
CHAPTER 6

Embeddings and Combinatorial Support Bounds

To bound σ(A, B) using the Symmetric-Product-Support Lemma,
we need to factor A and B into A = UUT and B = V V T , and we
need to find a W such that U = V W . We have seen that if A and B
are diagonally dominant, then there is an almost trivial way to factor
A and B such that U and V are about as sparse as A and B. But
how do we find a W such that U = V W ? In this chapter, we show
that when A and B are weighted (but not signed) Laplacians, we can
construct such W using an embedding of the edges of GA into paths
in GB. Furthermore, when W is constructed from an embedding, the
bounds on ‖W‖2 can be interpreted as combinatorial bounds on the
quality of the embedding.

1. Defining W using Path Embeddings

We start with the construction of a matrix W such that U = V W
The following lemma is the key to the construction of W .

Lemma 1.1. Let (i1, i2, . . . , i�) be a sequence of integers between 1
and n, such that ij �= ij+1 for j = 1, . . . � − 1.Then

〈i1,−j�〉 =

�−1∑
j=1

〈ij,−jj+1〉 ,

where all the edge vectors are length n.

Proof. By induction. The base of the induction clearly holds: For
� = 2, 〈i1,−j�〉 =

∑1
j=1 〈ij ,−jj+1〉 = 〈i1,−j2〉. Suppose that the claim
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is true for � − 1 ≥ 2.

�−1∑
j=1

〈ij,−jj+1〉 =
�−2∑
j=1

〈ij,−jj+1〉 + 〈i�−1,−j�〉

= 〈i1,−j�−1〉 + 〈i�−1,−j�〉

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...
+1
...
−1
...
0
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...
0
...

+1
...

−1
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...
+1
...
0
...

−1
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 〈i1,−j�〉 .

�

To see why this lemma is important, consider the role of a column
of W . Suppose that the columns of U and V are all positive edge
vectors. Denote column c of U by

U : ,c = 〈min(i1, i�),−max(i1, i�)〉 = (−1)i1>i� 〈i1,−i�〉 ,

where the (−1)i1>i� evaluates to −1 if i1 > i� and to 1 otherwise. This
column corresponds to the edge (i1, i�) in GUUT . Now let (i1, i2, . . . , i�)
be a simple path in GV V T (a simple path is a sequence of vertices
(i1, i2, . . . , i�) such that (ij , ij+1) is an edge in the graph for 1 ≤ j < �
and such that any vertex appears at most once on the path). If U =
V W , then

U : ,c = V W : ,c =

k∑
r=1

V : ,rWr,c .

Let r1, r2, . . . , r�−1 be the columns of V that corresponds to the edges of
the path (i1, i2, . . . , i�), in order. That is, V : ,r1 = 〈min(i1, i2),−max(i1, i2)〉,
V : ,r2 = 〈min(i2, i3),−max(i2, i3)〉, and so on. By the lemma,

U : ,c = (−1)i1>i� 〈i1,−i�〉

= (−1)i1>i�

�−1∑
j=1

〈ij ,−ij+1〉

= (−1)i1>i�

�−1∑
j=1

(−1)ij>ij+1V : ,rj
.
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It follows that if we define W : ,c to be

Wr,c =

{
(−1)i1>i�(−1)ij>ij+1 r = rj for some 1 ≤ j < �

0 otherwise,

then we have U : ,c = V W : ,c. We can constuct all the columns of W in
this way, so that W satisfies U = V W .

A path of edge vectors that ends in a vertex vector supports the
vertex vector associated with the first vertex of the path.

Lemma 1.2. Let (i1, i2, . . . , i�) be a sequence of integers between 1
and n, such that ij �= ij+1 for j = 1, . . . � − 1.Then

〈i1〉 = 〈i�〉 +
�−1∑
j=1

〈ij ,−ij+1〉 ,

where all the edge and vertex vectors are length n.

Proof.

−〈i�〉 +

�−1∑
j=1

〈ij ,−ij+1〉 = 〈i�〉 + 〈i1,−i�〉 = 〈i1〉 .

