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Any quantization introduces errors. An important question is how to suppress their visual effect.
In this paper we present a new quantization method for the geometry of 3D meshes, which enables
aggressive quantization without significant loss of visual quality. Conventionally, quantization is
applied directly to the 3-space coordinates. This form of quantization introduces high-frequency
errors into the model. Since high-frequency errors modify the appearance of the surface, they are
highly noticeable, and commonly, this form of quantization must be done conservatively to preserve
the precision of the coordinates. Our method first multiplies the coordinates by the Laplacian
matrix of the mesh and quantizes the transformed coordinates which we call Laplacian coordinates
or “δ -coordinates”. We show that the high-frequency quantization errors in the δ -coordinates are

transformed into low-frequency errors when the quantized δ -coordinates are transformed back into
standard Cartesian coordinates. These low-frequency errors in the model are much less noticeable
than the high-frequency errors. We call our strategy high-pass quantization, to emphasize the fact
that it tends to concentrate the quantization error at the low-frequency end of the spectrum. To
allow control over the shape and magnitude of the low-frequency quantization errors, we extend
the Laplacian matrix by adding a number of spatial constraints. We analyze the singular values
of the extended matrix and derive bounds on the quantization and rounding errors. We show that
the small singular values, and hence the errors, are related in a specific way to the number and
location of the spatial constraints.

Categories and Subject Descriptors: I.3.5 [Computer Graphics]: Computational Geometry and Object Model-
ing—surface, solid, and object representations

General Terms: Algorithms

Additional Key Words and Phrases: topological Laplacian operator, quantization, mesh geometry,
linear least squares, spectral methods

1. INTRODUCTION

Polygonal meshes are widely used for representation of 3D objects. Compression of 3D
meshes is today an active research area, important for web-based applications, efficient
storage and archiving. Mesh compression involves two problems that are usually solved, at
least conceptually, separately: the mesh connectivity encoding and the geometry encoding.
While state-of-the-art connectivity encoding techniques are extremely effective [Touma
and Gotsman 1998; Alliez and Desbrun 2001], compressing the geometry remains a chal-
lenge. The encoded geometry is, on average, at least five times larger than the encoded
connectivity, even when the coordinates are pre-quantized to 10–12 bits. Finer quanti-
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Fig. 1. The counter-intuitive effect of quantization. Fine-sampled surfaces suffer more than
coarse ones. (a) A coarse mesh representation of a sphere with high-precision coordinates.
(b) The same mesh with Cartesian coordinates quantized to 8 bits/coordinate. (c) A fine
mesh representation of the sphere. (d) Quantization of the fine mesh to 8 bits/coordinate
yields a jaggy surface. Note that the RMS of vertex displacements is roughly the same in
both the coarse mesh and the fine mesh, although the visual error is clearly larger in the
fine mesh.

zation for higher precision increases the importance of effective geometry encoding even
further.

The raw geometry data, whether originating from scanned real-world objects or syn-
thetic modeling applications, usually comes in high-precision floating-point representation.
Such data cannot be significantly compressed by standard techniques such as dictionary-
based coding (e.g., LZ), or entropy coding; therefore, most geometry encoding schemes
involve quantization. Normally, the Cartesian coordinates of each vertex are uniformly
quantized, and the resulting integer values are encoded using predictive approaches that
rely on local surface smoothness assumptions [Touma and Gotsman 1998; Taubin and
Rossignac 1998]. Another possibility is to alter the surface representation; for instance,
to treat the geometry as a surface signal and employ signal processing and compression
techniques, such as wavelet compression [Khodakovsky et al. 2000]. However, such ap-
proaches require modification of the connectivity of the mesh into a regular or semi-regular
network. While the new mesh might be close enough to the original surface, some impor-
tant local features that are well represented by a specific connectivity might get washed
out. Thus, in many cases it is desirable to keep the original connectivity intact.

Quantization necessarily introduces errors and causes a certain loss of data. Loosely
speaking, quantizing the Cartesian coordinates of the mesh produces high-frequency errors
across the surface. This especially damages the fine-sampled areas, since the relative error
is greater when the polygons are smaller (see Figure 1). Aggressive quantization signifi-
cantly alters the surface normals, causing the irritating “jaggies” effect (see Figure 1(d)).
Thus, only mild quantization of Cartesian coordinates is possible without causing visible
artifacts (usually between 10 and 16 bits per coordinate).

In this paper, we investigate a different approach to geometry quantization. Instead of
directly quantizing the Cartesian coordinates, we first transform them to another space by
applying the Laplacian operator associated with the mesh topology. We call these trans-
formed coordinates “δ -coordinates”. The quantization is applied to the δ -coordinates,
and the geometry of the mesh can be restored on the decoder side by solving a linear
least-squares system defined by the extended Laplacian matrix (discussed in Section 3).
We show that introducing high-frequency errors by quantizing the δ -coordinates results
in low-frequency errors in the reconstructed Cartesian coordinates. By considering a vi-
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sual error metric between meshes, that takes into account not only the Euclidean distance
between corresponding vertices (or the “Metro” distance [Cignoni et al. 1998]) but also
the smoothness error, we argue that low-frequency displacements in the surface geometry
are less noticeable than high-frequency displacements which modify the local character-
istics of the surface such as normals and curvature. Consequently, strong quantization of
the δ -coordinates yields a small visual error, in contrast to standard Cartesian coordinate
quantization.

