
CHAPTER 7

Augmented Spanning-Tree Preconditioners

It’s time to construct a preconditioner! This chapter combinatorial
algorithms for constructing preconditioners that are based on augment-
ing spanning trees with extra edges.

1. Spanning Tree Preconditioners

We start with the simplest support preconditioner, a maximum
spanning tree for weighted Laplacians. The construction of the pre-
conditioner B aims to achieve three goals:

• The generalized eigenvalues (A, B) should be at least 1.
• The preconditioner should be as sparse as possible and as easy

to factor as possible.
• The product of the maximum dilation and the maximum con-

gestion should be low, to ensure that generalized eigenvalues
of the pencil (A, B) are not too large. (We can also try to
achieve low stretch.)

These objectives will not lead us to a very effective preconditioner. It
usually pays to relax the second objective and make the preconditioner
a little denser in order to achive a smaller κ(A, B). But here we strive
for simplicity, so we stick with these objectives.

We achieve the first objective using a simple technique. Given A, we
compute its canonical incidence factor U . We construct V by dropping
some of the columns of U . If we order the columns of U so that the
columns that we keep in V appear first, then

V = U

(
I
0

)
.

This is a subset preconditioner, so

λ(A, B) ≥ σ−1(B, A) ≥
∥∥∥∥
(

I
0

)∥∥∥∥
−2

2

= 1−2 = 1 .

We now study the second objective, sparsity in B. By Lemma ??,
we should GB as connected as GA. That is, we cannot drop so many
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columns from U that connected components of GA become discon-
nected in GB. How sparse can we make GB under this constraint? A
spanning forest of GA. That is, we can drop edges from GA until no
cycles remain in GB. If there are cycles, we can clearly drop an edge. If
there are no cycles, dropping an edge will disconnect a connected com-
ponent of GA. A spanning subgraph with no cycles is called a spanning
forest. If GA is connected, the spanning forest is a spanning tree. A
spanning forest GB of GA is always very sparse; the number of edges
is n minus the number of connected components in GA. The weighted
Laplacian B of a spanning forest GB can be factored into triangular
factors in Θ(n) time, the factor requires Θ(n) words of memory to store,
and each preconditioning step requires Θ(n) arithmetic operations.

Which edges should we drop, and which edges should we keep in
the spanning forest? If GB is a spanning forest of GA, than for every
edge (i1, i2) there is exactly one path in GB between i1 and i2. There-
fore, if GB is a spanning forest, then there is a unique path embedding
π of the edges of GA into paths in GB. The dropping policy should
try to minimize the maximum congestion and dilation of the embed-
ding (or the stretch/crowding of the embedding). The expressions for
congestion, dilation, stretch, and crowsing are sums of ratios whose de-
nominators are absolute values or squares of absolute values of entries
of B. Therefore, to reduce the congestion, dilation, and stretch, we can
try to drop edges (i1, i2) that correspond to Ai1,i2with small absolute
values, and keep “heavy” edges that correspond to entries of A with
large absolute values.

One class of forests that are easy to construct and that favor heavy
edges are maximum spanning forests. A maximum spanning forest
maximizes the sum of the weights −Ai1,i2 of the edges of the forest.
One property of maximum spanning forest is particularly useful for us.

Lemma 1.1. Let GB be a maximum spanning forest of the weighted
(but unsigned) graph GA, and let π(i1, i�) = (i1, i2, . . . , i�) be the path
with endpoints i1 and i� in GB. Then for j = 1, . . . , � − 1 we have
|Ai1,i2| ≤ |Aij ,ij+1

|.

Proof. Suppose for contradition that for some j, |Ai1,i�| > |Aij ,ij+1
|.

If we add (i1, i�) to GB, we create a cycle. If we then drop (ij , ij+1), the
resulting subgraph again becomes a spanning forest. The total weight
of the new spannign forest is |Ai1,i�| − |Aij ,ij+1

| > 0 more than that
of GB, contradicting the hypothesis that GB is a maximum spanning
forest. �
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It follows that in all the summations that constitute the congestion,
dilation, stretch and crowding, the terms are bounded by 1. This yields
the following result.

