
A Transactional Flash File System for Microcontrollers

Eran Gal and Sivan Toledo∗

School of Computer Science, Tel-Aviv University

Abstract

We present a transactional file system for flash memory
devices. The file system is designed for embedded mi-
crocontrollers that use an on-chip or on-board NOR flash
device as a persistent file store. The file system provides
atomicity to arbitrary sequences of file system opera-
tions, including reads, writes, file creation and deletion,
and so on. The file system supports multiple concurrent
transactions. Thanks to a sophisticated data structure, the
file system is efficient in terms of read/write-operation
counts, flash-storage overhead, and RAM usage. In fact,
the file system typically uses several hundreds bytes of
RAM (often less than 200) and a bounded stack (or no
stack), allowing it to be used on many 16-bit microcon-
trollers. Flash devices wear out; each block can only be
erased a certain number of times. The file system man-
ages the wear of blocks to avoid early wearing out of
frequently-used blocks.

1 Introduction

We present TFFS, a transactional file system for flash
memories. TFFS is designed for microcontrollers and
small embedded systems. It uses extremely small
amounts of RAM, performs small reads and writes
quickly, supports general concurrent transactions and
single atomic operations, and recovers from crashes reli-
ably and quickly. TFFS also ensures long device life by
evening out the wear of blocks of flash memory (flash
memory blocks wear out after a certain number of era-
sures).

Flash memory is a type of electrically erasable pro-
grammable read-only memory (EEPROM). Flash mem-
ory is nonvolatile (retains its content without power),
so it is used to store files and other persistent objects
in workstations and servers (for the BIOS), in handheld
computers and mobile phones, in digital cameras, and in
portable music players.

The read/write/erase behavior of flash memory is rad-
ically different than that of other programmable memo-
ries, such as volatile RAM and magnetic disks. Perhaps
more importantly, memory cells in a flash device (as well
as in other types of EEPROMs) can be written to only a
limited number of times, between 10,000 and 1,000,000,
after which they wear out and become unreliable.

Flash memories come in three forms: on-chip mem-
ories in system-on-a-chip microcontrollers, standalone
chips for board-level integration and removable memory
devices (USB sticks, SmartMedia cards, CompactFlash
cards, and so on). The file system that we present in this
paper is designed for system-on-a-chip microcontrollers
that include flash memories and for on-board standalone
chips. The file system is particularly suited for devices
with very little RAM (system-on-a-chip microcontrollers
often include only 1-2 KB of RAM).

Flash memories also come in several flavors with
respect to how reads and writes are performed (see,
e.g. [1, 2]). The two main categories are NOR flash,
which behaves much like a conventional EEPROM device,
and NAND flash, which behaves like a block device. But
even within each category there are many flavors, espe-
cially with respect to how writes are performed. Our file
system is designed for NOR flash, and in particular, for
devices that are memory mapped and allow reprogram-
ming. That is, our file system assumes that four flash
operations are available:

• Reading data through random-access memory instruc-
tions.

• Erasing a block of storage; in flash memories and EEP-
ROM, erasing a block sets all the bits in the block to a
logical ’1’.

• Clearing one or more bits in a word (usually 1-4 bytes)
consisting of all ones. This is called programming.

• Clearing one or more bits in a word with some zero
bits. This is called reprogramming the word.

Virtually all NOR devices support the first three opera-
tions, and many support all four, but some do not support
reprogramming.

Because flash memories, especially NOR flash, have
very different performance characteristics than magnetic
disks, file systems designed for disks are usually not ap-
propriate for flash. Flash memories are random access
devices that do not benefit at all from access patterns with
temporal locality (rapid repeated access to the same lo-
cation). NOR flash memories do not benefit from spatial
locality in read and write accesses; some benefit from
sequential access to blocks of a few bytes. Spatial local-
ity is important in erasures—performance is best when
much of the data in a block becomes obsolete roughly at
the same time.



The only disk-oriented file systems that addresses at
least some of these issues are log-structured file sys-
tems [3, 4], which indeed have been used on flash de-
vices, often with flash-specific adaptations [5, 6, 7, 8].
But even log-structured file systems ignore some of the
features of flash devices, such as the ability to quickly
write a small chunk of data anywhere in the file sys-
tem. As we shall demonstrate in this paper, by exploiting
flash-specific features we obtain a much more efficient
file system.

File systems designed for small embedded systems
must contend with another challenge, extreme scarcity
of resources, especially RAM. Many of the existing flash
file systems need large amounts of RAM, usually at least
tens of kilobytes, so they are not suitable for small mi-
crocontrollers (see, e.g., [9, 10]; the same appears to
be true for TargetFFS, www.blunkmicro.com, and
for smxFFS, www.smxinfo.com). Two recent flash
file systems for TinyOS, an experimental operating sys-
tem for sensor-network nodes, Matchbox [11, 12] and
ELF [8], are designed for microcontrollers with up to
4 KB of RAM.

TFFS is a newly-designed file system for flash memo-
ries. It is efficient, ensures long device life, and supports
general transactions. Section 3 details the design goals of
TFFS, Section 4 explains its design, and Section 5 demon-
strates, experimentally, that it does meet its quantitative
goals. The design of TFFS is unique; in particular, it uses
a new data structure, pruned versioned trees, that we de-
veloped specifically for flash file systems. Some of our
goals are also novel, at least for embedded systems. Sup-
porting general transactions is not a new idea in file sys-
tems [13, 14], but it is not common either; but general
transactions were never supported in flash-specific file
systems. Although transactions may seem like a luxury
for small embedded systems, we believe that transaction
support by the file system can simplify many applications
and contribute to the reliability of embedded systems.

2 Flash Memories

This section provides background information on flash
memories. For further information on flash memories,
see, for example, [1] or [2]. We also cover the basic
principles of flash-storage management, but this section
does not survey flash file systems, data structure and al-
gorithms; relevant citations are given throughout the pa-
per. For an exhaustive coverage of these techniques, see
our recent survey [15].

Flash memories are a type of electrically-erasable pro-
grammable read-only memory (EEPROM). EEPROM de-
vices store information using modified MOSFET transis-
tors with an additional floating gate. This gate is elec-
trically isolated from the rest of the circuit, but it can

nonetheless be charged and discharged using a tunneling
and/or a hot-electron-injection effect.

Traditional EEPROM devices support three types of op-
erations. The device is memory mapped, so reading is
performed using the processor’s memory-access instruc-
tions, at normal memory-access times (tens of nanosec-
onds). Writing is performed using a special on-chip con-
troller, not using the processor’s memory-access instruc-
tions. This operation is usually called programming, and
takes much longer than reading; usually a millisecond or
more. Programming can only clear set bits in a word (flip
bits from ’1’ to ’0’), but not vice versa. Traditional EEP-
ROM devices support reprogramming, where an already
programmed word is programmed again. Reprogram-
ming can only clear additional bits in a word. To set bits,
the word must be erased, an operation that is also carried
out by the on-chip controller. Erasures often take much
longer than even programming, often half a second or
more. The word size of traditional EEPROM, which con-
trols the program and erase granularities, is usually one
byte.