We call our strategy high-pass quantization, to emphasize the fact that it tends to con-
centrate the quantization error at the low-frequency end of the spectrum. A high-pass filter
also concentrates the error at the low end of the spectrum, and the form of the error is
known: damping. In high-pass quantization, the high-end of the spectrum is preserved,
as in high-pass filtering. The low-frequency errors that high-pass quantization introduces,
however, are essentially random. They do not necessarily correspond to damping. The
randomness is an outcome of the quantization process, which always introduces random
errors.

Lossy compression methods are evaluated by rate-distortion curves, which correlate bi-
trates with signal distortion. We claim that there is not yet a visual distortion metric for 3D
models that can objectively rank compression methods. One of our main contributions is
the observation that visual distortion is highly influenced by the spectrum of the error, in
ways that are not captured well by existing distortion metrics. We address the quantitative
evaluation issue using a two-pronged approach: (i) In Section 5 we propose a distortion
metric and show that it captures our visual perception well; then we demonstrate the ef-
fectiveness of our method by means of rate-distortion curves; (ii) We show in a visual
metric-independent way that the rate-distortion of our method is better than that of direct
quantization methods.

The paper presents two main contributions. The first is the observation that lossy mesh
compression should introduce low-frequency errors but almost no high-frequency errors.
We assume that high-frequency information below the visual threshold has already been
filtered from the coordinates. Therefore, compression should aim to preserve the remain-
ing significant high-frequency information. The second contribution is a computational
method, based on extended Laplacian matrix, that achieves this objective.

The key ideas of this paper were first presented in [Sorkine et al. 2003]. Here1 we
provide a complete mathematical analysis of the method supported by an extended set of
experiments. We show that the shape and magnitude of the quantization error are governed
by the singular values and singular vectors of matrices associated with the mesh. We ana-
lyze the extreme singular values of these matrices and bound them in terms of topological
properties of the mesh. We also bound the rounding errors introduced by the method, again
in terms of topological mesh properties. Our analysis shows that both the quantization and
rounding errors can be reduced and controlled by introducing spatial constraints. We pro-
pose algorithms to select appropriate constraints in order to meet desired error bounds. The
present paper also expands the discussion on efficiently solving the optimization problem
that arises in our method, and expands the empirical study of the compression-ratios versus
visual-quality tradeoff.

Section 2 reviews previous work related to the mesh Laplacian and the field of geometry

1A note to the reviewers: This version of the paper is significantly larger than the conference version (about
50% larger). It contains much more details, examples, experiments and rigorous mathematical analysis.
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compression. Section 3 shows the properties of the Laplacian matrix and the δ -coordinates,
which enable their strong quantization. Section 4 presents two ways to add constraints to
the Laplacian, and investigates the spectral properties of the extended Laplacians. In Sec-
tion 5 we describe the visual error metric that better captures the visual distance between
meshes. Section 6 presents implementation details and the results, and we conclude in Sec-
tion 8. Our research raises a number of interesting and important open problems, which
we describe in Section 7. We present our conclusions in Section 8.

2. RELATED WORK

Following the pioneering work of Deering [1995] and Taubin and Rossignac [1998], nu-
merous mesh-compression techniques have been developed, which focus mainly on con-
nectivity encoding (e.g., [Gumhold and Straßer 1998; Touma and Gotsman 1998; Rossignac
1999]. It has been shown that the efficiency of the connectivity encoding has reached
near-optimal level [Gumhold 2000; Alliez and Desbrun 2001]. Our work is based on
these results since the encoded connectivity is in fact an efficient encoding of our extended
Laplacian matrix.

As mentioned above, the geometry data size is significantly larger than the encoded
connectivity data size. In recent years the focus has been shifted to efficient encoding of
the geometry. In earlier works, the geometry was encoded by a predictive coding paradigm.
The vertices of the mesh are traversed in some order v1, ...,vn and each vertex vi is encoded
based on the known locations of the previous vertices in the sequence v1, ...,vi−1. The
unknown location of vi is predicted to be at v̂i, and the displacement (the residual error)
ei = v̂i −vi is encoded. Usually linear predictors are used; the most common one is known
as the parallelogram predictor [Touma and Gotsman 1998].

The above methods first quantize the mesh vertices and then losslessly encode the dis-
placements. Our approach is different: we compute the displacements on the exact geom-
etry and then quantize them in a lossy manner.