Lemma 1.2. Let A and B be weighted Laplacians with identical row
sums, such that GB is a maximum spanning forest of GA. Then

κ(A, B) ≤ (n− 1)m ,

where n is the order of A and B and m is the number of nonzeros in
the strictly upper triangular part of A.

Proof. Let W correspond to the path embedding of GA in GB.
For an edge (i1, i2) in GA we have

dilationπ(i1, i2) =
∑

(j1,,j2)

(j1,,j2)∈π(i1,i2)

√
Ai1,i2

Bj1,j2

≤
∑

(j1,,j2)

(j1,,j2)∈π(i1,i2)

1 ≤ n− 1 .

The rightmost inequality holds because the number of edges in a simple
path in a graph is at most n − 1, the number of vertices minus one.
The total number of paths that use a single edge in GB is at most m,
the number of edges in GA, and hence the number of paths (in fact,
its not hard to see that the number of paths is at most m − (n − 2)).
Therefore,

κ(A, B) ≤ σ(A, B)/σ(B, A)

≤ σ(A, B)/1

≤
(

max

{
1, max

(i1,i2)∈GA

dilationπ(i1, i2)

})

·
(

max

{
1, max

(j1,j2)∈GA

congestionπ(j1, j2)

})
≤ (n− 1)m .

A similar argument shows that the stretch of an edge is at most n− 1,
and since there are at most m edges, ‖W‖2F is at most (n−1)m+n. �

Algorithms for constructing minimum spanning trees and forests
can easily be adapted to construct maximum spanning forests. For
example, Kruskal’s algorithm starts out with no edges in GB. It sorts
the edges of GA by weight and processes from heavy to light. For
each edge, the algorithm determines whether its endpoints are in the
same connected component of the current forest. If the endpoints are
in the same component, then adding the edge would close a cycle,
so the edge is dropped from GB. Otherwise, the edge is added to
GB. This algorithm requires a union-find data structure to determine
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whether two vertices belong to the same connected components. It
is easy to implement the algorithm so that it performs O(m log m)
operations. The main data structure in another famous algorithm,
Prim’s, is a priority queue of vertices, and it can be implemented so
that it performs O(m + n log n) operations. If A is very sparse, Prim’s
algorithm is faster.

When we put together the work required to construct a maximum-
spanning-forest preconditioner, to factor it, the condition number of
the preconditioned system, and the cost per iteration, we can bound
the total cost of the linear solver.

Theorem 1.3. Let A be a weighted Laplacians of order n with
n + 2m nonzeros. Then a minimal-residual preconditioned Krylov-
subspace method with a maximum-spanning-forest preconditioner can
solve a consistent linear system Ax = b using O((n + m)

√
nm) opera-

tions.

Proof. Constructing the preconditioner requires O(m + n log n)
work. Computing the Cholesky factorization of the preconditioner re-
quires Θ(n) work. The cost per iteration is Θ(n + m) operations, be-
cause A has Θ(n+m) nonzeros and the factor of the preconditioner only
Θ(n). The condition number of the preconditioned system is bounded
by nm, so the number of iteration to reduce the relative residual by a
constant factor is O(

√
nm). Thus, the total solution cost is

O(m + n log n) + Θ(n) + O((n + m)
√

nm) = O((n + m)
√

nm) .

�
Can we do any better with spanning forest preconditioner? It seems

that the congesion-dilation-product bound cannot give a condition-
number bound better than O(mn). But the stretch bound can. Con-
structions for low-stretch trees can construct a spanning forest GB for
GA such that∑

(i1,i2)∈GA

stretchπ(i1, i2) = O
(
(m + n)(log n log log n)2

)
,

where π is the embedding of edges of GA into paths in GB. Like
maximum spanning forests, lowe-stretch forests also favor heavy edges,
but their optimization criteria are different. The number of operations
required to construct such a forest is O((m + n) log2 n). The construc-
toin details are considerably more complex than those of maximum
spanning forests, so we do not give them here. The next theorem sum-
marizes the total cost to solve a linear system with a low-stretch forest
preconditioner.
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Theorem 1.4. Let A be a weighted Laplacians of order n with
n + 2m nonzeros. A minimal-residual preconditioned Krylov-subspace
method with a low-stretch-forest preconditioner can solve a consistent
linear system Ax = b using O((n + m)1.5(log n log log n) operations.

