CHAPTER 6

Embeddings and Combinatorial Support Bounds

To bound o(A, B) using the Symmetric-Product-Support Lemma,
we need to factor A and B into A = UUT and B = VV7, and we
need to find a W such that U = VIW. We have seen that if A and B
are diagonally dominant, then there is an almost trivial way to factor
A and B such that U and V are about as sparse as A and B. But
how do we find a W such that U = VW? In this chapter, we show
that when A and B are weighted (but not signed) Laplacians, we can
construct such W using an embedding of the edges of G4 into paths
in Gg. Furthermore, when W is constructed from an embedding, the
bounds on ||[W]|z can be interpreted as combinatorial bounds on the
quality of the embedding.

1. Defining W using Path Embeddings

We start with the construction of a matrix W such that U = VW
The following lemma is the key to the construction of WW.

LEMMA 1.1. Let (iy,i9,...,1;) be a sequence of integers between 1
and n, such that v; # i;41 for 5 =1,...4 —1.Then

~

—1
(i1, —Je) = (i, —=Jit1) 5
7j=1

where all the edge vectors are length n.

ProoF. By induction. The base of the induction clearly holds: For
0=2, (iy,—je) = 3;_, (ij,—jj41) = (i1, —ja). Suppose that the claim
1
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is true for £ — 1 > 2.

-1 -2
(4, =Jjr1) = Z ijy —Jj+1) + (i1, —Je)
j=1 j=1

= (%1, —Jo- 1> W 1,—%)

+1 0 +1

O

To see why this lemma is important, consider the role of a column
of W. Suppose that the columns of U and V' are all positive edge
vectors. Denote column ¢ of U by

U. . = (min(iy, ip), — max(iy, ip)) = (—=1)">" (i1, —iy) ,

where the (—1)*>% evaluates to —1 if i1 > i, and to 1 otherwise. This
column corresponds to the edge (i1,4,) in Gyyr. Now let (iy, g, ..., 1)
be a simple path in Gy (a simple path is a sequence of vertices
(i1,12,...,1¢) such that (i;,7,41) is an edge in the graph for 1 < j < ¢
and such that any vertex appears at most once on the path). If U =
VW, then

k
U: c — VW c — Z V ,rWr,c .

Let r1,79,...,7,_1 be the columns of V' that corresponds to the edges of
the path (i1, 49, . ..,4), in order. Thatis, V. ,, = (min(iy, i), — max (i1, i2)),
V. r, = (min(is, i3), — max(is, i3)), and so on. By the lemma,

U e = (=1)"7" (iy, —if)
-1
= ()" (i, i)

— 21>Ze Z]>ij+1V .
g DT

Jj=1

~ S
I
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It follows that if we define W. . to be

e 0 otherwise,

then we have U. . = VW, .. We can constuct all the columns of IV in
this way, so that W satisfies U = VIV.

A path of edge vectors that ends in a vertex vector supports the
vertex vector associated with the first vertex of the path.

LEMMA 1.2. Let (iy,i9,...,17) be a sequence of integers between 1
and n, such that v; # i;41 for 5 =1,...4 —1.Then
-1
(ir) = (ie) + D (i, —ij+1)
7j=1

~

where all the edge and vertex vectors are length n.

PROOF.
iy S i i) = i) + G, —ig) = (i)

j=1
O

Let’s try to generalize these ideas. There are several issues that
we must address if we want to construct W for arbitrary pairs of
diagonally-dominant matrices: vertex vectors, negative edge vectors,
and scaled edge and vertex vectors. It turns out that handling matri-
ces with positive offdiagonals, which give rise to negative edge vectors,
is considerably more complex than handling only positive edge vectors
and vertex vectors. Therefore, we leave this issue for a later chapter.
Handling vertex vectors and scaled vertex and positive edge vectors,
however, is easy. The next theorem shows how path embeddings can
be used to construct W for any pair of weighted (unsigned) Laplacians.