�

Let’s try to generalize these ideas. There are several issues that
we must address if we want to construct W for arbitrary pairs of
diagonally-dominant matrices: vertex vectors, negative edge vectors,
and scaled edge and vertex vectors. It turns out that handling matri-
ces with positive offdiagonals, which give rise to negative edge vectors,
is considerably more complex than handling only positive edge vectors
and vertex vectors. Therefore, we leave this issue for a later chapter.
Handling vertex vectors and scaled vertex and positive edge vectors,
however, is easy. The next theorem shows how path embeddings can
be used to construct W for any pair of weighted (unsigned) Laplacians.

Theorem 1.3. Let A and B be weighted (unsigned) Laplacians and
let U and V be their canonical incidence factors. Let π be a path
embedding of the edges and strictly-dominant vertices of GA into GB,
such that for an edge (i1, i�) in GA, i1 < i�, we have

π(i1, i�) = (i1, i2, . . . , i�)

for some simple path (i1, i2, . . . , i�) in GB, and such that for a strictly-
dominant i1 in GA,

π(i1) = (i1, i2, . . . , i�)
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for some simple path (i1, i2, . . . , i�) in GB that ends in a strictly-dominant
vertex i� in GB. Denote by cV (ij , ij+1) the index of the column of V
that is a scaling of 〈ij ,−ij+1〉. That is,

V : ,cV (ij ,ij+1) =
√

−Bij ,ij+1
〈min(ij , ij+1),−max(ij , ij+1)〉 .

Similarly, denote by cV (ij) the index of the column of V that is a scaling
of 〈ij〉,

V : ,cV (ij) =

√√√√√Bij ,ij −
n∑

ik=1
ik �=ij

∣∣Bik,ij

∣∣ 〈ij〉 ,

and similarly for U .
We define a matrix W as follows. For a column index cU(i1, i�)

with i1 < i� we define

Wr,cU (i1,i�) =

⎧⎨
⎩

(−1)ij>ij+1
√

Ai1,i�/Bij ,ij+1
if r = cV (ij , ij+1) for
some edge (ij , ij+1) in π(i1, i�)

0 otherwise.

For a column index cU(i1), we define

Wr,cU (i1) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

√
Ai1,i1

−∑j �=i1
|Ai1,j|

Bi�,i�
−∑j �=i�

|Bi�,j| if r = cV (i�)

(−1)ij>ij+1

√
Ai1,i1

−∑k �=i1
|Ai1,k|

|Bij ,ij+1| if r = cV (ij , ij+1) for

some edge (ij , ij+1) in π(i1)
0 otherwise.

Then U = V W .
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Proof. For scaled edge-vector columns in U we have

V W : ,cU (i1,i�) =
∑

r

V : ,rWr,cU (i1,i�)

=
∑

r=cV (ij ,ij+1)
for some edge

(ij ,ij+1) in π(i1,i�)

V : ,rWr,cU (i1,i�)

=

�−1∑
j=1

√∣∣Bij ,ij+1

∣∣ 〈min(ij , ij+1),−max(ij , ij+1)〉 (−1)ij>ij+1

√
Ai1,i�

Bij ,ij+1

=
√
|Ai1,i�|

�−1∑
j=1

(−1)ij>ij+1 〈min(ij , ij+1),−max(ij, ij+1)〉

=
√
|Ai1,i�|

�−1∑
j=1

〈ij ,−ij+1〉

=
√
|Ai1,i�| 〈i1,−i�〉

= U : ,cU (i1,i�) .