Proof. Constructing the preconditioner requires O((m+n) log2 n)
work. Computing the Cholesky factorization of the preconditioner re-
quires Θ(n) work. The cost per iteration is Θ(n + m). The condition
number of the preconditioned system is O((m + n)(log n log log n)2).
Thus, the total solution cost is

O((m+n) log2 n)+Θ(n)+O
(
(n + m)

√
(m + n)(log n log log n)2

)
=

O
(
(n + m)1.5(log n log log n

)
.

�

2. Vaiyda’s Augmented Spanning Trees

The analysis of spanning-tree preconditioners shows how they can
be improved. The construction of the preconditioner is cheap, the
factorization of the preconditioner is cheap, each iteration is cheap,
but the solver performs many iterations. This suggests that it might
be better to make the preconditioner a bit denser. This would make
the construction and the factorization more expensive, and it would
make every iteration more expensive. But if we add edges cleverly, the
number of iterations can be dramatically reduced.

The following algorithm adds edges to a maximum spanning tree
in an attempt to reduce the bounds on both the congestion and the
dilation. The algorithm works in two phases. In the first phase, the
algorithm removes edges to partition the tree into about t subtrees of
roughly the same size. In the second phase, the algorithm adds the
heaviest edge between every two subtrees. The value t is a parameter
that controls the density of the preconditioner. When t is small, the
preconditioner remains a tree or close to a tree. As t grows, the pre-
conditioner becomes denser and more expensive to construct and to
factor, the cost of every iteration grows, but the number of iterations
shrinks.

Partitioning A Tree. The partitioning algorithm, called TreePar-
tition, is shown in Figure 1. The algorithm starts by recursively
counting the number of vertices in the subtree rooted at every vertex.
Once these counts are computed, the algorithm partitions the tree. It
starts at the root. When the partitioning visits vertex i, the first task
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Algorithm 1 Partitioning a rooted tree into subtrees with between
n/t and 1 + dmaxn/t vertices. We

TreePartition(tree T )
s←new integer array
RecursiveVertexCounts(root of T , s)
RecursiveTreePartition(root of T ,s)

RecursiveVertexCounts(vertex i, integer array s)
si ← 1
for each child j of i
RecursiveVertexCounts(j, s)
si ← si + sj

RecursiveTreeParition(vertex i, integer array s)
si ← 1
for each child j of i

if (sj > n/t)
RecursiveTreePartition(j,s)

if sj > n/t
form a new subtree rooted at j
disconnect j from i

else
si ← si + sj

is to recursively partition the tree rooted at the children. If the sub-
tree rooted in a child j of i is small, we do not partition it. If it is
larger than n/t vertices, we trey to partition it recursively. When the
recursive call returns, the tree rooted at j has been partitioned into
subtrees no larger than 1 + dmaxn/t and no smaller than n/t. We test
again the size of the subtree rooted at j; it may have shrunk because
of the recursive partitioning. If it contains at most n/t vertices, we can
keep it connected to i, because i can have at most dmax children. If it
is larger, then the subtree rooted at j is large enough to be on its own,
so we disconnect it from i. During the process, we recompute si, the
number of vertices rooted at i in the partitioned tree.

Augmenting a Maximum Spanning Tree. Once the maximum
spanning tree has been partitioned into subtrees with roughly equal
sizes, we augmented the tree with extra edges. We use a simple rule:
the heaviest edge that connects two different subtrees that are not
connected by a spanning-tree edge is added to the preconditioner.
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We label every edge (i, j) of the graph with a four-tuple

