COMBINATORIAL PROBLEMS IN AUTOMATIC DIFFERENTIATION

PAUL D. HOVLAND AND UWE NAUMANN

Automatic differentiation (AD) is a family of methods for obtaining the derivatives (sensitivities) of
functions computed by a program (see [4] for a detailed discussion). AD couples rule-based differentiation of
language built-ins (elementary operators and intrinsic functions) with derivative accumulation according to
the chain rule of differential calculus. AD gives rise to a variety of combinatorial problems, including graph
coloring, enumeration, and graph transformation problems. We provide a survey of combinatorial problems
in AD, with a brief overview of popular heuristics, situations where an optimal algorithm is known, and a
list of open problems.

1. Graph Coloring. The computation of sparse Jacobians using graph coloring techniques was first
examined by Coleman and Moré in the context of finite difference approximations [1]. Later, they extended
this technique to exploit symmetry in Hessian computations. These techniques are equally applicable to
automatic differentiation. However, the reverse mode of automatic differentiation introduces the unique
capability to computed transposed Jacobian times vector products. Coleman and Verma demonstrated how
to exploit this capability with a “bi-coloring.” Recently, Gebremedhin et al. presented a unifying framework
for all of these coloring problems, posing them as distance-2, distance—%, and acyclic colorings of graphs
arising naturally from the Jacobian or Hessian structure [2].

For certain special cases, an optimal or near-optimal coloring is possible. These special cases include
distance-2 colorings of Cartesian grids with and without periodic boundaries [3] and acyclic colorings of planar
graphs. The existence of (near-)optimal algorithms for other special cases, such as distance-3 coloring of

planar graphs, is an open question.

2. Jacobian Accumulation. The “accumulation” of derivatives by combining partial derivatives ac-
cording to the chain rule is the source of another combinatorial problem. The associativity of the chain rule
leads to exponentially many ways in which to combine the partial derivatives, each with a different com-
putational cost. Algorithms for automatic differentiation are often expressed in terms of a computational
graph. A computational graph is a directed acyclic graph (DAG) whose vertices correspond to elementary
operators or intrinsic functions. Figure 2.1 shows the computational graph for the following pseudocode.

= cos(x)
= sin(y)
= d*y
= ax*b
= exp(e)

H 0 T Q&0 P

If the edges of the computational graph are assigned weights equal to partial derivatives, then the derivative
of a dependent variable v; with respect to an independent variable v; is the sum over all paths from v; to
v; of the product of the edge weights along that path [6]. The optimal Jacobian accumulation problem is
reduced to finding an optimal order in which to combine pairs of edge weights [5].

C C
cos(y) /1Sl costy) /Sl .
Y d Y d : "
£
b
-sin(x) 2 -sin(x) a

Fic. 2.1. Computational graph (left) for the simple ezample, (right) after elimination of vertez e.
1

2.1. Vertex elimination. A simplified version of the optimal Jacobian accumulation problem is to
find an optimal vertex elimination strategy, where a vertex is eliminated by combining all in edges with
all out edges (requiring |in| x |out| multiplications). Figure 2.1 also shows the computational graph after
eliminating the vertex e.

2.2. Edge Elimination. The computational graph can also be transformed via edge elimination. In
this approach, we replace an edge from vertex v; to vertex v; with the set of edges from v; to succ(v;) or
with the set of edges from pred(v;) to v;, where succ(v;) is the set of vertices vy such that there exists an
edge from v; to vy andpred(v;) is the set of vertices vj, such that there exists an edge from vy to v;. There
exist graphs for which the optimal edge elimination is superior to the optimal vertex elimination. However,
the potential gap between edge and vertex elimination is not yet fully characterized.

2.3. Minimal Representation. A related problem is determining the minimal representation for a
Jacobian. Given the vertex or edge elimination transformations described above, it is possible to reduce an
arbitrary DAG to a bipartite graph with a number of edges equal to the number of nonzeros in the Jacobian.
However, it may also be possible to reduce the graph to a form with few edges. For example, the graph (all
edges are implicitly up)

% % %

IN T /1 ok ok
I \I/ 1 IN T /1
x| [NI/ |
* | * canbereducedto | * |
x| VAR
I /1IN | [/ 1\l
[/ 1\l ok ok
*x ok k

which has fewer edges (8) than the bipartite graph (a complete graph with 9 edges). We present this and
related problems, discuss some partial solutions, and describe some open problems.

REFERENCES

. F. COLEMAN AND J. J. MORE, Estimation of sparse Jacobian matrices and graph coloring pr oblems, SIAM J. Numer.
Anal., 20 (1983), pp. 187-209.

. H. GEBREMEDHIN, F. MANNE, AND A. POTHEN, Graph coloring in optimization revisited, Technical Report 226, Univer-
sity of Bergen, Dept. of Informatics, Bergen, Norway, Jan. 2002.

. GOLDFARB AND P. L. ToiNT, Optimal estimation of Jacobian and Hessian matrices that a rise in finite difference
calculations, Mathematics of Computation, 43 (1984), pp. 69-88.

. GRIEWANK, FEwaluating Derivatives: Principles and Techniques of Algorithmic Differentiation, STAM, Philadelphia,
2000.

. NAUMANN, Efficient Calculation of Jacobian Matrices by Optimized Application of the Chain Rule to Computational
Graphs, PhD thesis, Technical University of Dresden, December 1999.

. ROTE, Path problems in graphs, in Computational Graphs Theory, Springer-Verlag Computing Supplementum 7, G. Tin-
hofer, E. Mayr, H. Noltemeier, and M. M. S. in cooperation with R. Albrecht, eds., Springer, 1990.

=
Q ¢ » U B 8