Flash memories, or more precisely, flash-erasable
EEPROMs, were invented to circumvent the long erase
times of traditional EEPROM, and to achieve denser lay-
outs. Both goals are achieved by replacing the byte-
erase feature by a block-erase feature, which operates are
roughly the same speed, about 0.5–1.5 seconds. That is,
flash memories also erase slowly, but each erasure erases
more bits. Block sizes in flash memories can range from
as low as 128 bytes to 64 KB. In this paper, we call these
erasure blocks erase units.

Many flash devices, and in particular the devices for
which TFFS is designed, differ from traditional EEPROMs
only in the size of erase units. That is, they are mem-
ory mapped, they support fine-granularity programming,
and they support reprogramming. Many of the flash de-
vices that use the so-called NOR organization support all
of these features, but some NOR devices do not support
reprogramming. In general, devices that store more than
one bit per transistor (MLC devices) rarely support repro-
gramming, while single-bit per transistor often do, but
other factors may also affect reprogrammability.

Flash-device manufacturers offer a large variety of
different devices with different features. Some devices
support additional programming operations that program
several words at a time; some devices have uniform-
size erase blocks, but some have blocks of several sizes
and/or multiple banks, each with a different block size;
devices with NAND organization are essentially block
devices—read, write, and erase operations are performed
by a controller on fixed-length blocks. A single file-
system design is unlikely to suit all of these devices.
TFFS is designed for the most type of flash memories
that are used in system-on-a-chip microcontrollers and



low-cost standalone flash chips: reprogrammable NOR
devices.

Storage cells in EEPROM devices wear out. After a
certain number of erase-program cycles, a cell can no
longer reliably store information. The number of reli-
able erase-program cycles is random, but device manu-
facturers specify a guaranteed lower bound. Due to wear,
the life of flash devices is greatly influenced by how it is
managed by software: if the software evens out the wear
(number of erasures) of different erase units, the device
lasts longer until one of the units wears out.

Flash devices are used to store data objects. If the
size of the data objects matches the size of erase units,
then managing the device is fairly simple. A unit is allo-
cated to an object when it is created. When the data ob-
ject is modified, the modified version is first programmed
into an erased unit, and then the previous copy is erased.
A mapping structure must be maintained in RAM and/or
flash to map application objects to erase units. This or-
ganization is used mostly in flash devices that simulate
magnetic disks—such devices are often designed with
512-byte erase units that each stores a disk sector.

When data objects are smaller than erase units, a more
sophisticated mechanism is required to reclaim space.
When an object is modified, the new version is pro-
grammed into a not-yet-programmed area in some erase
unit. Then the previous version is marked as obsolete.
When the system runs out of space, it finds an erase
unit with some obsolete objects, copies the still-valid ob-
jects in that unit to free space on other units, and erases
the unit. The process of moving the valid data to other
units, modifying the object mapping structures, and eras-
ing a unit is called reclamation. The data objects stored
on an erase unit can be of uniform size, or of variable
size [16, 17].

3 Design Goals

We designed TFFS to meet the requirements of small em-
bedded systems that need a general-purpose file system
for NOR flash devices. Our design goals, roughly in order
of importance, were

• Supporting the construction of highly-reliable embed-
ded applications,

• Efficiency in terms of RAM usage, flash storage uti-
lization, speed, and code size,

• High endurance.

Supporting general-purpose file-system semantics, such
as the POSIX semantics, was not one of our goals. In
particular, we added functionality that POSIX file systems
do not support when this functionality served our goals,

and we do not support some POSIX features that would
have reduced the efficiency of the file system.

The specification of the design goals of TFFS was
driven by an industrial partner with significant experi-
ence in operating systems for small embedded systems.
The industrial partner requested support for explicit con-
current transactions, requested that RAM usage be kept to
a minimum, and designed with us the API of TFFS. We
claim that this involvment of the industrial partner in the
specification of TFFS demonstrates that our design goals
serve genuine industrial needs and concerns.

Embedded applications must contend with sudden
power loss. In any system consisting of both volatile
and nonvolatile storage, loss of power may leave the file
system itself in an inconsistent state, or the application’s
files in an inconsistent state from the application’s own
viewpoint. TFFS performs all file operations atomically,
and the file system always recovers to a consistent state
after a crash. Furthermore, TFFS’s API supports explicit
and concurrent transactions. Without transactions, all but
the simplest applications would need to implement an
application-specific recovery mechanism to ensure relia-
bility. TFFS takes over that responsibility. The support
for concurrent transactions allows multiple concurrent
applications on the same system to utilize this recovery
mechanism.

Some embedded systems ignore the power loss is-
sue, and as a consequence are simply unreliable.
For example, the ECI Telecom B-FOCuS 270/400PR
router/ADSL modem presents to the user a dialog box
that reads “[The save button] saves the current configu-
ration to the flash memory. Do not turn off the power
before the next page is displayed, or else the unit will be
damaged!”. Similarly, the manual of the Olympus C-725
digital camera warns the user that loosing power while
the flash-access lamp is blinking could destroy stored
pictures.

Efficiency, as always, is a multifaceted issue. Many
microcontrollers only have 1–2 KB of RAM, and in such
systems, RAM is often the most constrained resource. As
in any file system, maximizing the effective storage ca-
pacity is important; this usually entails minimizing in-
ternal fragmentation and the storage overhead of the file
system’s data structures. In many NOR flash devices,
programming (writing) is much slower than reading, and
erasing blocks is even slower. Erasure times of more than
half a second are common. Therefore, speed is heavily
influenced by the number of erasures, and also by over-
head writes (writes other than the data writes indicated
by the API). Finally, storage for code is also constrained
in embedded systems, so embedded file systems need to
fit into small footprints.

In TFFS, RAM usage is the most important efficiency
metric. In particular, TFFS never buffers writes, in order



TID BeginTransaction();
int CommitTransaction(tid);
int AbortTransaction(tid);
FD Open(FD parent, uint16 name, tid);
FD Open(char* long_name, tid);
FD CreateFile(type, name, long_name[],

properties, FD parent_dir, tid);
int ReadBinary(file, buffer, length,

offset, tid);
int WriteBinary(...);
int ReadRecord(file, buffer, length,

record_number, tid);
int UpdateRecord(...);
int AddRecord(file, buff, length, tid);
int CloseFile(file, tid);
int DeleteFile(file);

Figure 1: A slightly simplified version of the API of TFFS.
The types TID and FD stand for transaction identifier and
file descriptor (handle), respectively. We do not show the
type of arguments when the type is clear from the name
(e.g., char* for buffer, FD for file, and so on).
We also do not show a few utility functions, such as a
function to retrieve a file’s properties.

not to use buffer space. The RAM usage of TFFS is inde-
pendent of the number of resources in use, such as open
files. This design decision trades off speed for RAM.
For small embedded systems, this is usually the right
choice. For example, recently-designed sensor-network
nodes have only 0.5–4 KB of RAM, so file systems de-
signed for them must contend, like TFFS, with severe
RAM constraints [8, 11, 12]. We do not believe that
RAM-limited systems will disappear anytime soon, due
to power issues and to mass-production costs; even tiny
8-bit microcontrollers are still widely used.

The API of the file system is nonstandard. The API,
presented in a slightly simplified form in Figure 1, is de-
signed to meet two main goals: support for transactions,
and efficiency. The efficiency concerns are addressed by
API features such as support for integer file names and
for variable-length record files. In many embedded ap-
plications, file names are never presented to the user in
a string form; some systems do not have a textual user
interface at all, and some do, but present the files as
nameless objects, such as appointments, faxes, or mes-
sages. Variable-length record files allow applications to
efficiently change the length of a portion of a file without
rewriting the entire file.