THEOREM 1.3. Let A and B be weighted (unsigned) Laplacians and
let U and V' be their canonical incidence factors. Let m be a path
embedding of the edges and strictly-dominant vertices of G 4 into Gp,
such that for an edge (i1,is) in Ga, i1 < iy, we have

W(il,ig) = (il,ig, .. .,ig)

for some simple path (i1, 12, ... ,i7) in G, and such that for a strictly-
dominant i1 in Gu,

W(il) = (il,ig, . ,ig)
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for some simple path (iy, iz, . .., 1) in Gp that ends in a strictly-dominant
vertex i in Gp. Denote by cy(ij,i;41) the index of the column of V
that is a scaling of (i;, —i;41). That is,

V.

syev(ig,ijp) — _Bijﬂ'jﬂ <min(ija ij+1), - max(iﬁ ij+1)> .

Similarly, denote by cy (i;) the index of the column of V' that is a scaling

of (i),

V. sev(ij) = Bi;i; — Z }Biw'j} <ZJ> )
=1

Uiy

and similarly for U.
We define a matric W as follows. For a column index cy(iy,ir)
with 11 < iy we define

(_1)ij>ij+1 V Aihie/Bij,ijJrl Zf?“ = CV(Z'JV ij+1> fOT .
Wi coirnie) = some edge (ij,4;41) 1 m(iy, i)
0 otherwise.

For a column indez cy(iy), we define

(
Aigiq 72]’#1 Ail,j| . .
ifr =cy(i
\/Bievizzjséiz Biw’| f V( z)
> Aiy iy — i | Ai . .
Whew (i) = (_1)Zj>Zj+l\/ = B:k.#l u ifr = cv(ij,ijp) for
ijij41
some edge (ij,4;+1) nm(iy)
(0 otherwise.

Then U =VW.
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PROOF. For scaled edge-vector columns in U we have

VIV, ,cu (i1,ip)

Z V. ,rWr,cU(il,ig)

Z V. 7TWT,CU(i17'iZ)

r=cy (ij,ij+1)
for some edge
(i5,4541) in mw(i1,ip)

/-1
Z \/m (min(i;,ij,1), — max(ij, ij,q)) (—1)575+
7j=1
/-1
MZ(_l)Zj>Zj+l <m1n(2], ’L.j+1), — maX(ij7 ’L]+1)>
7=1

-1

V1Al > (g, =)
j=1

\/ |Ai1,ie| <i17 _i€>

U. ey (i1,ig) -
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For scaled vertex-vector columns in U we have

VW: (i) — Z V ,TWT,CU(il)

= VievinWevio)evtinio) + > VeWeepm)
r=cv (i;,5+1)
for some edge
(45,4j41) in 7(i1)

_Z. ) |A 7.‘
= zme Z’sz,ze’ ZZ \/ o 77n

i Zz (72 Zj;éil ‘Biz,j‘

~

—1
+ ’Bz'j,ijﬂ} (min(ij, ij41), — max(ij, ij41))
j=1

.(_1)ij>ij+1 \/Ail’i1 }_ Zj?fil |Ai17j‘

B.
\/ i1,61 Z|Allj| ic)

ijyl+1 ’
J#u

\/ =S A

J#i

~

—1
(—1)%>%+ (min(ij, ij41), — max(ij, ij41))
1

J

= \/nu Z|AZIJ| ie) \/n,n Z|AZ17]‘Z i, —lj41)

J#i jFi
= Z1 i1 Z |AZ1 J| Zf <i17 _”))
J#i
= Airin Z|Allj| i)
J#i
= Uil -

D

This theorem plays a fundamental role in many applications of sup-
port theory, and it merits additional discussion. For a path embedding
that satisfies the hypothesis to exist, Gp must satisfy certain connec-
tivity constraints. Are they essential for the existence of a matrix W
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such that U = VIW? The next lemma shows that these constraints are
essential.

LEMMA 1.4. Let A = UUT and B = VVT be weighted (but not
signed) Laplacians with arbitrary symmetric-product factorizations. The
following conditions are necessary for the equation U = VW to hold for
some matrix W (by Theorem 1.3, these conditions are also sufficient).

(1) For each edge (i,7) in Ga, either i and j are in the same
connected component in Gg, or the two components of Gpg
that contain © and j both include a strictly-dominant vertez.

(2) For each strictly-dominant vertez i in Ga, the component of
Gp that contains © includes a strictly-dominant vertex.

PROOF. Suppose for contradiction that one of the conditions is not
satisfied, but that there is a W that satisfies U = VIW. Without loss of
generality, we assume that the vertices are ordered such that vertices
that belong to a connected component in G are consecutive. Under
that assumption,

Vi
Va

Vi
and

B 1A%
B, A%

The blocks of V' are possibly rectangular, whereas the nonzero blocks
of B are all diagonal and square.