1. DEFINING W USING PATH EMBEDDINGS 6

For scaled vertex-vector columns in U we have

V W : ,cU (i1) =
∑

r

V : ,rWr,cU (i1)

= V : ,cV (i�)WcV (i�),cU (i1,i�) +
∑

r=cV (ij ,ij+1)
for some edge

(ij ,ij+1) in π(i1)

V : ,rWr,cU (i1)

=

√
Bi�,i� −

∑
j �=i�

|Bik,i�| 〈i�〉
√

Ai1,i1 −
∑

j �=i1
|Ai1,j|

Bi�,i� −
∑

j �=i�
|Bi�,j|

+

�−1∑
j=1

√∣∣Bij ,ij+1

∣∣ 〈min(ij , ij+1),−max(ij , ij+1)〉

·(−1)ij>ij+1

√
Ai1,i1 −

∑
j �=i1

|Ai1,j|∣∣Bij ,ij+1

∣∣
=

√
Ai1,i1 −

∑
j �=i1

|Ai1,j| 〈i�〉

+

√
Ai1,i1 −

∑
j �=i1

|Ai1,j|

·
�−1∑
j=1

(−1)ij>ij+1 〈min(ij , ij+1),−max(ij, ij+1)〉

=

√
Ai1,i1 −

∑
j �=i1

|Ai1,j| 〈i�〉 +

√
Ai1,i1 −

∑
j �=i1

|Ai1,j|
�−1∑
j=1

〈ij ,−ij+1〉

=

√
Ai1,i1 −

∑
j �=i1

|Ai1,j| (〈i�〉 + 〈i1,−i�〉)

=

√
Ai1,i1 −

∑
j �=i1

|Ai1,j| 〈i1〉

= U : ,cU (i1) .

�

This theorem plays a fundamental role in many applications of sup-
port theory, and it merits additional discussion. For a path embedding
that satisfies the hypothesis to exist, GB must satisfy certain connec-
tivity constraints. Are they essential for the existence of a matrix W
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such that U = V W ? The next lemma shows that these constraints are
essential.

Lemma 1.4. Let A = UUT and B = V V T be weighted (but not
signed) Laplacians with arbitrary symmetric-product factorizations. The
following conditions are necessary for the equation U = V W to hold for
some matrix W (by Theorem 1.3, these conditions are also sufficient).

(1) For each edge (i, j) in GA, either i and j are in the same
connected component in GB, or the two components of GB

that contain i and j both include a strictly-dominant vertex.
(2) For each strictly-dominant vertex i in GA, the component of

GB that contains i includes a strictly-dominant vertex.

Proof. Suppose for contradiction that one of the conditions is not
satisfied, but that there is a W that satisfies U = V W . Without loss of
generality, we assume that the vertices are ordered such that vertices
that belong to a connected component in GB are consecutive. Under
that assumption,

V =

⎡
⎢⎢⎣

V1

V2

. . .
Vk

⎤
⎥⎥⎦ ,

and

B =

⎡
⎢⎢⎣

B1

B2

. . .
Bk

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

V1V
T
1

V2V
T
2

. . .
VkV

T
k

⎤
⎥⎥⎦ .

The blocks of V are possibly rectangular, whereas the nonzero blocks
of B are all diagonal and square.

We now prove the necessity of the first condition. Suppose for some
edge (i, j) in GA, i and j belong to different connected components of
GB (without loss of generality, to the first two components), and that
one of the components (w.l.o.g. the first) does not have a strictly-
dominant vertex. Because this component does not have a strictly-
dominant vertex, the row sums in V1V

T
1 are exactly zero. Therefore,

V1V
T
1

�1 = �0, so V1 must be rank deficient.
Since (i, j) is in GA, the vector 〈i,−j〉 is in the column space of the

canonical incidence factor of A, and therefore in the column space of
any U such that A = UUT . If U = V W , then the vector 〈i,−j〉 must
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also be in the column space of V , so for some x

〈i,−j〉 = V x =

⎡
⎢⎢⎣

V1

V2

. . .
Vk

⎤
⎥⎥⎦
⎡
⎢⎢⎣

x1

x2
...

xk

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

V1x1

V2x2
...

Vkxk

⎤
⎥⎥⎦ .

Therefore, V1x1 is a vertex vector. By Theorem 1.3, if V1 spans a vertex
vector, it spans all the vertex vectors associated with the vertices of the
connected component. This implies that V1 is full rank, a contradiction.