We deliberately excluded some common file-system
features that we felt were not essential for embedded
system, and which would have complicated the design
or would have made the file system less efficient. The
most important among these are directory traversals, file

truncation, and changing the attributes of a file (e.g., its
name). TFFS does not support these features. Direc-
tory traversals are helpful for human users; embedded
file systems are used by embedded applications, so the
file names are embedded in the applications, and the ap-
plications know which files exist.

One consequence of the exclusion of these features is
that the file system cannot be easily integrated into some
operating systems, such as Linux and Windows CE. Even
though these operating systems are increasingly used in
small embedded systems, such as residential gateways
and PDAs, we felt that the penalty in efficiency and code
size to support general file-system semantics would be
unacceptable for smaller devices.

On the other hand, the support for transactions does al-
low applications to reliably support features such as long
file names. An application that needs long names for files
can keep a long-names file with a record per file. This
file would maintain the association between the integer
name of a file and its long file name, and by creating the
file and adding a record to the naming file in a transac-
tion, this application data structure would always remain
consistent.

The endurance issue is unique to flash file systems.
Since each block can only be erased a limited number
of times, uneven wear of the blocks leads to early loss
of storage capacity (in systems that can detect and not
use worn-out blocks), or to an untimely death of the en-
tire system (if the system cannot function with some bad
blocks).

We will show below that TFFS does meet these objec-
tives. We will show that the support for transactions is
correct, and we will show experimentally that TFFS is ef-
ficient and avoids early wear. Because we developed the
API of TFFS with an industrial partner, we believe that the
API is appropriate.

4 The Design of the File System

4.1 Logical Pointers and the Structure of
Erase Units

The memory space of flash devices is partitioned into
erase units, which are the smallest blocks of memory that
can be erased. TFFS assumes that all erase units have the
same size. (In some flash devices, especially devices that
are intended to serve as boot devices, some erase units
are smaller than others; in some cases the irregularity can
be hidden from TFFS by the flash device driver, which can
cluster several small units into a single standard-size one,
or TFFS can ignore the irregular units.) TFFS reserves one
unit for the log, which allows it to perform transactions
atomically. The structure of this erase unit is simple: it
is treated as an array of fixed-size records, which TFFS
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Figure 2: Partitioning an erase unit into variable-length
sectors.

always fills in order. The other erase units are all used
by TFFS’s memory allocator, which uses them to allocate
variable-sized blocks of memory that we call sectors.

The on-flash data structure that the memory alloca-
tor uses is designed to achieve one primary goal. Sup-
pose that an erase unit that still contains valid data is se-
lected for erasure, perhaps because it contains the largest
amount of obsolete data. The valid data must be copied
to another unit prior to the unit’s erasure. If there are
pointers to the physical location of the valid data, these
pointers must be updated to reflect the new location of
the data. Pointer modification poses two problems. First,
the pointers to be modified must be found. Second, if
these pointers are themselves stored on the flash device,
they cannot be modified in place, so the sectors that con-
tain them must be rewritten elsewhere, and pointers to
them must now be modified as well. The memory allo-
cator’s data structure is designed so that pointer modifi-
cation is never needed.

TFFS avoids pointer modification by using logical
pointers to sectors rather than physical pointers; pointers
to addresses within sectors are not stored at all. A logical
pointer is an unsigned integer (usually a 16-bit integer)
consisting of two bit fields: a logical erase unit number
and a sector number. When valid data in a unit is moved
to another unit prior to erasure, the new unit receives the
logical number of the unit to be erased, and each valid
sector retains its sector number in the new unit.

A table, indexed by logical erase-unit number, stores
logical-to-physical erase-unit mapping. In our imple-
mentation the table is stored in RAM, but it can also be
stored in a sector on the flash device itself, to save RAM.

Erase units that contain sectors (rather than the log) are
divided into four parts, as shown in Figure 2. The top of
the unit (lowest addresses) stores a small header, which
is immediately followed by an array of sector descrip-
tors. The bottom of the unit contains sectors, which are
stored contiguously. The area between the last sector de-
scriptor and the last sector is free. The sector area grows
upwards, and the array of sector descriptors grows down-
wards, but they never collide. Area is not reserved for
sectors or descriptors; when sectors are small more area
is used by the descriptors than when sectors are large. A
sector descriptor contains the erase-unit offset of first ad-
dress in the sector, as well as a valid bit and an obsolete

descriptors
data

logical-to-physical erase-unit table

sector number

3 411
logical erase unit

Figure 3: Translating a logical pointer into a physical
address. The logical pointer consists of a logical erase
unit (3 in the figure) and a sector number (4 in the figure).
The logical-to-physical erase-unit table maps logical unit
3 to physical unit 11, which is the erase unit shown in the
figure. The pointer stored in descriptor number 4 in erase
unit 11 points to the address represented by the logical
pointer.

bit. Clearing the valid bit indicates that the offset field
has been written completely (this ensures that sector de-
scriptors are created atomically). Clearing the obsolete
bit indicates that the sector that the descriptor refers to is
now obsolete.

A logical pointer is translated to a physical pointer as
shown in Figure 3. The logical erase-unit number within
the logical pointer is used as an index into the erase-unit
table. This provides the physical unit that contains the
sector. Then the sector number within the logical pointer
is used to index into the sector-descriptors array on that
physical unit. This returns a sector descriptor. The offset
in that descriptor is added to the address of the physical
erase unit to yield the physical address of the sector.

Before an erase unit is erased, the valid sectors on it
are copied to another unit. Logical pointers to these sec-
tors remain valid only if the sectors retain their sector
number on the new unit. For example, sector number 6,
which is referred to by the seventh sector descriptor in the
sector-descriptors array, must be referred to by the sev-
enth sector descriptor in the new unit. The offset of the
sector within the erase unit can change when it is copied
to a new unit, but the sector descriptor must retain its
position. Because all the valid sectors in the unit to be
erased must be copied to the same unit, and since spe-
cific sector numbers must be available in that unit, TFFS
always copies sectors to a fresh unit that is completely
empty prior to erasure of another unit. Also, TFFS al-
ways compacts the sectors that it copies in order to create
a large contiguous free area in the new unit.

TFFS allocates a new sector in two steps. First, it finds
an erase unit with a large-enough free area to accommo-
date the size of the new sector. Our implementation uses



a unit-selection policy that combines a limited-search
best-fit approach with a classification of sectors into fre-
quently and infrequently changed ones. The policy at-
tempts to cluster infrequently-modified sectors together
in order to improve the efficiency of erase-unit reclama-
tion (the fraction of the obsolete data on the unit just
prior to erasure). Next, TFFS finds on the selected unit
an empty sector descriptor to refer to the sector. Empty
descriptors are represented by a bit pattern of all 1’s, the
erased state of the flash. If all the descriptors are used,
TFFS allocates a new descriptor at the bottom of the de-
scriptors array. (TFFS knows whether all the descriptors
are used in a unit; if they are, the best-fit search ensures
that the selected unit has space for both the new sector
and for a new descriptor).