(min(T (i), T (j)), max(T (i), T (j), in-the-mst, |Ai,j|) ,

where T (i) is an integer name of the subree that contains vertex i (say
the index of its root) and where in-the-tree is a boolean value that in-
dicates whther the edge (i, j) is in the maximum-spanning-tree. Once
all the edges are labeled, we sort them lexicographically. The lexico-
graphic sorting causes all the edges that connect two specific subtrees
to be contiguous in the sorted order. If T (i) and T (j) are connected
by a maximum-spanning-tree edge, it appears first among them. Also,
the heaviest edge appears first. Therefore, if the first edge that links
T (i) to T (j) is not in the tree, we add it to the tree and then skip all
the other edges that connect T (i) and T (j). Once the sorting is done,
we can find all the extra edges in time that is linear in the number m
of edges. Sorting costs O(m logm), but we can use a linear-time radix
sort to sort only on (min(T (i), T (j)), max(T (i), T (j), in-the-mst). That
is, we can ignore the weight in the sort. Once we sort the one of these
edges using these three-tuples, we can perform a linear search for the
single edge that connects T (i) and T (j). This leads to a total cost of
O(m) for the augmentation phase.

Convergence-Rate Analysis of Augmented Maximum Span-
ning Trees. Our augmentation rule ensures that GA can be embedded
in GB using short paths.

Lemma 2.1. Let GB be a maximum spanning tree of a weighted
graph GA with maximum degree dmax, augmented using the algorithm
described above. If the size of subtrees after the partitioning phase is
bounded by k, then there is a matrix W that satisfies the following
conditions:

(1) W has with at most 2k − 1 nonzero entries per column,
(2) it has at most dmaxk nonzero entries per row,
(3) the magnitude of the elements of W is bounded by 1, and
(4) U = V W , where A = UUT and B = V V T .

Proof. To prove the lemma, we construct an embedding of GA

into GB. Edges in GA whose endpoints are in the same subtree are
routed using the single path between them in the maximum spanning
tree, which are all in GB. All the vertices along the path must be in the
same subtree, so the length of the path is at most k − 1 edges. If the
two endpoints i and j of an edge (i, j) in GA are in different subtrees,
we find the edge (x, y) in GB that connects these two subtrees. We
route the edge from i to say x (assuming without loss of generality
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that i and x are in the same subtree) and then to y and from y to j.
The length of this path is at most 2(k− 1)+1 = 2k− 1 edges, because
the routes from i to x and from y to j remain within a single subtree.

We now claim that the edges of GB along the path that routes Ai,j

are all at least as heavy as Ai,j . This is clearly true if i and j are in the
same subtree, since in that case we use only maximum-spanning tree
edges. If i and j are in different subtrees but the edge (x, y) is in the
maximum spanning tree, then again all the edges of the path are in the
maximum spanning tree, so the claim is again true. If the edge (x, y)
is not in the tree, it is clearly at least as heavy as |Ai,j|, otherwise (i, j)
would have been selected to augment the tree, not (x, y). We claim
that the edges from i to x and from y to j must be at least as heavy
as (x, y). If one of them is lighter, we could have dropped it from the
maximum spanning tree and included (x, y) instead. This concludes
the proof of the claim and therefore, the proof of conditions 1, 3 and 4
of the lemma.

Condition 2 of the lemma follows from the fact that an edge (i, j)
of GB can participate in at most dmaxk paths. Every path that it
participates in must route an edge of GA with one endpoint in the
subtree that contains vertex i. Since there are at most k vertices in
the subgraph and at most dmax edges incident on each such vertex, the
total number of paths is bounded by dmaxk. �

This lemma implies the following one.

Lemma 2.2. Let GB be a maximum spanning tree of a weighted
graph GA, augmented using the algorithm described above. The gener-
alized condition number κ(A, B) is bounded by

κ(A, B) ≤ 2
d3

maxn
2

t2
+ 4

d2
maxn

t
+ 2dmax

Proof. By the construction of GB, the size of each subgraph is
bounded by 1 + dmaxn/t. Therefore, we can substitute 1 + dmaxn/t
for k in the previous lemma. Therefore, the number of nonzeros in a
column of W is at most

2 + 2
dmaxn

t
− 1 ≤ 2 + 2

dmaxn

t
.

