IS THE EFFICIENT USE OF THE CHAIN RULE
STRAIGHT-FORWARD?

UWE NAUMANN AND JEAN UTKE *

1. Introduction. The Jacobian matrix F' of a vector function F' : R™ — IR™
written as a computer program can be computed with machine accuracy by a source
transformation technique known as automatic differentiation (AD) [3]. AD is built
on the assumption that the arithmetic operators (for example, * and +) and intrinsic
functions (for example, sin and log) have jointly continuous local partial derivatives
at the current argument x € IR™. It exploits the chain rule to compute directional
derivatives F'-x, x € IR", and adjoints (F")T -y, y € IR™, in the forward and reverse
mode, respectively. The forward and reverse modes of AD are two specific ways to
exploit the associativity of the chain rule. We discuss the general case, that leads to
a variety of combinatorial optimization problems whose (approximate) solution has
been shown to have a positive impact on the efficiency of the derivative code.

2. The Chain Rule in Computational Graphs. For a given argument x
the computation performed by the program that implements F(x) can be visualized
as a directed acyclic computational graph (dag). For example, a function (vs,vg) =
F(vy,v9) that is implemented as vs = @3(v1,v2),v4 = @4(v3),v5 = @5(v4),v6 =
@6 (v3, v2), where the elemental functions ¢; represent arithmetic operations or intrin-
sic functions, leads to the dag shown in F1G. 2.1(a). Under the above assumptions

@ ® 9@ @

Fic. 2.1. Transformation of dags

about the differentiability of the elemental functions the values of the local partial
derivatives can be attached to the corresponding edges in the dag. For example, edge
(3,6) is labeled with ¢ 3 = 3%6- The Jacobian can be accumulated by transforming
the dag into a subgraph of the directed complete bipartite graph K, ,,. An example
is depicted in F1G. 2.1(b). Vertex [4] and edge [6] elimination techniques have been
proposed to perform this transformation. For example, F1G. 2.1(c) shows the struc-
tural modifications due to the elimination of vertex 3. The front-elimination of edge
(2,3) and the the back-elimination of edge (3,4) are illustrated in Fi1a. 2.1(d) and
(e), respectively. The number of “chain rule” operations (fused multiply-adds — fma)
is equal to the product of the the number of predecessors and successors for vertex
elimination; that is, four in our example. For front- (back-) elimination of edges this
cost is equal to the number of successors of the target (predecessors of the source);
that is, two in both our examples.

*Mathematics and Computer Science Division, Argonne National Laboratory, 9700 South Cass
Ave., Argonne, IL 60439, USA, {naumann|utke}@ncs.anl.gov.

1



The most general elimination technique has been pro-
posed in [7] and is referred to as face elimination. This
method eliminates edges in the dual computational graph,
that is a variant of the directed line graph of the orig-
inal dag. For example, the dual graph of the dag in
F1G. 2.1(a) is depicted in F1G. 2.2(a). Face elimination
ultimately leads to the Jacobian in form of a tripartite
dag as shown in F1G. 2.2(b) depicting the dual of the dag
in F1a. 2.1(b). A single face elimination always performs
one fma. Refer to [7] for details on face elimination.

(b)

F1G. 2.2. Dual dag

3. Problems and Outline of the Talk. Vertex, edge, and face elimination are
different approaches to the optimal Jacobian accumulation (OJA) problem, that is to
minimize the number of fused multiply-add operations required for the accumulation
of F'. The superiority of edge over vertex elimination in this context has been illus-
trated in [6]. Moreover, [7] contains an example for the superiority of face over edge
elimination. We have not succeeded yet in giving a quantitative characterization of
the vertex-edge and edge-face discrepancies.

All three problems are conjectured to be NP-hard. However, no formal proof has
been presented so far. Edge and face elimination have been proposed only recently
to overcome the discrepancies in optimality that have been outlined above. Before
1999 vertex elimination was considered as the elementary technique for exploitation
of the associativity of the chain rule in computational graphs. The apparently closely
related problem of minimizing the fill-in under vertex elimination was shown to be
NP-complete in [5].

So far, we have been considering the exploitation of the associativity of the chain
rule. We are currently investigating the potential impact of the commutativity of
scalar multiplication. Our talk shows that the optimal use of the chain rule is not
straight-forward at all. We introduce vertex, edge, and face elimination techniques to-
gether with their associated combinatorial optimization problems. Various approaches
to the approximate solution of these problems are discussed including polynomial de-
terministic algorithms for relevant special types of dags. The theory is put into the
context of generating efficient tangent-linear and adjoint codes automatically by AD.

REFERENCES

. Corliss, C. Faure, A. Griewank, L. Hascoet, and U. Naumann, editors. Automatic Differen-
tiation of Algorithms — From Simulation to Optimization, New York, 2002. Springer.

. Corliss and A. Griewank, editors. Automatic Differentiation: Theory, Implementation, and
Application, Proceedings Series, Philadelphia, 1991. SIAM.

. Griewank. Fwvaluating Derivatives. Principles and Techniques of Algorithmic Differentiation.
Number 19 in Frontiers in Applied Mathematics. SIAM, Philadelphia, 2000.

. Griewank and S. Reese. On the calculation of Jacobian matrices by the Markovitz rule. In
[2], pages 126-135, 1991.

. Herley. A note on the NP-completeness of optimum Jacobian accumulation by vertex elim-
ination. Presentation at: Theory Institute on Combinatorial Challenges in Computational
Differentiation, 1993.

. Naumann. Elimination techniques for cheap Jacobians. In /1], pages 247-253, 2002.

. Naumann. Optimal accumulation of Jacobian matrices by elimination methods on the dual
computational graph. Preprint ANL-MCS/P943-0402, Argonne National Laboratory, 2002.
To appear in Math. Prog.

I
ST o B 0

ca