The size of the sector-descriptors array of a unit is not
represented explicitly. When a unit is selected for era-
sure, TFFS determines the size using a linear downwards
traversal of the array, while maintaining the minimal sec-
tor offset that a descriptor refers too. When the traver-
sal reaches that location, the traversal is terminated. The
size of sectors is not represented explicitly, either, but
it is needed in order to copy valid sectors to the new
unit during reclamations. The same downwards traver-
sal is also used by TFFS to determine the size of each
sector. The traversal algorithm exploits the following
invariant properties of the erase-unit structure. Sectors
and their descriptors belong to two categories: reclaimed
sectors, which are copied into the unit during the recla-
mation of another unit, and new sectors, allocated later.
Within each category, sectors with consecutive descrip-
tors are adjacent to each other. That is, if descriptors
i and j > i are both reclaimed or both new, and if de-
scriptors i + 1, . . . , j − 1 all belong to the other cate-
gory, then sector i immidiately precedes sector j. This
important invariant holds because (1) we copy reclaimed
sectors from lower-numbered descriptors to higher num-
bered ones, (2) we always allocated the lowest-numbered
free descriptor in a unit for a new sector, and (3) we al-
locate the sectors themselves from the top down (from
right to left in Figure 2). The algorithm keeps track of
two descriptor indices, �r the reclaimed descriptor, and
�n, the last new descriptor. When the algorithm exam-
ines a new descriptor i, it first determines whether it is
free (all 1’s), new or reclaimed. If it is free, the algo-
rithm proceeds to the next descriptor. Otherwise, if the
sector lies to the right of the last-reclaimed mark stored
in the unit’s header, it is reclaimed, otherwise new. Sup-
pose that i is new; sector i starts at the address given by
its header, and it ends at the last address before �n, or the
the end of the unit if i is the first new sector encountered
so far. The case of reclaimed sectors is completely sym-
metric. Note that the traversal processes both valid and
obsolete sectors.

As mentioned above, each erase unit starts with a
header. The header indicates whether the unit is free,
used for the log, or for storing sectors. The header con-
tains the logical unit that the physical unit represents (this
field is not used in the log unit), and an erase counter.
The header also stores the highest (leftmost) sector off-
set of sectors copied as part of another unit’s reclama-
tion process; this field allows us to determine the size of
sectors efficiently. Finally, the header indicates whether
the unit is used for storing frequently- or infrequently-
modified data; this helps cluster related data to improve
the efficiency of reclamation. In a file system that uses n
physical units of m bytes each, and with an erase counter
bounded by g, the size of the erase-unit header in bits is
3+�log2 n�+�log2 m�+�log2 g�. Flash devices are typ-
ically guaranteed for up to one million erasures per unit
(and often less, around 100,000), so an erase counter of
24 bits allows accurate counting even if the actual en-
durance is 16 million erasures. This implies that the size
of the header is roughly 27 + log2(nm), which is ap-
proximately 46 bits for a 512 KB device and 56 bits for
a 512 MB device.

The erase-unit headers represent an on-flash storage
overhead that is proportional to the number of units. The
size of the logical-to-physical erase-unit mapping table
is also proportional to the number of units. Therefore, a
large number of units causes a large storage overhead. In
devices with small erase units, it may be advantageous to
use a flash device driver that aggregates several physical
units into larger ones, so that TFFS uses a smaller number
of larger units.

4.2 Efficient Pruned Versioned Search
Trees

TFFS uses a novel data structure that we call efficient
versioned search trees to support efficient atomic file-
system operations. This data structure is a derivative of
persistent search trees [18, 19], but it is specifically tai-
lored to the needs of file systems. In TFFS, each node of
a tree is stored in a variable-sized sector.

Trees are widely-used in file systems. For example,
Unix file systems use a tree of indirect blocks, whose root
is the inode, to represent files, and many file systems use
search trees to represent directories. When the file sys-
tem changes from one state to another, a tree may need
to change. One way to implement atomic operations is
to use a versioned tree. Abstractly, the versioned tree is
a sequence of versions of the tree. Queries specify the
version that they need to search. Operations that mod-
ify the tree always operate on the most recent version.
When a sequence of modifications is complete, an ex-
plicit commit operation freezes the most recent version,
which becomes read-only, and creates a new read-write
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Figure 4: Path copying. Replacing the data associated
with the leaf whose key is 31 in a binary tree (left) creates
a new leaf (right). The leaf replacement propagates up to
the root. The new root represents the new version of the
tree. Data structure items that are created as a result of
the leaf modification are shown in red.

version.
When versioned trees are used to implement file sys-

tems, usually only the read-write version (the last one)
and the read-only version that precedes it are accessed.
The read-write version represents the state of the tree
while processing a transaction, and the read-only version
represents the most-recently committed version. The
read-only versions satisfy all the data-structure invari-
ants; the read-write version may not. Because old read-
only versions are not used, they can be pruned from the
tree, thereby saving space. We call versioned trees that
restrict read access to the most recently-committed ver-
sion pruned versioned trees.

The simplest technique to implement versioned trees
is called path copying [18, 19], illustrated in Figure 4.
When a tree node is modified, the modified version can-
not overwrite the existing node, because the existing
node participates in the last committed version. Instead,
it is written elsewhere in memory. This requires a mod-
ification in the parent as well, to point to the new node,
so a new copy of the parent is created as well. This al-
ways continues until the root. If a node is modified twice
or more before the new version is committed, it can be
modified in place, or a new copy can be created in each
modification. If the new node is stored in RAM, it is usu-
ally modified in place, but when it is stored on a difficult
to modify memory, such as flash, a new copy is created.
The log-structured file system [3, 4], for example, repre-
sents each file as tree whose root is an inode, and uses
this algorithm to modify files atomically. WAFL [20], a
file system that supports snapshots, represents the entire
file-system as a single tree, which is modified in discrete
write episodes; WAFL maintains several read-only ver-
sions of the file-system tree to provide users with access
to historical states of the file system.

A technique called node copying can often prevent the
copying of the path from a node to the root when the node
is modified, as shown in Figure 5. This technique relies
on spare pointers in tree nodes, and on nodes that can be
physically modified in place. To implement node copy-
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Figure 5: Node copying. Internal tree nodes contain a
spare pointer, initially unused (white). Replacing a leaf
creates a new leaf and sets the spare pointer in its par-
ent. The spare pointer points to the new leaf, and it also
indicates the child pointer that it replaced (dotted line).

ing, nodes are allocated with one or more spare pointers,
which are initially empty. When a child pointer in a node
needs to be updated, the system determines whether the
node still contains an empty spare pointer. If it does, the
spare pointer is modified instead. The modified spare
pointer points to the new child, and it contains an indica-
tion of which original pointer it replaces.

Each spare pointer also includes a commit bit, to indi-
cate whether it has been created in the current read-write
version or in a previous version. If the commit bit is
set, then tree accesses in both the read-only version and
the read-write version should traverse the spare pointer,
not the original pointer that it replaces. If the commit
bit is not yet set, then tree access in the read-write ver-
sion should traverse the spare pointer but tree access in
the read-only version should traverse the original pointer.
Spare pointers also have an abort bit; if set, then the spare
pointer is simply ignored.

In B-trees, in which nodes have a variable number of
child pointers, the spare pointer can also be used to add
a new child pointer. This serves two purposes. First,
it allows us to allocate variable-size nodes, containing
only enough child pointers for the number of children
the node has at creation time. Second, it allows us to
store original child pointers without commit bits.