In all the above methods, the displacements are compressed by some entropy encoder.
Chou and Meng [2002] use vector quantization instead to gain speed. Their paper, as
well as others, does not measure the relation between the quantization error and the visual
quality of the decoded mesh. Most works consider the Metro-like measure, rather than a
visual error metric. A notable exception is the work of Karni and Gotsman [2000], where
the compression results are measured in terms of visual quality.

The mesh-compression method of Karni and Gotsman [2000] is based on the spectral
properties of Laplacians, as well as our work, but it is fundamentally and computationally
different from our method. Karni and Gotsman propose to compute the eigenvectors of
the Laplacian of the mesh, expand the mesh functions (the x, y and z vectors) in this basis,
and drop the coefficients of high-frequency modes from the representation. The rationale
is that smooth shapes can be well represented by a linear combination of low-frequency
modes (the same applies to other bases, such as wavelet bases). The fundamental differ-
ence between their method and ours is that the error in their method consists entirely of
high-frequency modes, since these are the modes that suffer from the lossy representation,
whereas the error in our method consists mostly of low-frequency modes. In models that
have some high-frequency components, such as folds, corners, or rough surfaces, their
method wipes out these features, whereas ours preserves them almost perfectly (see Fig-
ure 9). In other words, both methods exploit the fact that 3D models can be well approx-
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imated by a combination of low-frequency Laplacian eigenvectors, but the compression
errors in the two methods are entirely different.

Another important difference between our method and Karni and Gotsman’s lies in com-
putational efficiency. Their method requires computing eigenvectors of the Laplacian,
which is computationally more expensive than solving a sparse least-squares problem,
which is the computational kernel in our method.

An alternative to quantization as means of geometry compression is mesh simplification,
which removes vertices and changes the connectivity of the mesh. The trade-off between
simplification and quantization is extensively studied by King and Rossignac [King and
Rossignac 1999]. They define a shape complexity measure and use it to estimate the opti-
mal number of vertices and bits per vertex, given an error bound or file size bound. In this
work, our goal is to investigate a different way to perform geometry quantization, while
preserving the connectivity. However, it would be interesting to combine our findings on
quantization with the above study.

The mesh Laplacian has other applications in Computer Graphics. Taubin [Taubin 1995]
showed the use of the Laplacian matrix as a tool for spectral analysis of the 3D mesh. In
his work, Taubin designs a mesh smoothing filter and a modeling tool. Alexa [Alexa 2001;
2003] uses Laplacian coordinates for 3D morphing. He shows that by interpolating Lapla-
cian coordinates locally, the intermediate surfaces remain smoother and tend to deform
less than linearly interpolated Cartesian coordinates. Ohbuchi et al. [Ohbuchi et al. 2002]
use spectral decomposition of the Laplacian to watermark 3D models. The amplitude of
the spectral coefficients of low-frequency modes is modulated to embed a watermark bit-
string. Their work, like ours, exploits the observation that low-frequency errors are almost
invisible.

3. LAPLACIAN MATRIX AND δ -COORDINATES

3.1 Algebraic background

Quantizing a vector x with continuous coefficients introduces an error qx, where x + qx

is the quantized vector. In this section we show how to control the spectral behavior of
the error using linear transformations. We assume that a simple fixed-point quantization
is used, so that the maximum quantization error maxi |qi| is bounded by 2−p(maxi xi −
min j x j), using p-bit quantized coefficients.

Suppose that instead of quantizing the input vector x, we first transform x into a vector Ax
using a nonsingular matrix A, and then quantize Ax. We denote the quantization error
by qAx, so that the new quantized vector is Ax+qAx. The elements of the quantized vector
are now discrete, as are those of x + qx. We can recover an approximation of x from this
representation, by multiplying the quantized vector by A−1:

A−1(Ax+qAx) = x+A−1qAx.

The error in this approximation is A−1qAx, and we will see shortly that under certain
conditions, it behaves quite differently than qx.

Assume that A has an orthonormal eigen-decomposition AU = UΛ, where U is unitary
(has orthonormal columns) and Λ is diagonal. This assumption is satisfied when A is real
and symmetric, and more generally, if and only if AA∗ = A∗A, where A∗ is the Hermitian
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adjoint of A. Without loss of generality, we assume that

|λ1| ≥ |λ2| ≥ · · · ≥ |λn|,
where λi = Λii are the eigenvalues of A. Since the processes we are concerned with are
invariant to scaling A, we also assume that |λ1| = 1. We express x as a linear combination
of A’s orthonormal eigenvectors,

x = c1u1 + c2u2 + · · ·+ cnun,

where ui are the columns of U . We also have

Ax = c1λ1u1 + c2λ2u2 + · · ·+ cnλnun.

Similarly, since A−1U = UΛ−1, we can express the quantization error as a linear combina-
tion of eigenvectors,

qAx = c′1u1 + c′2u2 + · · ·+ c′nun,

so

A−1qAx = c′1λ−1
1 u1 + c′2λ−1

2 u2 + · · ·+ c′nλ−1
n un.