The necessity of the second condition follows from a similar argu-
ment. Suppose that vertex i is strictly dominant in GA and that it
belongs to a connected component in GB (w.l.o.g. the first) that does
not have a vertex that is strictly dominant in GB. This implies that
for some y

〈i〉 = V y =

⎡
⎢⎢⎣

V1

V2

. . .
Vk

⎤
⎥⎥⎦
⎡
⎢⎢⎣

y1

y2
...
yk

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

V1y1

V2y2
...

Vkyk

⎤
⎥⎥⎦ .

Again V1y1 is a vertex vector, so V1 must be full rank, but it cannot be
full rank because V1V

T
1 has zero row sums. �

On the other hand, even if U and V are the canonical incidence
factors of A and B, not every W such that U = V W corresponds to
a path embedding. In particular, a column of W can correspond to a
linear combination of multiple paths. Also, even if W does correspond
to a path embedding, the paths are not necessarily simple. A linear
combination of scaled positive edge vectors that correspond to a simple
cycle can be identically zero, so the coefficients of such linear combina-
tions can be added to W without affecting the product V W . However,
it seems that adding cycles to a path embedding cannot reduce the
2-norm of W , so cycles are unlikely to improve support bounds.

2. Combinatorial Support Bounds

To bound σ(A, B) using the Symmetric-Produce-Support Lemma,
we need to factor A into A = UUT , B into B = V V T , find a matrix
W such that U = V W , and to bound the 2-norm of W from above.
We have seen how to factor A and B (if they are weigthed Laplacians)
and how to construct an appropriate W combinatorially, using graph
embeddings. We now show how to use combinatorial metrics of the
path embeddings to bound ‖W‖2.
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Bounding the 2-norm directly is hard, because the 2-norm is not
related in a simple way to the entries of W . But the 2-norm can be
bounded using simpler norms, such as the Frobenius norm, the infinity
norm, and the 1-norm. We will show that these simpler norms have
natural and useful combinatorial interpretations when W represents a
path embedding. The bounds on the 2-norm that we use are

‖W‖2
2 ≤ ‖W‖2

F =

k∑
r=1

m∑
c=1

W 2
r,c

‖W‖2
2 ≤ ‖W‖1‖W‖∞ =

(
m

max
c=1

k∑
r=1

|Wr,c|
)(

k
max
r=1

m∑
c=1

|Wr,c|
)

To keep the notation and the definition simple, we now assume that
A and B are weigted Laplacians with zero row sums. We will show
later how to deal with positive row sums. We also assume that W
corresponds to a path embedding π. The following definitions provide
a combinatorial interpretation of these bounds.

Definition 2.1. The weighted dilation of an edge of GA in an path
embedding π of GA into GB is

dilationπ(i1, i2) =
∑

(j1,,j2)

(j1,,j2)∈π(i1,i2)

√
Ai1,i2

Bj1,j2

.

The weigted congestion of an edge of GB is

congestionπ(j1, j2) =
∑

(i1,,i2)

(j1,,j2)∈π(i1,i2)

√
Ai1,i2

Bj1,j2

.

The weighted stretch of an edge of GA is

stretchπ(i1, i2) =
∑

(j1,,j2)

(j1,,j2)∈π(i1,i2)

Ai1,i2

Bj1,j2

.

The weighted crowding of an edge in GB is

crowdingπ(j1, j2) =
∑

(i1,,i2)

(j1,,j2)∈π(i1,i2)

Ai1,i2

Bj1,j2

.

Note that stretch is a summation of the squares of the quantities that
constitute dilation, and similarly for crowding and congestion. Papers
in the support-preconditioning literature are not consistent about these
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terms, so check the definitions carefully when you consult a paper that
deals with congestion, dilation, and so on.

Lemma 2.2. Let A and B be weighted Laplacians with zero row
sums, and let π be a path embedding of GA into GB. Then

σ(A, B) ≤
∑

(i1,i2)∈GA

stretchπ(i1, i2)

σ(A, B) ≤
∑

(j1,j2)∈GB

crowdingπ(j1, j2)

σ(A, B) ≤
(

max
(i1,i2)∈GA

dilationπ(i1, i2)

)

·
(

max
(j1,j2)∈GB

congestionπ(j1, j2)

)
.

