
Linear Algebra Notation and Definitions

This appendix provides notation, definitions and some well known
results, mostly in linear algebra. We assume that all matrices and
vectors are real unless we explicitly state otherwise.

A square matrix is symmetric if Aij = Aji.

1. Eigenvalues and Eigenvectors

A square matrix is positive definite if xT Ax > 0 for all x and positive
semidefinite if xT Ax ≥ 0 for all x.

The eigendecomposition of a square matrix is a factorization A =
V ΛV −1 where Λ is diagonal. The columns of V are called eigenvectors
of A and the diagonal elements of Λ are called the eigenvalues of A.
A real matrix may have complex eigenvalues. The expression Λ(A)
denotes the set of eigenvalues of A.

Not all matrices have an eigendecomposition, but every symmetric
matrix has one. In particular, the eigenvalues of symmetric matrices are
real and their eigenvectors are orthogonal to each other. Therefore, the
eigendecomposition of symmetric matrices is of the form A = V ΛV T .
The eigenvalues of positive definite matrices are all positive, and the
eigenvalues of positive semidefinite matrices are all non-negative.

For any matrix V , the product V V T is symmetric and positive
semidefinite.

2. The Singular Value Decomposition

Every matric A ∈ Cm×n, m ≥ n has a singular value decomposition
(SVD) A = UΣV ∗ where U ∈ Cm×n with orthonormal columns, V ∈
Cn×n with orthonormal columns, and Σ ∈ Rn×n is non-negative and
diagonal. (This decomposition is sometimes called the reduced SVD,
the full one being with a rectangular U and an m-by-n Σ.) The columns
of U are called left singular vectors, the columns of V are called right
singular vectors, and the diagonal elements of Σ are called singular
values. The singular values are non-negative. We denote the set of
singular values of A by Σ(A).
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3. Generalized Eigenvalues

Preconditioning involves two matrices, the coefficient matrix and
the preconditioners. The convergence of iterative linears solvers for
symmetric semidefinite problems depends on the generalized eigenval-
ues of the pair of matrices. A pair (S, T ) of matrices is also called a
pencil.

Definition 3.1. Let S and T be n-by-n complex matrices. We say
that a scalar λ is a finite generalized eigenvalue of the matrix pencil
(pair) (S, T ) if there is a vector v �= 0 such that

Sv = λTv

and Tv �= 0. We say that ∞ is a infinite generalized eigenvalue of
(S, T ) if there exist a vector v �= 0 such that Tv = 0 but Sv �= 0. Note
that ∞ is an eigenvalue of (S, T ) if and only if 0 is an eigenvalue of
(T, S). The finite and infinite eigenvalues of a pencil are determined
eigenvalues (the eigenvector uniquely determines the eigenvalue). If
both Sv = Tv = 0 for a vector v �= 0, we say that v is an indeterminate
eigenvector, because Sv = λTv for any scalar λ.

We order from smallest to largest. We will denote the kth eigenvalue
of S by λk(S), and the kth determined generalized eigenvalue of (S, T )
by λk(S, T ). Therefore λ1(S) ≤ · · · ≤ λl(S) and λ1(S, T ) ≤ · · · ≤
λd(S, T ), where l is the number of eigenvalues S has, and d is the
number of determined eigenvalues that (S, T ) has.

Definition 3.2. A pencil (S, T ) is Hermitian positive semidefinite
(H/PSD) if S is Hermitian, T is positive semidefinite, and null(T ) ⊆
null(S).

The generalized eigenvalue problem on H/PSD pencils is, mathe-
matically, a generalization of the Hermitian eigenvalue problem. In
fact, the generalized eigenvalues of an H/PSD can be shown to be the
eigenvalues of an equivalent Hermitian matrix. The proof appears in
the Appendix. Based on this observation it is easy to show that other
eigenvalue properties of Hermitian matrices have an analogy for H/PSD
pencils. For example, an H/PSD pencil, (S, T ), has exactly rank(T )
determined eigenvalues (counting multiplicity), all of them finite and
real.

A useful tool for analyzing the spectrum of an Hermitian matrix is
the Courant-Fischer Minimax Theorem [?].
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Theorem 3.3. (Courant-Fischer Minimax Theorem) Suppose that
S ∈ Cn×n is an Hermitian matrix, then

λk(S) = min
dim(U)=k

max
x∈U

x∗Sx

x∗x
and

λk(S) = max
dim(V )=n−k+1

min
x∈V

x∗Sx

x∗x
.

As discussed above, the generalized eigenvalue problem on H/PSD
pencils is a generalization of the eigenvalue problem on Hermitian ma-
trices. Therefore, there is a natural generalization of Theorem 3.3 to
H/PSD pencils, which we refer to as the Generalized Courant-Fischer
Minimax Theorem. We now state the theorem. For completeness the
proof appears in the Appendix.

Theorem 3.4. (Generalized Courant-Fischer Minimax Theorem)
Suppose that S ∈ Cn×n is an Hermitian matrix and that T ∈ Cn×n is
an Hermitian positive semidefinite matrix such that null(T ) ⊆ null(S).
For 1 ≤ k ≤ rank(T ) we have

λk(S, T ) = min
dim(U) = k
U ⊥ null(T )

max
x∈S

x∗Sx

x∗Tx

and

λk(S, T ) = max
dim(V ) = rank(T ) − k + 1

V ⊥ null(T )

min
x∈S

x∗Sx

x∗Tx
.