In principle, using a number of spare pointers can fur-
ther reduce the number of node creations, at the expense
of more storage overhead. However, even with only one
spare, it can be shown that the amortized cost of a sin-
gle tree update/insert/delete operation is constant. There-
fore, our file system always uses only one spare per node.

4.3 Tree Traversals with a Bounded Stack

Small embedded systems often have very limited stack
space. Some systems do not use a stack at all: static com-
piler analysis maps automatic variables to static RAM lo-
cations. To support systems with a bounded or no stack,
TFFS never uses explicit recursion. We do use recursive
algorithms, but the recursion uses a statically-allocated



stack and its depth is configured at compile time. We
omit further details.

4.4 Mapping Files and File Names
TFFS uses pruned versioned trees for mapping files and
file names. Most of the trees represent files and directo-
ries, one tree per file/directory. These trees are versioned.

In record files, each record is stored in a separate sec-
tor, and the file’s tree maps record numbers to the logical
addresses of sectors. In binary files, extents of contigu-
ous data are stored on individual sectors, and the file’s
tree maps file offsets to sectors. The extents of binary
files are created when data is appended to the file. Cur-
rently, TFFS does not change this initial partitioning.

TFFS supports two naming mechanisms for the open
system call. One mechanism is a hierarchical name space
of directories and files, as in most file systems. However,
in TFFS directory entries are short unsigned integers, not
strings, in order to avoid string comparisons in directory
searches. The second mechanism is a flat namespace
consisting of unique strings. A file or directory can be
part of one name space or both. In the future, we may
merge these two mechanisms, as explained below. Cur-
rently, however, the hierarchical name space does not al-
low long names.

Therefore, directory trees are indexed by the short in-
teger entry names. The leaves of directory trees are the
metadata records of the files. The metadata record con-
tains the internal file identifier (GUID) of the directory
entry, as well as the file type (record/binary/directory),
the optional long name, permissions, and so on. In TFFS,
the metadata is immutable.

TFFS assumes that long names are globally unique.
We use a hash function to map these string names to 16-
bit integers, which are perhaps not unique. TFFS maps
a directory name to its metadata record using a search
tree indexed by hash values. The leaves of this tree are
either the metadata records themselves (if a hash value
maps into a single directory name), or arrays of logical
pointers to metadata records (if the names of several di-
rectories map into the same hash value).

In the future, we may replace the indexing in directory
trees from the explicit integer file names to hash values
of long file names.

A second search tree maps GUIDs to file/directory
trees. This tree is indexed by GUID and its leaves are
logical pointers to the roots of file/directory trees.

The open system call comes in two versions: one re-
turns a GUID given a directory name, and the other re-
turns a GUID given a directory GUID and a 16-bit file
identifier within that directory. The first computes the
hash value of the given name and uses it to search the
directory-names tree. When it reaches a leaf, it verifies

the directory name if the leaf is the metadata of a direc-
tory, or searches for a metadata record with the appropri-
ate name if the leaf is an array of pointers to metadata
records. The second variant of the system call searches
the GUID tree for the given GUID of the directory. The
leaf that this search returns is a logical pointer to the root
of the directory tree. The system call then searches this
directory tree for the file with the given identifier; the leaf
that is found is a logical pointer to the metadata record of
the sought-after file. That metadata record contains the
GUID of the file.

In file-access system calls, the file is specified by a
GUID. These system calls find the root of the file’s tree
using the GUID tree.

4.5 Transactions on Pruned Versioned
Trees

The main data structures of TFFS are pruned versioned
trees. We now explain how transactions interact with
these trees. By transactions we mean not only explicit
user-level transactions, but also implicit transactions that
perform a single file-system modification atomically.

Each transaction receives a transaction identifier
(TID). These identifiers are integers that are allocated
in order when the transaction starts, so they also repre-
sent discrete time stamps. A transaction with a log TID
time stamp started before a transaction with a higher TID.
The file system can commit transactions out of order, but
the linearization order of the transactions always corre-
sponds to their TID: a transaction with TID t can observe
all the side effects of committed transactions t − 1 and
lower, and cannot observe any of the side effects of trans-
actions t + 1 and higher.

When a transaction modifies a tree, it creates a new
version of the tree. That version remains active, in
read-write mode, until the transaction either commits or
aborts. If the transaction commits, all the spare pointers
that it created are marked as committed. In addition, if
the transaction created a new root for the file, the new
root becomes active (the pointer to the tree’s root, some-
where else in the file system, is updated). If the trans-
action aborts, all the spare pointers that the transaction
created are marked as aborted by a special bit. Aborted
spare pointers are not valid and are never dereferenced.

Therefore, a tree can be in one of two states: either
with uncommitted and unaborted spare pointers (or an
uncommitted root), or with none. A tree in the first state
is being modified by a transaction that is not yet com-
mitted or aborted. Suppose that a tree is being modified
by transaction t, and that the last committed transaction
that modified it is s. The read-only version of the tree,
consisting of all the original child pointers and all the
committed spare pointers, represents the state of the tree



in discrete times r for s ≤ r < t. We do not know
what the state of the tree was at times smaller than s:
perhaps some of the committed spares represent changes
made earlier, but we cannot determine when, so we do
not know whether to follow them or not. Also, some of
the nodes that existed at times before s may cease to ex-
ist at time s. The read-write version of the tree represents
the state of the tree at time t, but only if transaction t will
commit. If transaction t will abort, then the state of the
tree at time t is the same state as at time s. If transac-
tion t will commit, we still do not know what the state
of the tree will be at time t + 1, because transaction t
may continue to modify it. Hence, the file system allows
transactions with TID r, for s < r < t, access to the
read-only version of the tree, and to transaction t access
to the read-write version. All other access attempts cause
the accessing transaction to abort. In principle, instead of
aborting transactions later than t, TFFS could block them,
but we assume that the operating system’s scheduler can-
not block a request.

If a tree is in the second state, with only committed
or aborted spares, we must keep track not only of its
last modification time s, but also of the latest transaction
u ≥ s that read it. The file system admits read requests
from any transaction r for r > s, and write requests from
a transaction t ≥ u. As before, read requests from a
transaction r < s causes r to abort. A write request from
a transaction t < u causes t to abort, because it might
affect the state of the tree that u already observed.

To enforce these access rules, we associate three TIDs
with each versioned tree: the last committed modifica-
tion TID, the last read-access TID, and the TID that cur-
rently modifies the tree, if any. These TIDs are kept in
a search tree, indexed by the internal identifier of the
versioned tree. The file system never accesses the read-
only version of the TID tree. Therefore, although it is
implemented as a pruned versioned tree, the file system
treats it as a normal mutable search tree. The next sec-
tion presents an optimization that allows the file system
not to store the TIDs associated with a tree.

4.6 Using Bounded Transaction Identifiers

To allow TFFS to represent TIDs in a bounded number
of bits, and also to save RAM, the file system represents
TIDs modulo a small number. In essence, this allows the
file system to store information only on transactions in a
small window of time. Older transactions than this win-
dow permits must be either committed or aborted.