We now reach the first fundamental point of the discussion. The transformation A is
useful for quantization when three conditions hold:

(1) For typical inputs x, the norm of Ax is much smaller than the norm of x,

(2) Quantization errors with large c′iλ−1
i for large i (that is, with strong representation for

the last eigenvectors) are not disturbing,

(3) |λn| is not too small.

The first point is important since it implies that maxi |(Ax)i| � maxi |xi|, which allows
us to achieve a given quantization error with fewer bits. The best choice of norm for
this purpose is, of course, the max norm, but since norms are essentially equivalent, the
implication also holds if

‖Ax‖2 �‖x‖2.

Since ‖x‖2
2 = ∑i c2

i and ‖Ax‖2
2 = ∑i c2

i λ 2
i , the above condition occurs if and only if the first

ci’s are small compared to the last ones. In other words, the first point holds if A, viewed
as a filter, filters out strong components of typical x’s.

The importance of the second and third points stems from the fact that A−1 amplifies
the components of qAx in the direction of the last eigenvalues. If A has tiny eigenvalues,
the amplification by a factor λ−1

i is significant for large i. Even if the small eigenvalues of
A are not tiny, the error may be unacceptable. The quantization error A−1qAx always con-
tains moderate components in the direction of eigenvectors that correspond to the small
eigenvalues of A. When small error components in these directions distort the signal per-
ceptively, the error will be unacceptable. Therefore, the last two points must hold for the
quantization error to be acceptable.

3.2 Laplacian transformations

This section discusses the Laplacian matrix of the mesh and its variants and shows that
these linear transformations work well as quantization transforms.
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Fig. 2. Extreme eigenvectors of the Laplacian of a one-dimensional mesh. Plot (a) shows un and un−1, the two
eigenvectors corresponding to the smallest eigenvalues λn = λmin and λn−1. Plot (b) shows u1, the eigenvector
corresponding to the largest eigenvalue λ1.

Let M be a given triangular mesh with n vertices. Each vertex i ∈ M is conventionally
represented using absolute Cartesian coordinates, denoted by vi = (xi,yi,zi). We define the
relative or δ -coordinates of vi to be the difference between the absolute coordinates of vi
and the center of mass of its immediate neighbors in the mesh,

δi = (δ (x)
i

,δ (y)
i

,δ (z)
i

) = vi −
1
di

d

∑
k=1

vik
,

where di is the number of immediate neighbors of i (the degree or valence of i) and ik is i’s
k th neighbor.

The transformation of the vector of absolute Cartesian coordinates to the vector of rela-
tive coordinates can be represented in matrix form. Let A be the adjacency (connectivity)
matrix of the mesh:

Ai j =
{

1 i and j are adjacent
0 otherwise,

and let D be the diagonal matrix such that Dii = di. Then the matrix transforming the
absolute coordinates to relative coordinates (scaled by D) is L = D−A,

Li j =




di i = j
−1 i and j are adjacent
0 otherwise.

That is, Lx = Dδ (x), Ly = Dδ (y), and Lz = Dδ (z), where x is an n-vector containing the x
absolute coordinates of all the vertices and so on. Without loss of generality, we now focus
on the vectors x and δ = Dδ (x).

The matrix L is called the Laplacian of the mesh [Fiedler 1973]. Laplacians of meshes
have been extensively studied [Chung 1997], primarily because their algebraic properties
are related to the combinatorial properties of the meshes they represent. The Laplacian
is symmetric, singular and positive semidefinite. The singularity stems from the fact that
the system Lx = δ has an infinite number of solutions which differ from each other by a
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vector that is constant on each connected component of the mesh. Thus, we can actually
recover x from δ if we know, in addition to δ , the Cartesian coordinate of one xi in each
connected component. We can formalize this method by dropping from L the rows and
columns that correspond to one vertex in each connected component, called the anchor
of the component. The resulting matrix (see Figure 4), which we call the basic invertible
Laplacian, generates all the δ ’s that we need and is nonsingular. The next section explores
other nonsingular variants of the Laplacian.

To explain why variants of the Laplacian are effective quantization transforms, we first
have to introduce the notion of mesh frequencies (spectrum). The frequency of a real
function x defined on the vertices of a mesh M is the number of zero crossings along
edges,

f (x) = ∑
(i, j)∈E(M)




1 xix j < 0

0 otherwise


 ,

where E(M) is the set of edges of M, so the summation is over adjacent vertices. It turns out
that for many classes of graphs, including 3D meshes, eigenvectors of the Laplacian (and
related matrices, such as our basic invertible Laplacian) corresponding to large eigenvalues
are high-frequency mesh functions, and eigenvectors corresponding to small eigenvalues
are low-frequency mesh functions (see example in Figure 2. In other words, when i � j,
λi > λ j and f (ui) � f (u j). Furthermore, since 3D models are typically smooth, possibly
with some relatively small high-frequency perturbation, the coordinate vectors x, y, and z
often have a large low-frequency and a small high-frequency content. That is, the first ci’s
are often very small relative to the last ones.