Similarly, the number of nonzeros per row is at most

dmax

(
1 +

dmaxn

t

)
= dmax +

d2
maxn

t
.
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We can now bound the two-norm of W by

‖W‖22 ≤ ‖W‖1‖W‖∞

=

(
max

j

∑
i

|Wij |
)(

max
i

∑
j

|Wij |
)

≤
(

dmax +
d2

maxn

t

)(
2 + 2

dmaxn

t

)

= 2
d3

maxn
2

t2
+ 4

d2
maxn

t
+ 2dmax .

This bounds the largest eigenvalue of (A, B). The smallest eigenvalue
is at least 1 because the preconditioner is a subset preconditioner. �

This bound shows that the larger t, the smaller the condition num-
ber of (A, B). This makes sense, since by making t larger we partition
the spanning tree into more subtrees and therefore add more edges. Of
course, as we make t larger, the more expensive it becomes to factor
B.

We can bound the cost of factoring B using the number of inter-
subtree edges in GB. Let S be a set of vertices that are incident on
inter-subtree edges. We start the factorization of B by eliminating all
the degree 1 and 2 in GB. This phase costs a constant number of
operations and fill per elimination step. When this phase ends, all the
remaining vertices have degree 3 or more. Moreover, the remaining
vertices of a particular subtree still form a tree. The only leaves in this
tree (vertices with degree 1) are vertices in S. The number of internal
vertices in a tree with k leaves and no other vertices with degree 2 is
bounded by the number of leaves, so the total number of vertices that
are now left is at most 2|S|.

Even if we ignore sparsity in the factorization of the remaining
vertices, it will cost O(|S|3). The number of nonzeros in the factor is
O(n + |S|2). In practice, the factorization of the remaining vertices is
going to exploit some sparsity, but it is difficult to theoretically estimate
this potential benefit.

How large can |S| be? Since all the subtrees except perhaps one
have at least n/t vertices, there can be at most t + 1 subtrees. Even if
we augment the maximum spanning tree with one edge for every two
subtrees, the size of |S| is bounded by 2(t + 1)2. In some special cases,
it is possible to show that the number of inter-subtree edges must be
much smaller. For example, if GB is a planar graph then |S| = O(t).
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When we put all of these together, we obtain the follwing result (it
ignores the cost of computing the maximum spanning tree, which is
almost always negligeable).

Theorem 2.3. The cost of solving a linear system using an aug-
mented maximum spanning tree preconditioner is the cost of construct-
ing the maximum spanning tree plus

O

(
m +

(
n + t6

)
+
(
n + t4

)√d3
maxn

2

t2

)
.

Proof. The first term inside the O notation bounds the cost of
augmenting the spanning tree. The second bounds the cost of factoring
the preconditioner, and the third the cost of the iterations. The cost
of the iterations is bounded by multiplying the density of the factor
of B, which dominates the cost of every iteration, by a bound on the
number of iterations. �

If GA is planar, the cost decreases to

O

(
m +

(
n + t1.5

)
+ (n + t log t)

√
d3

maxn
2

t2

)
.

These bounds suggest a way to select a theoretically optimal value
for t. In the general case, we need to choose a value of t that minimizes

O

(
t6 +

d1.5
maxn

2

t
+ d1.5

maxnt3
)

(the other term in the bound are independent of t). Two of the terms
grow with t and the third shrinks with t. The sum is minimizes roughly
at the point where a growing term and a shrinking term are equal and
the third is equal or to them or smaller. At t ≈ n1/4 the total cost is

O
(
n1.5 + d1.5

maxn
1.75 + d1.5

maxn
1.75
)

= O
(
d1.5

maxn
1.75
)

,

which is asymptotically optimal. If GA is planar, the minimum is
achieved at t ≈ n0.8 and is O(n1.2).

In practice, it is usually not a good idea to pick t according to these
formulas. First, we have ignored multiplicative constants, so we know
how to set t asymptotically, but this analysis does not give us a concrete
formulat for setting t. Second, these formulas were based on a worst-
case analysis of the fill in the factorization; if the factorization fills
less than these worst-case estimates, making t larger reduces the total
amout of work. To achieve high performance, it helps to experiment a
bit to find a good value for t.
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3. Notes and References

The low-stretch forests are from Elkin-Emek-Spielman-Teng, STOC
2005. This is an improvement over Alon-Karp-Peleg-West.