The TID allocator consists of three simple data struc-
tures that are kept in RAM: next TID to allocate, the oldest
TID in the TID tree, and a bit vector with one bit per TID
within the current TID window. The bit vector stores,
for each TID that might be represented in the system,

whether it is still active or whether it has already been
aborted or committed. When a new TID needs to be allo-
cated, the allocator first determines whether the next TID
represents an active transaction. If it does, the allocation
simply fails. No new transactions can be started until the
oldest one in the system either commits or aborts. If the
next TID is not active and not in the TID tree, it is allo-
cated and the next-TID variable is incremented (modulo
the window size). If the next TID is not active but it is
in the TID tree, the TID tree is first cleaned, and then the
TID is allocated.

Before cleaning the TID tree, the file system deter-
mines how many TIDs can be cleaned. Cleaning is ex-
pensive, so the file system cleans on demand, and when
it cleans, it cleans as many TIDs as possible. The number
of TIDs that can be cleaned is the number of consecutive
inactive TIDs in the oldest part of the TID window. Af-
ter determining this number, the file system traverses the
entire TID tree and invalidates the appropriate TIDs. An
invalid TID in the tree represents a time before the current
window; transactions that old can never abort a transac-
tion, so the exact TID is irrelevant. We cannot search for
TIDs to be invalidated because the TID tree is indexed by
the identifiers of the trees, not by TID.

The file system can often avoid cleaning the TID tree.
Whenever no transaction is active, the file system deletes
the entire TID tree. Therefore, if long chains of concur-
rent transactions are rare, tree cleanup is rare or not per-
formed at all. The cost of TID cleanups can also be re-
duced by using a large TID window size, at the expense
of slight storage inefficiency.

4.7 Atomic Non-transactional Operations

To improve performance and to avoid running out of
TIDs, the file system supports non-transactional opera-
tions. Most requests to the file system specify a TID as an
argument. If no TID is passed to a system call (the TID ar-
gument is 0), the requested operation is performed atom-
ically, but without any serializability guarantees. That is,
the operation will either success completely, or will fail
completely, but it may break the serializability of concur-
rent transactions.

The file system allows an atomic operation to modify
a file or directory only if no outstanding transaction has
already modified the file’s tree. But this still does not
guarantee serializability. Consider a sequence of opera-
tions in which a transaction reads a file, which is subse-
quently modified by an atomic operation, and then read
or modified again by the transaction. It is not possible to
serialize the atomic operation and the transaction.

Therefore, it is best to use atomic operations only
on files/directories that do not participate in outstanding
transactions. An easy way to ensure this is to access a



particular file either only in transactions or only in atomic
operations.

Atomic operations are more efficient than single-
operation transactions in two ways. First, during an
atomic operation the TID tree is read, to ensure that the
file is not being modified by an outstanding transaction,
but the TID tree is not modified. Second, a large num-
ber of small transactions can cause the file system to run
out of TIDs, if an old transaction remains outstanding;
atomic operations avoid this possibility, because they do
not use TIDs at all.

4.8 The Log

TFFS uses a log to implement transactions, atomic opera-
tions, and atomic maintenance operations. As explained
above, the log is stored on a singe erase unit as an array
of fixed-size records that grows downwards. The erase
unit containing the log is marked as such in its header.
Each log entry contains up to four items: a valid/obsolete
bit, an entry-type identifier, a transaction identifier, and
a logical pointer. The first two are present in each log
entry; the last two remain unused in some entry types.

TFFS uses the following log-record types:

• New Sector and New Tree Node. These record types
allow the system to undo a sector allocation by mark-
ing the pointed-to sector as obsolete. The New-Sector
record is ignored when a transaction is committed, but
a The New-Tree-Node record causes the file system to
mark the spare pointer in the node, if used, as commit-
ted. This ensures that a node that is created in a trans-
action and modified in the same transaction is marked
correctly.

• Obsolete Sector. Sectors are marked as obsolete only
when the transaction that obsoleted them is commit-
ted. This node is ignored at abort time, and clears the
obsolete bit of the sector at commit time.

• Modified Spare Pointer. Points to a node whose spare
pointer has been set. Clears the spare’s commit bit at
commit time or its abort bit at abort time.

• New File. Points to the root of a file tree that was
created in a transaction. At commit time, this record
causes the file to be added to the GUID tree and to the
containing directory. Ignored at abort time.

• File Root. Points to the root of a file tree, if the trans-
action created a new root. At commit time, the record
is used to modify the file’s entry in the GUID tree. Ig-
nored at abort time.

• Commit Marker. Ensures that the transaction is redone
at boot time.

• Erase Marker. Signifies that an erase unit is about to be
erased. The record contains a physical erase-unit num-
ber and an erase count, but does not contain a sector
pointer or a TID. This record typically uses two fixed-
size record slots. If the log contains a non-obsolete
erase-marker record at boot time, the physical unit is
erased again; this completes an interrupted erasure.

• GUID-Tree Pointer, TID-Tree Pointer, and Directory-
Hash-Tree Pointer. These records are written to the
log when the root of one of these trees moves, to allow
the file system to find them at boot time.

File trees are modified during transactions and so does
the TID tree. The GUID and directory-hash trees, and
directory trees, however, are only modified during com-
mits. We cannot modify them during transactions be-
cause our versioned trees only support one outstanding
transaction. Delaying the tree modification to commit
time allows multiple outstanding transactions to modify a
single directory, and allows multiple transactions to cre-
ate files and directories (these operations affect the GUID
and the directory-hash trees). TFFS does not allow file
and directory deletions to be part of explicit transactions
because that would have complicated the file/directory
creation system calls.

The delayed operations are logged but not actually
performed on the trees. After the commit system call is
invoked, but before the commit marker is written to the
log, the delayed operations are performed.

When a transaction accesses a tree whose modification
by the same transaction may have been delayed, the tree
access must scan the log to determine the actual state of
the tree, from the viewpoint of that transaction. Many of
these log scans are performed in order to find the roots
of files that were created by the transaction or whose
root was moved by the transaction. To locate the roots
of these file trees more quickly, the file system keeps a
cache of file roots that were modified by the transaction.
If a file that is accesses is marked in the TID tree as be-
ing modified by the transaction, the access routine first
checks this cache. If the cache contains a pointer to the
file’s root, the search in the log is avoided; otherwise, the
log is scanned for a non-obsolete file-root record.

5 Implementation and Performance

This section describes the implementation of the file sys-
tem and its performance. The performance evaluation is
based on detailed simulations that we performed using
several simulated workloads. The simulations measure
the performance of the file system, its storage overheads,
its endurance, and the cost of leveling the device’s wear.



5.1 Experimental Setup

This section describes the experimental setup that we
used for the simulations.

Devices. We performed the experiments using simula-
tions of two real-world flash devices. The first is an 8 MB
stand-alone flash-memory chip, the M29DW640D from
STMicroelectronics. This device consists of 126 erase
units of 64 KB each (and several smaller ones, which
our file system does not use), read access times of about
90 ns, program times of about 10 us, and block-erase
times of about 0.8 seconds.

The second device is a 16-bit microcontroller with on-
chip flash memory, the ST10F280, also from STMicro-
electronics. This chip comes with two banks of RAM,
one containing 2 KB and the other 16 KB, and 512 KB of
flash memory. The flash memory contains 7 erase units
of 64 KB each (again, with several smaller units that we
do not use). The flash access times are 50 ns for reads,
16 us for writes, and 1.5 seconds erases. The small num-
ber of erase units in this chip hurts TFFS’s performance;
to measure the effect, we also ran simulations using this
device but with smaller erase units ranging from 2 to
32 KB.