This behavior of the eigenvectors of Laplacians and of typical 3D models implies that
the first property we need for effective quantization holds, namely, the 2-norm of Lx is
typically much smaller than the norm of x, and therefore the dynamic range of Lx is smaller
than that of x.

Laplacians also satisfy the second requirement. As stated above, eigenvectors associated
with small eigenvalues are low-frequency functions that are typically very smooth. When
we add such smooth low-frequency errors to a 3D model, large features of the model may
slightly shift, scale, or rotate, but the local features and curvature are maintained. Thus,
errors consisting mainly of small-eigenvalue low-frequency eigenvectors are not visually
disturbing.

However, simple Laplacian transformations do not satisfy our third requirement. The
small eigenvalue of a basic invertible Laplacian is typically tiny; a good estimate for |λ−1

n |
is the product of the maximum topological distance of a vertex from the anchor vertex, and
the number of vertices in the mesh (assuming there is one connected component; otherwise
the maximum of the estimate over all components) [Guattery and Miller 2000; Boman and
Hendrickson 2001]. For a typical n-vertex 3D mesh, the small eigenvalue is therefore
likely to be Θ(n−1.5). This causes large low-frequency errors which are clearly visible in
the example in Figure 3.

4. THE K-ANCHOR LAPLACIAN

An effective way to increase the small eigenvalue of a Laplacian is to add more anchor
points. This section analyzes the effect of two algorithm parameters on the magnitude
and shape of the quantization error. One parameter is the number and location of the
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Fig. 3. An example showing quantization errors in a one-dimensional mesh. The mesh here
is a simple linear chain with 114 vertices. (a) shows a smooth function x defined on the
mesh, its direct quantization, and a Laplacian-transform quantization. The quantizations
were performed with 20 discrete values uniformly distributed between the minimum and
maximum absolute values of the vectors. The direct error vector is smaller in magnitude,
but has a strong high-frequency oscillatory nature, whereas the Laplacian-transformed er-
ror vector is smooth. (b) explains this observation by plotting, on a log scale, the spectrum
of the two errors. We can see that the direct quantization has moderate components in the
direction of all eigenvectors of the Laplacian (i.e., all frequencies), whereas the Laplacian-
transformed error has strong components in the direction of the smooth eigenvectors, but
very small components in the direction of high-frequency eigenvectors.

anchor points. The second parameter is the algorithm that transforms the relative (or δ )
coordinates to the original coordinates.

The relationship between the original coordinates x and the relative coordinates δ is
given, up to a shift, by the linear system of equations Lx = δ . When we add anchors,
we essentially add constraints to this system of equations. Without loss of generality, we
assume that the anchors are x1, . . . ,xk, the first k vertices of the mesh. For each anchor
point xi j

, j = 1, . . . ,k, we add the constraint xi = xi, where the left-hand side is taken to be

an unknown and the right-hand side a known constant.
It may seem strange that we do not immediately substitute the known constant for the

unknown, but the reason for this will become apparent later. The full system of constraints
that defines the relationship between the absolute and relative coordinates is therefore(

L
Ik×k 0

)
x =

(
Lx
x1:k

)
=
(

δ
x1:k

)
. (1)

We denote this (n+ k)-by-n matrix by L̃,

L̃ =
(

L
Ik×k 0

)
, (2)

and call it the k-anchor rectangular Laplacian. Figure 4 shows a small mesh, its Laplacian,
along with a 2-anchor rectangular Laplacian.

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.



10 · Sorkine et al.

v2

v5

v1

v6v8

v7v9

v10

v4

v3

–1–1 –1 –1
–1 –1 –1
–1 –1 –1 –1 –1

–1 –1 –1 –1
–1 –1 –1
–1 –1 –1 –1

–1 –1 –1 –1 –1 –1
–1 –1 –1 –1 –1

–1–1–1
–1 –1 –1 –1

4
3

5
4

3
4

6
6

3
4

The mesh The Laplacian matrix

–1–1 –1
–1 –1 –1
–1 –1 –1 –1 –1

–1 –1 –1 –1

–1 –1 –1 –1
–1 –1 –1 –1 –1

–1 –1 –1

–1 –1 –1

4
3

5
4

4
6

6

4

–1–1 –1 –1
–1 –1 –1
–1 –1 –1 –1 –1

–1 –1 –1 –1
–1 –1 –1
–1 –1 –1 –1

–1 –1 –1 –1 –1 –1
–1 –1 –1 –1 –1

–1–1–1
–1 –1 –1 –1

4
3

5
4

3
4

6
6

3
4

1
1

Invertible Laplacian 2-anchor rectangular Laplacian

Fig. 4. A small example of a triangular mesh and its associated Laplacian matrix (top right). Second row: a
2-anchor invertible Laplacian and a 2-anchor rectangular Laplacian. The anchors are denoted in the mesh in red.

