Combinatorial and Computational Aspects of the
Monomer-Dimer Problem: Extended abstract

Shmuel Friedland friedlan®@uic.edu, Uri N. Peled uripeled@uic.edu

Department of Mathematics, Statistics, and Computer Science,
University of Tllinois at Chicago, Chicago, Illinois 60607-7045, USA

September 23, 2003

The exponential growth rate h (with respect to the natural logarithm) of the number
of configurations on a multi-dimensional grid arises in the theory of various phenomena [3].
In physics e” is viewed as the entropy (per atom) of the corresponding “hard model”; in
mathematics h is called the topological entropy [5]; and in information theory h (with respect
to log,) is called the multi-dimensional capacity [12]. In the 1-dimensional case e” is equal
to the spectral radius p(I") of certain digraph I'. There are very few 2-dimensional model
where the value of h is known in closed form. In [7] we give a complete up-to-date theory
of the computation of A by using lower and upper bounds that converge to h. It refines
the techniques described in [6] by using an automorphism subgroup of a certain graph. As
a demonstration of these techniques, we compute the topological entropy of the monomer-
dimer covers of the 2-dimensional grid to 8 decimal digits and of the 3-dimensional grid with
an error smaller than 1.35%.

Let Z? be the grid of integer points in d-dimensional space R¢. A dimer is a domino
consisting of two neighboring atoms occupying the places i,i + e; € Z?. A monomer is a
single atom occupying the place i € Z% A monomer-dimer cover, respectively dimer cover,
of Z% is a partition of Z? into monomers and dimers, respectively dimers. We denote by
hg and hg the entropies of the monomer-dimer and dimer covers, respectively. In other
words, hg is the limit of the logarithm of the number of monomer-dimer covers of a box in
7% divided by the volume of the box, as the dimensions of the box grow to infinity; and
similarly for ha. Tt is straightforward to compute the values h; = log 1+2_\/g and hy = 0. The
big breakthrough in the sixties was a close formula for hy in [2]. The exact values of hy for
d> 2 and ﬁd for d > 3 are unknown.

It was shown in [8] that for p € [0, 1], there exists the entropy Agz(p) of the monomer-
dimer covers of Z?, where p is the “density” of dimers, i.e., the number of dimers in the
cover divided by one half of the volume. The entropy A\;(p) is a continuous concave function
of p and \4(1) = ﬁd. We show that hg = max,e[o,1] Aa(p). The van der Waerden conjecture

for permanents of doubly-stochastic matrices gives a lower bound on %d. The improved
lower bound for the permanents of 0-1 matrices [11] gives the currently best lower bound
7L3 > 0.440075. A recent breakthrough [1] gives the upper bound 0.463107 > ﬁg, improved
to 0.457547 > hs by Lundow [10].

In [7] it is to shown that the entropies hq and 7Ld obey upper and lower bounds similar
to the upper and the lower for the entropy of configurations with the symmetric isotropic



nearest neighbor graph. The bounds for hy are stated in terms of the spectral radii of certain
multigraphs whose automorphism group has a subgroup isomorphic to the the group of rigid
motions of the (d — 1)-dimensional torus (Z/miZ) X --- X (Z/mq—1Z). This fact enables
us to compute the values of hy and hs with good precision. We also show that A\;(p)
can be bounded below by using the generalized van der Waerden conjecture (Tverberg’s
conjecture), proved by the first author in [4]. In particular, these lower bounds yield a lower
bound for hy. For d = 2 this lower bound is somewhat weaker than the one obtained from
the numerical computations, but for d = 3 the situation is reversed.

References

[1]

[2]

[3]

[4]

[5]

[7]

(8]

[9]
[10]

[11]

M. Ciucu, An improved upper bound for the 3-dimensional dimer problem, Duke
Math. J. 94 (1998), 1-11.

M.E. Fisher, Statistical mechanics of dimers on a plane lattice, Phys. Rev. 124
(1961), 1664-1672.

R.H. Fowler and G.S. Rushbrooke, Statistical theory of perfect solutions, Trans.
Faraday Soc. 33 (1937), 1272-1294.

S. Friedland, A proof of a generalized van der Waerden conjecture on permanents,
Lin. Multilin. Algebra 11 (1982), 107-120.

S. Friedland, On the entropy of Z-d subshifts of finite type, Linear Algebra Appl.
252 (1997), 199-220.

S. Friedland, Multi-dimensional capacity, pressure and Hausdorff dimension, in
Mathematical System Theory in Biology, Communication, Computation and Fi-
nance, edited by J. Rosenthal and D. Gilliam, IMA Vol. Ser. 134, Springer, New
York, 2003, 183-222.

S. Friedland and Uri N. Peled, Theory of computation of multidimensional entropy
with an application to the monomer-dimer problem, in preparation.

J.M. Hammersley, Existence theorems and Monte Carlo methods for the monomer-
dimer problem, in Reseach papers in statistics: Festschrift for J. Neyman, edited
by F.N. David, Wiley, London, 1966, 125-146.

M. Jerrum, Two-dimensional monomer-dimer systems are computationally in-
tractible, J. Stat. Phys. 48 (1987), 121-134.

P.H. Lundow, Compression of transfer matrices, Discrete Math. 231 (2001), 321-
329.

A. Schrijver, Counting 1-factors in regular bipartite graphs, J. Comb. Theory B 72
(1998), 122-135.



[12] W. Weeks and R.E. Blahut, The capacity and coding gain of certain checkerboard
codes, IEEE Trans. Info. Theory 44 (1998), 1193-1203.



