Computational Aspects of Meshfree Methods

Introduction: Meshfree methods are Galerkin methods for solving PDEs
where the basis functions are not constructed on the basis of a given mesh or
triangularization (or similar subdivision of the domain in question), but are
obtained by using “particles” which have given centers and “radii” (or some
other measure of size). These are particularly useful for dealing with a number
of situations where current conventional Finite Element Methods (FEMs) have
difficulties such as large-deformation problems in elasticity, problems involving
discontinuities, and shape optimization problems where re-meshing is required
in conventional FEMs. Meshfree methods are noted for their flexibility and
robustness for a wide range of difficult problems.

However, there is a price to pay for this flexibility: e More attention has to
be paid to the geometric issues and associated algorithms. e Matrix assembly
must be done differently to conventional FEMs. e The linear systems are less
structured than those obtained from conventional FEMs. e Essential boundary
conditions are more difficult to satisfy.

In this talk we will discuss the tasks for meshfree solvers (assembly and linear
solvers).

Assembly processes and computational geometry: Conventional fi-
nite element assembly algorithms typically look like this, assuming that we need
to use a quadrature method (with Ng weights wgand points yi) for N basis
functions with Ng > N typically:

loop 4
loop j connected to ¢
loop k: yr €5;NS;
Kij + Kij + weVU;i(yx) - V5 (yx)

With a mesh available, given i the task of finding all j where “j is connected
to i” is just a matter of finding the neighborhood of i in the graph of the mesh.
(This is illustrated in Figure 1.) However, for meshfree methods this turns out
to be more complicated.

Let S; = {z | ¥;(z) # 0} be the support of ¥;. If we used the above assem-
bly algorithm to meshfree methods, for each i we would have to first find all the
J’s where S; N S; # 0. (See Figure 1.) The second task is to find all quadrature
points belonging to S; N S;. For the case of axis-aligned rectangular sets S,
this is known as a range-finding task and takes O(Ng log® ' Ng) memory, and
O(log?™* Ng + #{k | yx € SiN S;}) time per query. The first geometric task
seems at least to be a harder problem to do in near O(#{j | S;NS; # 0}) time.

Instead, we make the loop on k the outer-most loop:

loop k
I« {i|lyc€Si}
loop i,j €1

Kij < Kij +wip V¥ (yg) - V;(yp)


stoledo
This paper was submitted by Suely Oliveira. Sivan


.-

i

Figure 1: Identifying non-zeros of the stiffness matrix (FEM on left, Meshfree
on right)

With this approach, the only geometric task for each quadrature point yj is
to determine the support sets 5; that contain y,. Quadtrees are a suitable
data structure for carrying out this task. Taking the quadrature points to
be chosen “at random” we found that the expected time needed to do this is
O(a?=t #{k | yr. € S;} + (log N)/d) where a is the worst-case aspect ratio.

Efficient sparse matrix storage: Conventional FEM assembly processes
can assemble K row-by-row , which makes compressed row storage schemes
very attractive. Modifying the assembly process to have the outer-most loop
over the quadrature points makes this much less practicable: K is updated in a
pseudo-random way. Instead we propose using hash tables.

Sufficient Covering: Another discrete issue for meshfree methods is that
the support sets must cover the domain “sufficiently well” in some sense in order.
If there is a point of the domain that is not covered by a support set then the
meshfree basis functions are no longer defined there. Also, the convergence
theory of Melenk assumes that there is a (modest) upper bound on number of
support sets covering any point of the domain.

Clearly, then, it would be useful to be able to check the maximum and
minimum covering numbers for a domain Q: min / max,cq #{i | € S; }. Note
that the covering number of a point x € Q) is simply the number of support sets
containing z: #{i |z € S; }.

Linear Solvers: Another main difficulty is that of solving the linear systems
that arise from meshfree systems. While direct methods can always be used
in principle, they tend to be slow and memory intensive, especially for three-
dimensional problems. We are therefore looking at developing efficient linear
systems solvers that are particularly adapted to meshfree methods.

As multigrid methods are the leading iterative methods for large-scale prob-
lems arising from PDEs, we are especially interested in developing multigrid
or multilevel methods that can achieve for meshfree discretizations close to the
performance obtained by multigrid methods for more structured FEM or similar



discretizations. We have been adapting Algebraic MultiGrid (AMG) methods to
meshfree discretizations. There are a variety of approaches which use combina-
torial and geometric information from the problem within the AMG approach,
which can lead to efficient solvers for the systems.