We now prove the necessity of the first condition. Suppose for some
edge (i,7) in G4, i and j belong to different connected components of
G (without loss of generality, to the first two components), and that
one of the components (w.l.o.g. the first) does not have a strictly-
dominant vertex. Because this component does not have a strictly-
dominant vertex, the row sums in ViV, are exactly zero. Therefore,
ViVIT = 0, so V; must be rank deficient.

Since (i, 7) is in G 4, the vector (i, —j) is in the column space of the
canonical incidence factor of A, and therefore in the column space of
any U such that A = UU”. If U = VW, then the vector (i, —j) must
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also be in the column space of V', so for some x

Vi € Vix,
<. > v Vo X2 Voo
1,—j)=Vx = ) ) = )

Vi Tp Vi,

Therefore, V12 is a vertex vector. By Theorem 1.3, if V} spans a vertex
vector, it spans all the vertex vectors associated with the vertices of the
connected component. This implies that V] is full rank, a contradiction.

The necessity of the second condition follows from a similar argu-
ment. Suppose that vertex ¢ is strictly dominant in G4 and that it
belongs to a connected component in Gp (w.l.o.g. the first) that does
not have a vertex that is strictly dominant in Gg. This implies that
for some y

Vi Y1 Vi

. Va Y2 Vays
(i) =Vy = y =1

Vi Yk Vi

Again Vyy, is a vertex vector, so V| must be full rank, but it cannot be
full rank because V1 V| has zero row sums. U

On the other hand, even if U and V are the canonical incidence
factors of A and B, not every W such that U = VW corresponds to
a path embedding. In particular, a column of W can correspond to a
linear combination of multiple paths. Also, even if W does correspond
to a path embedding, the paths are not necessarily simple. A linear
combination of scaled positive edge vectors that correspond to a simple
cycle can be identically zero, so the coefficients of such linear combina-
tions can be added to W without affecting the product VW. However,
it seems that adding cycles to a path embedding cannot reduce the
2-norm of W, so cycles are unlikely to improve support bounds.

2. Combinatorial Support Bounds

To bound o(A, B) using the Symmetric-Produce-Support Lemma,
we need to factor A into A = UUT, B into B = VVT, find a matrix
W such that U = VW, and to bound the 2-norm of W from above.
We have seen how to factor A and B (if they are weigthed Laplacians)
and how to construct an appropriate W combinatorially, using graph
embeddings. We now show how to use combinatorial metrics of the
path embeddings to bound ||[W]||2.
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Bounding the 2-norm directly is hard, because the 2-norm is not
related in a simple way to the entries of W. But the 2-norm can be
bounded using simpler norms, such as the Frobenius norm, the infinity
norm, and the 1-norm. We will show that these simpler norms have
natural and useful combinatorial interpretations when W represents a
path embedding. The bounds on the 2-norm that we use are

kK m
W3 < IWiE=>Y_> W2,

r=1 c=1

k m
m k
IWIE < IWIIW] = (rga1><§_1:\Wr,c\> (Iyaf<§_1:!Wr,c!>

To keep the notation and the definition simple, we now assume that
A and B are weigted Laplacians with zero row sums. We will show
later how to deal with positive row sums. We also assume that W
corresponds to a path embedding 7. The following definitions provide
a combinatorial interpretation of these bounds.

DEFINITION 2.1. The weighted dilation of an edge of G4 in an path
embedding 7 of G4 into Gp is

_ o Ay i
dilation, (i, i2) = E # :
(J1,32) J1,32

(491,,32) € (i1,i2)

The weigted congestion of an edge of Gp is

A
congestion, (j1,j2) = 2
(i1.,i2) Bj17j2
(j1,,j2)éﬂ(i1ai2)
The weighted stretch of an edge of G 4 is
. Ail i2
StI'etChﬂ(’Ll, 22) = Z B— .
(J1,32) J1,J2
(491,,32) € (i1,i2)
The weighted crowding of an edge in G is
Ay
crowding_(71, j2) = —2
g (1, j2) > B, .,

(i1, i2)
(41,,d2) €7 (i1,92)
Note that stretch is a summation of the squares of the quantities that
constitute dilation, and similarly for crowding and congestion. Papers
in the support-preconditioning literature are not consistent about these



2. COMBINATORIAL SUPPORT BOUNDS 10

terms, so check the definitions carefully when you consult a paper that
deals with congestion, dilation, and so on.