Proof. Let U and V be the canonical incidence factors of A and
B, and let W be the matrix representation of the embedding π, so
U = V W . We have

σ(A, B) ≤ ‖W‖2
2

≤ ‖W‖2
F

=
m∑

c=1

k∑
r=1

W 2
r,c

=
∑

(i1,i2)∈GA

∑
(j1,,j2)

(j1,,j2)∈π(i1,i2)

Ai1,i2

Bj1,j2

=
∑

(i1,i2)∈GA

stretchπ(i1, i2) .
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The proof for crowding is identical. We also have

σ(A, B) ≤ ‖W‖1‖W‖∞

=

(
m

max
c=1

k∑
r=1

|Wr,c|
)(

k
max
r=1

m∑
c=1

|Wr,c|
)

=

⎛
⎜⎜⎝ max

(i1,i2)∈GA

∑
(j1,,j2)

(j1,,j2)∈π(i1,i2)

√
Ai1,i2

Bj1,j2

⎞
⎟⎟⎠

·

⎛
⎜⎜⎝ max

(j1,j2)∈GA

∑
(i1,,i2)

(j1,,j2)∈π(i1,i2)

√
Ai1,i2

Bj1,j2

⎞
⎟⎟⎠

=

(
max

(i1,i2)∈GA

dilationπ(i1, i2)

)

·
(

max
(j1,j2)∈GA

congestionπ(j1, j2)

)
.

�

We now describe one way to deal with matrices with some positive
row sums. The matrix B is a preconditioner. In many applications,
the matrix B is not given, but rather constructed. One simple way
to deal with positive row sums in A is to defineπ(i1) = (i1). That is,
vertex vectors in the canonical incidence factor of A are mapped into
the same vertex vectors in the incidence factor of B. In other words,
we construct B to have exactly the same row sums as A. With such
a construction, the rows of W that correspond to vertex vectors in U
are columns of the identity.

Lemma 2.3. Let A and B be weighted Laplacians with the same
row sums, let π be a path embedding of GA into GB, and let � be the
number of rows with positive row sums in A and B. Then

σ(A, B) ≤ � +
∑

(i1,i2)∈GA

stretchπ(i1, i2)

σ(A, B) ≤
(

max

{
1, max

(i1,i2)∈GA

dilationπ(i1, i2)

})

·
(

max

{
1, max

(j1,j2)∈GB

congestionπ(j1, j2)

})
.
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Proof. Under the hypothesis of the lemma, the rows and columns
of W can be permuted into a block matrix

W =

(
WZ 0
0 I�×�

)
,

where WZ represents the path embedding of the edges of GA into paths
in GB. The bounds follow from the structure of W and from the proof
of the previous lemma. �

The sparse bounds on the 2-norm of a matrix lead to tighter com-
binatrial bounds.

Lemma 2.4. Let A and B be weighted Laplacians with zero row
sums, and let π be a path embedding of GA into GB. Then

σ(A, B) ≤ max
(j1,j2)∈GB

∑
(i1,i2)∈GA

(j1,j2)∈π(i1,i2)

stretchπ(i1, i2) ,

σ(A, B) ≤ max
(i1,i2)∈GA

∑
(j1,j2)∈GA

(j1,j2)∈π(i1,i2)

crowdingπ(j1, j2) .

We can derive similar bounds for the other sparse 2-norm bounds.

3. Subset Preconditioners

Normally, to obtain a bound on κ(A, B) we need a bound on both
σ(A, B) and σ(B, A). But in one common case, bounding σ(B, A) is
trivial. Many support preconditioners construct GB to be a subgraph
of GA, with the same weights. That is, V is constructed to have a
subset of the columns in U . If we denote by V̄ the set of columns of U
that are not in V , we have

B = V V T

A = UUT

= V V T + V̄ V̄ T

= B + V̄ V̄ T .

This immediately implies xT Ax ≥ xT Bx for any x, so λmin(A, B) ≥ 1.

4. Notes and References

The low-stretch forests are from Elkin-Emek-Spielman-Teng, STOC
2005. This is an improvement over Alon-Karp-Peleg-West.