Both devices are guaranteed for 100,000 erase cycles
per erase unit.

File-System Configuration. We configured the non-
hardware-related parameters of the file system as fol-
lows. The file system is configured to support up to
32 concurrent transactions, B-tree nodes have either 2–
4 children or 7–14 children, 10 simulated recursive-call
levels, and a RAM cache of 3 file roots. This configura-
tion requires 466 bytes of RAM for the 8 MB flash and
109 bytes for the 0.5 MB flash.

Workloads. We used 3 workloads typical of flash-
containing embedded systems to evaluate the file system.
The first workload simulates a fax machine. This work-
load is typical not only of fax machines, but of other de-
vices that store fairly large files, such as answering ma-
chines, dictating devices, music players, and so on. The
workload also exercises the transactions capability of the
file system. This workload contains:

• A parameter file with 30 variable length records, rang-
ing from 4 to 32 bytes (representing the fax’s configu-
ration). This file is created, filled, and is never touched
again.

• A phonebook file with 50 fixed-size records, 32 bytes
each. This file is also created and filled but never ac-
cessed again.

• Two history files consisting of 200 cyclic fixed-size
records each. They record the last 200 faxes sent and
200 last faxes received. They are changed whenever a
fax page is sent or received.

• Each arriving fax consists of 4 pages, 51,300 bytes
each. Each page is stored in a separate file and the
pages of each fax are kept in a separate directory that
is created when the fax arrives. The arrival of a fax
triggers a transaction that creates a new record in the
history file and creates a new directory for the file. The
arrival of every new fax page adds changes the fax’s
record in the history file and creates a new file. Data is
written to fax-page files in blocks of 1024 bytes.

• The simulation does not include sending faxes.

We also ran experiments without transactions under this
workload, in order to assess the extra cost of transactions.
We did not detect any significant differences when no
transactions were used, so we do not present these results
in the paper.

The second workload simulates a cellular phone. This
simulation represents workloads that mostly store small
files or small records, such as beepers, text-messaging
devices, and so on. This workload consists of the follow-
ing files and activities:

• Three 20-record cyclic files with 15-byte records, one
for the last dialed numbers, one for received calls, and
one for sent calls.

• Two SMS files, one for incoming messages and one
for outgoing messages. Each variable-length record in
these files stores one message.

• An appointments file, consisting of variable-length
records.

• An address book file, consisting of variable-length
records.

• The simulation starts by adding to the phone 150 ap-
pointments and 50 address book entries.

• During the simulation, the phone receives and sends 3
SMS messages per day (3 in each direction), receives
10 and dials 10 calls, and misses 5 calls, adds 5 new
appointments and deletes the oldest 5 appointments.

The third workload simulates an event recorder, such as
a security or automotive “black box”, a disconnected re-
mote sensor, and so on. The simulation represents work-
loads with a few event-log files, some of which record
frequent events and some of which record rare events (or
perhaps just the extreme events from a high-frequency
event stream). This simulation consists of three files:

• One file records every event. This is a cyclic file with
32-byte records.
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Figure 6: The capacity of TFFS. For each workload, the
graph shows 7 bars: 3 for an 8 MB flash with 64 KB erase
units (denoted by 8192/64) and 4 bars for a 448 KB flash
with either 64 or 2 KB erase units (448/64 and 448/2).
Two bars are for file systems whose B-trees have 7–14
children, and the rest for B-trees with 2–4 children. The
scenarios denoted NSP describe a file system which does
not use spare pointers.

• The other file records one event per 10 full cycles
through the other files. This file too is cyclic with 32-
byte records.

• A configuration file with 30 variable-size records rang-
ing from 4 to 32 bytes. These files are filled when the
simulation starts and never accessed again.

5.2 Capacity Experiments

Figure 6 presents the results of experiments intended to
measure the storage overhead of TFFS. In these simula-
tions, we initialize the file system and then add data until
the file system runs out of storage. In the fax workload,
we add 4-page faxes to the file system until it fills. In the
phone workload, we do not erase SMS messages. In the
event-recording simulation, we replace the cyclic files by
non-cyclic files.

The graph shows the amount of user data written to the
file system before it ran out of flash storage, as a percent-
age of the total capacity of the device. For example, if
129,432 bytes of data were written to a flash file system
that uses a 266,144 bytes flash, the capacity is 49%.

The groups of bars in the graph represent different de-
vice and file-system configurations: an 8 MB device with
64 KB erase units, a 448/64 KB device, and a 448/2 KB
device; file systems with 2–4 children per tree node and
file systems with 7–14 children; file systems with spare
pointers and file systems with no spare pointers.

Clearly, storing large extents, as in the fax work-
load, reduces storage overheads compared to storing
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Figure 7: Endurance under different contents scenarios.
For each flash size, the graph shows the endurance of a
file system that is always almost empty, for a file system
that is always almost full and half its data is static, and
for a full file system with almost only static data.

small records or extents. Wider tree nodes reduce over-
heads when the leaves are small. The performance- and
endurance-oriented experiments that we present later,
however, indicate that wider nodes degrade performance
and endurance. A small number of erase units leads to
high overheads. Small erase units reduce overheads ex-
cept in the fax workload, in which the 1 KB extents frag-
ment the 2 KB erase units.

5.3 Endurance Experiments
The next set of experiments measures both endurance,
which we present here, and performance, which we
present in the next section. All of these experiments run
until one of the erase units reaches an erasure count of
100,000; at that point, we consider the device worn out.
We measure endurance by the amount of user data writ-
ten to the file system as a percentage of the theoretical
endurance limit of the device. For example, a value of
68 means that the file system was able to write 68% of
the data that can be written on the device if wear is com-
pletely even and if only user data is written to the device.

We performed two groups of experiment. The first
assesses the impact of file-system fullness and data life
spans on TFFS’s behavior. In particular, we wanted to
understand how TFFS copes with a file system that is al-
most full and with a file system that contains a signifi-
cant amount of static data. This group consists of three
scenarios: one scenario in which the file system remains
mostly empty; one in which is it mostly full, half the data
is never deleted or updated, and the other half is updated
cyclically; and one in which the file system is mostly full,
most of the data is never updated, and a small portion is
updated cyclically. The results of these endurance exper-
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Figure 8: Endurance under different device and file-
system configurations.

iments are shown in Figure 7.
The other group of experiments assesses the impact

of device characteristics and file-system configuration
on TFFS’s performance. This group includes the same
device/file-system configurations as in the capacity ex-
periments, but the devices were kept roughly two-thirds
full, with half of the data static and the other half chang-
ing cyclically. The results of this group of endurance
experiments are shown in Figure 8.

The graphs show that on the fax workload, endurance
is good, almost always above 75% and sometimes above
90%. On the two other workloads endurance is not as
good, never reaching 50%. This is caused not by early
wear of a particular block, but by a large amount of file-
system structures written to the device (because writes
are performed in small chunks). The endurance of the fax
workload on the device with 2 KB erase units is relatively
poor because fragmentation forces TFFS to erase units
that are almost half empty. The other significant fact that
emerges from the graphs is that the use of spare pointers
significantly improves endurance (and performance, as
we shall see below).

5.4 Performance Experiments
The next set of experiments is designed to measure the
performance of TFFS. We measured several performance
metrics under the different content scenarios (empty,
full-half-static, and full-mosly-static file systems) and
the different device/file-system configuration scenarios.