With k anchors, the quantized representation of the mesh consists of the quantized δ ’s
and of the absolute coordinates of the anchors. Since we take k to be much smaller than
n, there is no need to aggressively quantize the coordinates of the anchors, but they can be
quantized as well. The quantized vector that represents the mesh is, therefore,(

Lx+qLx
x1:k +qx1:k

)
=
(

Lx
x1:k

)
+q

L̃x
= L̃x+q

L̃x
. (3)

The matrix L̃ is rectangular and full rank. Hence, trying to recover x from L̃x + q
L̃x

by
“solving” the constraint system L̃x′ = L̃x +q

L̃x
for x′ will fail, since this system is overde-

termined, and therefore most likely inconsistent. An approximation x′ can be computed in
(at least) two ways. The simplest is to eliminate the last k rows from the system. By adding
row n + j to row j, for j = 1, . . . ,k and deleting row n + j, we obtain a square symmet-
ric positive definite linear system of equations L̂x′ = b , which can be solved for x′. This
transformation corresponds to multiplying both sides of the system L̃x′ = L̃x + q

L̃x
by an

n-by-(n+ k) matrix

J =
(

In×n
Ik×k

0

)
, (4)

so

L̂ = JL̃ (5)
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and b = J(L̃x + q
L̃x

). We call L̂ the k-anchor invertible Laplacian. For a small example,
see Figure 4.

The second method to obtain an approximation x′ is to find the least-square solution x′
to the full rectangular system L̃x′ ≈ L̃x+q

L̃x
.

It turns out that the norm of the quantization error is essentially the same in the two
approximation methods, but the shape of the error is not. The shape of the error when using
a least-squares solution to the rectangular system is smoother and more visually pleasing
than the shape of the error resulting from the solution of the square invertible system.

The next subsection analyzes the eigenvalues of L̂, which determine the quantization
errors in the square invertible case; the following subsection, Section 4.2 relates the error
in the rectangular case to the singular values of L̃, and Section 4.3 relates the singular
values of L̃ to the eigenvalues of L̂.

4.1 The eigenvalues of L̂

In this subsection we show how to bound from below the smallest eigenvalue of L̂. Bound-
ing the small eigenvalue from below ensures that the transformation L̂ satisfies condition
(3) in Section 3.1.

The largest eigenvalue λmax(L̃) is at most 2dmax + 1, where dmax is the maximal degree
in the mesh. This bound is less important than the lower bound on the small eigenvalue,
since it only ensures that the norm of the transformed coordinates is never much larger than
the norm of the absolute coordinates. We expect the transformed norm to be much smaller,
so this bound is not particularly important. We include it for completeness, and also to
show that even when our quantization method is not very effective, it does not cause much
harm either.

We first show that bounding the spectrum of L̂ proves a lower bound on the quantization
error x− x′. The bound is similar to the analysis of the quantization error in Section 3.1,
but it is not identical. The difference, which turns out to be quite minor, stems from the
fact that we now quantize an (n+ k)-vector, not an n-vector.

LEMMA 4.1. The norm of the quantization error x− x′ resulting from solving

L̂x′ = JL̃x′ = J(L̃x+q
L̃x

)

is bounded by

‖x− x′‖2 ≤
√

2λ−1
min(L̂)‖q

L̃x
‖2 .

PROOF. We add the quantization error q
L̃x

to the right-hand side of Equation 1, and
multiply both sides by J,

JL̃x′ = J(L̃x+q
L̃x

) . (6)

Because JL̃x′ = L̂x′, we can multiply both sides by L̂−1 to obtain

x′ = L̂−1J(L̃x+q
L̃x

)

= L̂−1(L̂x+ Jq
L̃x

)

= x+ L̂−1Jq
L̃x

,

so

‖x− x′‖2 ≤ ‖L̂−1‖2‖J‖2‖q
L̃x
‖2 .
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We now bound the first two factors in the right-hand-side product. Because L̂ is symmetric
positive definite,

‖L̂−1‖2 = λmax(L̂−1) = 1/λmin(L̂) = λ−1
min(L̂) .

By the definition of the 1 and infinity norms,

‖J‖2
2 ≤ ‖J‖1‖J‖∞ = 1 ·2 = 2 ,

which completes the proof.

This lemma shows that to preserve the bound on the norm of x− x′, the quantization
error qx1:k

for the anchor points should be no larger than the quantization error qLx of the
relative coordinates.

We now bound the small eigenvalue of L̂. We express the lower bound in terms of a
set of paths in the mesh. Given a set of anchor points, we assign each vertex a path to an
anchor point. The bound uses the following three metrics of the set of paths.

