 1r,

XT 1r = 1c, and
X ≥ 0; and

Dual: minimize
pc

1T
r pc +

∑
j

max
i∈R

(B(i, j)− pc(j))

Column-vectors 1r and 1c are unit entry vectors of length n. Dual variable pc is a column vector of length n.
Subscripts are used for descriptive purposes; pc(j) is the “price” for column j of B. The interesting optimality
condition for the lsap is its complementary slackness (cs) condition x(i, j) · (pc(j) + πr(i) − B(i, j)) = 0 for all i, j
where the “profit” πr(i) = maxj∈C B(i, j) − pc(j). An edge can be in the matching only when its price is balanced
with its profit.

Our applications have a sparse B. However, entries not explicitly stored in B are considered to be −∞ rather than
zero. A finite maximum value means all the entries on the diagonal of XT B are finite entries of B. We derive B from
a sparse matrix A by either taking, element-wise, magnitudes to maximize the diagonal’s sum or the log of magnitudes
for the product.

Algorithms for solving the lsap add edges to the matching in X according to current values of the dual variable pc.
In essence, they are primal-infeasible / dual-feasible optimization algorithms. Many algorithms exist for solving lsaps;
see [3]. We focus on two: an explicit depth-first search (dfs) algorithm implemented in MC64 [4] and Bertsekas’s
auction algorithm[2]. For a given entry range, both have asymptotic bounds of O(nτ log n), where τ is the number
of explicitly stored entries, but experimental running times grow much more slowly. Explicit dfs algorithms are
traditionally used for sparse problems. The explicit search has little to gain from blocked representations; the search
jumps from row to row rather than scanning entire rows.

Bertsekas’s auction algorithm performs an implicit dfs. Each currently unmatched row i places a bid for the column
of greatest profit j = indmaxk B(i, k) − pc(k). The bid offers to increase the price to satisfy a relaxed cs condition
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x(i, j) · (pc(j)+πr(i)−B(i, j)) ≤ µ. The relaxation ensures progress and produces an lsap solution within an additive
factor of µ(n − 1) of the optimum. Each row is scanned in its entirety, and the algorithm allows great flexibility in
the order of its basic operations (finding a bid, placing a bid, outbidding an existing match). The literature includes
many algorithmic optimizations for auctions [2], but the only one found useful on the test problems was adaptively
scaling µ to its final value.

3 Selected Results

On average, our adaptive scaling auction implementation in C++ performs as well as MC64 (Fortran77). Each
travels a different path through the optimization space, but both arrive at matchings with the same weight. Relative
performance varies from problem to problem.

The following table provides a few selected results somewhat characteristic of a larger body of test matrices1. The
implementations were run on nodes of seaborg.nersc.gov, with 375MHz IBM POWER3 processors and 8MB of
L2 cache. Times are given for MC64, the auction on a compressed sparse row representation, and the auction on a
compressed sparse block-row representation. Elements have been transformed by b(i, j) = blog2 a(i, j)c and then by
shifting the finite entries to be positive.

Name n # entries MC64 time (s) Unblocked Auction time (s) Blocked 2× 2 Auction time (s)

e40r5000 17281 553562 0.83 1.04 (1.2× MC64) 1.05 (1.3×)
av41092 41092 1683902 6.31 0.67 (.11×) 0.72 (.12×)
kim1 38415 933195 0.079 0.056 (.71×) 0.059 (.75×)

For each of the above matrices, forming 2 × 2 dense blocks to encompass the elements of each element increases
the matrix fill by about 20%. However, the total memory number of words loaded by the auction algorithm increases
by at most 2%.

The block sizes larger than 2 × 2, preferred for matrix-vector multiplications, increase the cost of auctions from
25% to 50%. This increase is somewhat expected. Matrix-vector products amortize overheads while scanning entire
block rows, but the matcher only scans one row within each block. Also, iterating over 1× 1 blocks imposes about a
5% overhead when compared to the unblocked form, and the compiler used is not scheduling the block loops well.

On a handful of matrices, using 1×2 or 1×3 blocks improves performance by 10% to 15%. This leads us to believe
that more tuning work or modified data structures could decrease the general overheads

Besides preprocessing for sparse LU factorization, matchings are also used as core tests in travelling salesman
algorithms,for specialized database queries, and in other roles. Overall, if the matching is only one piece of a larger
algorithm, it appears that optimizing sparse matrix data structures for other, more time-consuming operations could
improve the algorithm’s performance.
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1Matrices acquired from the UF collection (http://www.cise.ufl.edu/research/sparse/matrices/) and the MatrixMarket (http:
//math.nist.gov/MatrixMarket/).
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