LEMMA 2.2. Let A and B be weighted Laplacians with zero row
sums, and let ™ be a path embedding of G 4 into Gg. Then

o(A,B) < Z stretchy(iy, i)

(i1,i2)€G A

o(A,B) < Z crowding,(j1, j2)

(41,32)€GB

o(A,B) < ( max dilationﬂ(il,ig))

(il,’ig)GGA

( max congestionﬂ(jl,jg)) )
(J1,52)€GB

PRrOOF. Let U and V be the canonical incidence factors of A and

B, and let W be the matrix representation of the embedding 7, so
U =VW. We have

o(A,B) < |[W];

W%
m k
22 Wi
c=1 r=1

Ail,iz
D D D

(i1,i2)EG A (41,,92) J1.J2
(41,,32)€m(i1,i2)

— Z stretch, (i, 2)

(il,’ig)GGA

IAINA
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The proof for crowding is identical. We also have

o(A,B) < [[WIh][[Wllw

k . m
= | max E ]WM]) (max E \Wnc\)
c=1 r=1
r=1 c=1

= max E Aiia
(i1,i2)€Ga (41,,32) le’j2
(J1,,d2) €7 (i1,i2)
max Y Airiy
(J1,72)€G A Bj, j,

(i1,,12)
(J1,,d2) €7 (i1,i2)

= ( max dilationﬂ(il,i2)>

(il,’iz)GGA

( max congestionﬂ(jl,jg)) .
(41,42)€G 4

O

We now describe one way to deal with matrices with some positive
row sums. The matrix B is a preconditioner. In many applications,
the matrix B is not given, but rather constructed. One simple way
to deal with positive row sums in A is to definer(i;) = (i1). That is,
vertex vectors in the canonical incidence factor of A are mapped into
the same vertex vectors in the incidence factor of B. In other words,
we construct B to have exactly the same row sums as A. With such
a construction, the rows of W that correspond to vertex vectors in U
are columns of the identity.

LEMMA 2.3. Let A and B be weighted Laplacians with the same
row sums, let w be a path embedding of G4 into G, and let £ be the
number of rows with positive row sums in A and B. Then

o(A,B) < (+ Z stretch, iy, 1s)

(il,’iz)GGA

o(A,B) < (max{l, max dilationﬂ(il,ig)})

(il,ig)GGA

.(max{l, max congestionﬁ(jl,jg)}) .
(j1,j2)€GB



4. NOTES AND REFERENCES 12

ProoF. Under the hypothesis of the lemma, the rows and columns
of W can be permuted into a block matrix

Wz 0
W:
( 0 [£><Z> ’

where W5 represents the path embedding of the edges of G 4 into paths
in Gg. The bounds follow from the structure of W and from the proof
of the previous lemma. O

The sparse bounds on the 2-norm of a matrix lead to tighter com-
binatrial bounds.

LEMMA 2.4. Let A and B be weighted Laplacians with zero row
sums, and let m be a path embedding of G 4 into Gg. Then
o(A,B) < max Z stretchy (i1, 12) ,

(j1,J2)€GB . “
(’L1 ,ZQ)GGA

(J1,J2)€m(i1,i2)
0(A,B) < max E crowding, (i1, ja) -
(11,92)€Ga  “
(J1,J2)€G A
(J1,32)€m(i1,32)

We can derive similar bounds for the other sparse 2-norm bounds.

3. Subset Preconditioners

Normally, to obtain a bound on k(A, B) we need a bound on both
0(A, B) and (B, A). But in one common case, bounding o(B, A) is
trivial. Many support preconditioners construct G g to be a subgraph
of G4, with the same weights. That is, V is constructed to have a
subset of the columns in U. If we denote by V the set of columns of U
that are not in V', we have

B = vvt

A = UUT
vvT 4 vvT
B+VVT.

This immediately implies 27 Az > 2T Bx for any z, so Auin(A4, B) > 1.
4. Notes and References

The low-stretch forests are from Elkin-Emek-Spielman-Teng, STOC
2005. This is an improvement over Alon-Karp-Peleg-West.