Definition 4.2. The dilation ϑ of the set of paths is the length, in edges, of the longest
path in the set. The congestion ϕ of the set is the maximal number of paths that use a single
edge in the mesh. The contention ρ of the set is the maximal number of vertices whose
paths lead to a single anchor point. The maximum is taken over all vertices for dilation,
over all edges for congestion, and over all anchors for contention.

The smaller the dilation, congestion, and contention, the better the bound on the small
eigenvalue of L̂. Note that for a single set of anchor points, we can assign many different
sets of paths, some of which yield tighter bounds than others. In addition, even the best
set of paths does not, in general, provide a completely tight bound. For more details,
see [Boman and Hendrickson 2001]. But the dependence of the bound on the dilation,
congestion and contention does provide us with guidelines as to how to select the anchor
points. The next theorem is the main result of this subsection.

THEOREM 4.3. The smallest eigenvalue of L̂ satisfies

λmin(L̂) ≥ 1
ϕ ·ϑ +ρ

.

We use the following strategy to prove this theorem. We will show how to factor L̂ into
L̂ = VV T . The eigenvalues of L̂ are the squares of the singular values of V , so it suffices to
bound the small singular value of V . The factor V will have a special structure, in which
each column corresponds to one edge of the mesh or to one anchor point. We will then
use the given set of paths from vertices to anchor points, to construct a matrix W such
that VW = I, and show how the norm of W is related to the path structure. The equation
VW = I will allow us to relate the 2-norm of W , which we can bound using the path set, to
the small singular value of V , which we seek to bound.

The following definitions are used in the construction of the factor V .

Definition 4.4. The edge-vector 〈i j〉 has exactly two non-zeros, 〈i j〉min(i, j) = 1 and

〈i j〉max(i, j) = −1. The vertex-vector 〈i〉 has exactly one non-zero, 〈i〉i = 1.

We associate an edge-vector 〈i j〉 with an edge connecting vertex i with vertex j. The fol-
lowing lemma demonstrates one of the connection between edges and their corresponding
vectors.
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LEMMA 4.5. The edge-vectors of a simple path between vertices i and j span the edge-
vector 〈i j〉 with coefficients ±1.

The following lemma describes a factorization of k-anchor Laplacian matrices:

LEMMA 4.6. A k-anchor Laplacian matrix L̂ can be factored into L̂ = VV T , V =(
V1 V2

)
, where V2 is a matrix of unscaled edge-vectors, each column corresponding to

one non-zero off-diagonal in L̂, and V1 is a matrix of vertex-vectors, each column corre-
sponding to an anchor point.

PROOF. For each offdiagonal nonzero l̂i j =−1 (each edge of the mesh), V has a column
containing the edge vector 〈i j〉, and for each anchor j, V has a vertex vector 〈 j〉. The edge
vectors constitute V1 and the vertex vectors constitute V2. It is easy to verify that L̂ = VV T .
For a more detailed proof, see [Boman et al. 2001].

Given the above factorization, we bound the smallest singular value of V . Our course
of action in bounding the smallest singular value of V is as follows: we shall find a matrix
W ∈ Rm×n such that VW = In×n. As the next lemma shows, the matrix G with the smallest
2-norm satisfying V G = In×n is the Moore-Penrose pseudo-inverse G = V+ of V [Golub
and Loan 1996, pages 257–258]. Therefore, any matrix W satisfying VW = In×n has the
property ‖W‖ ≥ ‖V +‖. We shall then find an upper bound C on ‖W‖. Since C ≥ ‖W‖ ≥
‖V +‖ = 1

σmin(V ) we will be able to conclude that σmin(V ) ≥ 1
C . We first prove a technical

lemma concerning the pseudo-inverse (this result is probably well-known, but we have not
found it in the literature).

LEMMA 4.7. Let V be a full-rank n-by-m real matrix, and let G be an m-by-n real
matrix such that V G = In×n. Then ‖G‖2 ≥ ‖V +‖2.

PROOF. The singular values of V+V are n ones and m−n zeros, so its 2-norm is 1. We
now show that for any x with unit 2-norm we have ‖V +x‖2 ≤ ‖Gx‖2. Let c = ‖Gx‖2, and
let y = Gx/c, so ‖y‖2 = 1. We have Gx = cy, and multiplying V from the left on both sides
we get x = Ix = V Gx = cV y. Multiplying now from the left by V+ we get V +x = cV +V y,
so ∥∥V +x

∥∥
2 =

∥∥cV +V y
∥∥

2

≤ c
∥∥V +V y

∥∥
2

≤ c
∥∥V +V

∥∥
2 ‖y‖2

= c ·1 ·1
= c

= ‖Gx‖2 .

We are now ready to bound the singular values of V .

LEMMA 4.8. Given a k-anchor Laplacian L̂ with a factorization into edge and vertex
vectors L̂ = VV T as in Lemma 4.6, and a set of paths

Π =
{

πi = (i, i1, i2, . . . , j)|i = 1, . . . ,n and j is an anchor
}

,
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we have

σmin(V ) ≥
1√

ϕ(Π) ·ϑ(Π)+ρ(Π)
.