The first metric we measured was the average number
of erasures per unit of user-data written. That is, on a de-
vice with 64 KB erase units, the number of erasures per
64 KB of user data written. The results were almost ex-
actly the inverse of the endurance ratios (to within 0.5%).
This implies that the TFFS wears out the devices almost
completely evenly. When the file system performs few
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Figure 9: Reclamation efficiency under different content
scenarios.
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Figure 10: Reclamation efficiency under different
device/file-system scenarios.

erases per unit of user data written, both performance and
endurance are good. When the file system erases many
units per unit of user data written, both metrics degrade.
Furthermore, we have observed no cases where uneven
wear leads to low endurance; low endurance is always
correlated with many erasures per unit of user data writ-
ten.

The second metric we measured was the efficiency of
reclamations. We define this metric as the ratio of user
data to the total amount of data written in block-write
operations. The total amount includes writing of data to
sectors, both when a sector is first created and when it
is copied during reclamation, and copying of valid log
entries during reclamation of the log. The denominator
does not include writing of sector descriptors, erase-unit
headers, and modifications of fields within sectors (fields
such as spare pointers). A ratio close to 100% implies
that little data is copied during reclamations, whereas a
low ratio indicates that a lot of valid data is copied dur-
ing reclamation. The two graphs presenting this metric,



Figure 9 and Figure 10, show that the factors that affect
reclamation efficiency are primarily fullness of the file
system, the amount of static data, and the size of user
data items. The results again show that spare pointers
contribute significantly to high performance.

We also measured two other metrics: the number of
programming operations per system call and the num-
ber of flash-read instructions per system call. These
metrics do not count programming and read operations
performed in the context of copying blocks; these are
counted by the reclamation-efficiency metric. These
metrics did not reveal any interesting behavior rather
than to show (again) that spare pointers improve perfor-
mance. Spare pointers improve these metrics by more
than a factor of 2.

6 Summary

We have presented several contributions to the area
of embedded file system, especially file systems for
memory-mapped flash devices.

Some of our design goals are novel. We have argued
that even embedded file systems need to be recoverable
(journaled), and that they should support general trans-
actions, in order to help programmers construct reliable
applications. We have also argued that in many cases,
embedded file systems do not need to offer full POSIX
or Windows semantics and that supporting these general
semantics is expensive. The other design goals that we
have attempted to achieve, such as high performance and
endurance, are, of course, not novel.

We have shown that supporting recoverability and
transactions is not particularly expensive. Only time will
tell whether these features will actually lead to more re-
liable systems, but we believe that the anecdotal evi-
dence that we presented in Section 3 (the unreliable mo-
dem/router) is typical and that due to lack of file-system
support for atomicity, many embedded systems are un-
reliable. We have not measured the cost of supporting
more general semantics.

Another area of significant contribution is the design
of the data structures that TFFS uses, especially the de-
sign of the pruned versioned B-trees. This design bor-
rows ideas from both research on persistent data struc-
tures [18, 19] and from earlier flash file systems. We
have adapted the previously-proposed persistent search
trees to our needs: our trees can cluster many opera-
tions on a single tree into a single version, and our al-
gorithms prune old versions from the trees. Spare point-
ers are related to replacement pointers that were used
in the notoriously-inefficient Microsoft Flash File Sys-
tem [16, 21, 22, 23, 24, 25], and to replacement block
maps in the Flash Translation Layer [26, 27, 28]. But
again, we have adapted these ideas: in Microsoft’s FFS,

paths of replacement pointers grew and grew; in TFFS,
spare pointers never increase the length of paths. The re-
placement blocks in the Flash Translation Layer are de-
signed for patching elements in a table, whereas our re-
placement pointes are designed for a pointer-based data
structure.

The performance metrics that we used to evaluate the
file system are also innovative. To the best of our knowl-
edge, most of them have never been used in the liter-
ature. The characteristics of flash are different from
those of other persistent storage devices, such as tradi-
tional EEPROM and magnetic disks. Therefore, flash-
specific metrics are required in order to assess and com-
pare flash file systems. The metrics that we have in-
troduced, such as endurance metrics and metrics that
emphasize writes over reads, allow both users and file-
system implementers to assess and compare file systems.
We expect that additional research will utilize these met-
rics, perhaps even to quantitatively show that future file
systems are better than TFFS.

Finally, our performance results show that TFFS does
achieve its design goals, but they also point out to weak-
nesses. On devices with many erase units, TFFS performs
very well, but it does not perform well on devices with
very few erase units. This issue can be addressed either
by avoiding devices with few units in TFFS-based sys-
tems, or by improving TFFS to better exploit such de-
vices. Also, like other flash management software that
manages small chunks of data on large erase units, TFFS
performs poorly when the devices is nearly full most of
the time and contains a lot of static data.

We conjecture that some of the weaknesses in TFFS
can be addressed by better file-system policies, perhaps
coupled with a re-clustering mechanism. In particu-
lar, is is likely that a better allocation policy (on which
erase unit to allocate sectors) and a better reclamation
policy (which erase unit to reclaim) would improve en-
durance and performance. A re-clustering mechanism
would allow TFFS to copy sectors from an erase unit be-
ing reclaimed into two or more other units; currently, the
structure of logical pointers does not allow re-clustering.
The allocation, reclamation, and re-clustering policies
that were developed in two contexts might be appli-
cable to TFFS. Such policies have been investigated
for management of fixed-sized blocks on flash mem-
ories [5, 29, 30, 31], and for log-structured file sys-
tem [3, 32, 33, 34]. Clearly not all of these techniques are
applicable to flash file systems, but some of them might
be. This remains an area for future research.

The design of TFFS brings up an important issue: file
systems for NOR flash can write very efficiently small
amounts of data, even if these writes are performed atom-
ically and committed immediately. Writes to NOR flash
are not performed in large blocks, so the time to per-



form a write operation to the file system can be roughly
proportional to the amount of data written, even for
small amounts. This observation is not entirely new:
proportional write mechanisms have been used in Mi-
crosoft’s FFS2 [16, 22, 23, 24, 25] and in other linked-
list based flash file systems [35]. But these file sys-
tems suffered from performance problems and were not
widely used [21]. More recent file systems tend to be
block based, both in order to borrow ideas from disk file
systems and in order to support NAND flash, in which
writes are performed in blocks. TFFS shows that in NOR
flash, it is possible to benefit from cheap small writes,
without incurring the performance penalties of linked-list
based designs. The same observation also led other re-
searchers to propose flash-based application-specific per-
sistent data structures [36, 37].

It is interesting to compare TFFS to Matchbox [11, 12]
and ELF [8], two file systems for sensor-network nodes.
Both are designed for the same hardware, sensor nodes
with a NAND (page-mode) flash and up to 4 KB of RAM.
Matchbox offers limited functionality (sequential reads
and writes, a flat directory structure) and is not com-
pletely reliable. ELF offers more functionality, includ-
ing random access and hierarchical directories. It ap-
pears to be more reliable than Matchbox, but still not
completely reliable. ELF uses an in-RAM linked list to
represent open files; these lists can be quite long if the
file is long or has been updated repeatedly. It seems that
some of the reliability and performance issues in ELF re-
sult from the use of NAND flash; we believe that NOR
flash is more appropriate for file systems for such small
embedded systems.
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