PROOF. Finding a matrix W satisfying VW = In×n is equivalent to finding, for i =
1, . . . ,n, a vector wi such that V wi = ei, where ei = 〈i〉 is the ith unit vector.

Let ji be the anchor endpoint of πi. It is easy to verify that〈
i ji
〉

= (−1)(i> ji) ∑
(�1,�2)∈πi

(−1)(�1>�2) 〈�1�2

〉
.

(we use the convention that a boolean predicate such as (i > j) evaluates to 1 if it is true
and to 0 otherwise.) By Lemma 4.6, all the edge vectors in the summation are columns of
V . To obtain wi, all that remains is to add or subtract

〈
ji
〉
, and perhaps to multiply by −1,

〈i〉 = (−1)(i> ji)
〈
i ji
〉
+
〈

ji
〉

.

The last two equations together specify wi, which contains only 1’s, −1’s, and 0’s.
Now that we have found, column by column, a matrix W such that VW = In×n, we

partition the rows of W such that

VW = (V1V2)
(

W1
W2

)
.

The rows of W1 correspond to the columns of V1, the vertex vectors in V , and the rows of
W2 corresponds to the columns of V2, the edge vectors in V . We will bound the norm of W
by bounding separately the norms of W1 and of W2.

We first bound
∥∥W1

∥∥
2.∥∥W1

∥∥2
2 ≤ ∥∥W1

∥∥
1

∥∥W1

∥∥
∞

=

(
max

j
∑

i

∣∣∣[W1]i j

∣∣∣
)(

max
i

∑
j

∣∣∣[W1]i j

∣∣∣
)

= 1 ·ρ(Π) .

The 1-norm of W1 is one since there is exactly one nonzero in each column of i, in position
ji, and its value is 1. The ∞-norm of W1 is the contention of the path set, since each row of
W1 corresponds to one anchor point, and it appears with value 1 in each path (column) that
ends in it. Therefore, each row in W1 contains at most ρ(Π) 1’s, and the other entries are
all 0.

Bounding
∥∥W2

∥∥
2 is similar. Each row in W2 corresponds to one edge of the mesh and

each column to a path in Π. Each edge is used in at most ϕ(Π) paths, so
∥∥W2

∥∥
∞ = ϕ(Π).

Each path contains at most ϑ(Π) edges, so
∥∥W2

∥∥
1 = ϑ(Π).

We now bound ‖W‖2.

‖W‖2
2 = max

‖x‖2=1
‖Wx‖2

2

= max
‖x‖2=1

∥∥∥∥W1x
W2x

∥∥∥∥
2

2

= max
‖x‖2=1

(∥∥W1x
∥∥2

2 +
∥∥W2x

∥∥2
2

)
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≤ max
‖x1‖2

=1

∥∥W1x1

∥∥2
2 + max

‖x2‖2
=1

∥∥W2x2

∥∥2
2

=
∥∥W1

∥∥2
2 +
∥∥W2

∥∥2
2

≤ ϕ(Π)ϑ(Π)+ρ(Π) .

The bound on σmin(V ) follows immediately from the bound on ‖W‖2 and from the dis-
cussion preceding the statement of the lemma.

Now we can conclude that λmin(L̂) ≥ 1
ϕ·ϑ+ρ . This follows from two facts: (1) in a

symmetric positive definite matrix the singular values are the same as the eigenvectors,
therefore λmin(L̂) = σmin(L̂). (2) if L̂ = VV T then the singular values of L̂ are the squares
of the singular values of V (this follows directly from V ’s SVD decomposition).

We can now easily prove the theorem:

PROOF. λmin(L̂) = σmin(L̂) = σ2
min(V ) ≥ 1

ϕ·ϑ+ρ .

4.2 Bounding the quantization error using the singular values of L̃

We now show that if we define x′ as the least-squares minimizer of ‖L̃x′ − L̃x +q
L̃x
‖2, the

norm of the error x− x′ can be bounded using estimates on the singular values of L̃. The
analysis below is the equivalent of Lemma 4.1, but for the case of L̃, the k-anchor rectan-
gular Laplacian rather than for the case of L̂, the square k-anchor invertible Laplacian.

LEMMA 4.9. Let x′ be the least-squares minimizer of ‖L̃x′ − L̃x + q
L̃x
‖2. The norm of

the error x− x′ is bounded by

‖x− x′‖2 ≤ σ−1
min(L̃)‖q

L̃x
‖2 ,

where σmin(L̃) denotes the nth and smallest singular value of L̃.

PROOF. We express x′ in terms of the Moore-Penrose pseudo-inverse L̃+ of L̃,

x′ = L̃+
(

L̃x+q
L̃x

)
= x+ L̃+q

L̃x
.

Therefore,

‖x− x′‖2 ≤ ‖L̃+‖2‖q
L̃x
‖2

= σ−1
min(L̃)‖q

L̃x
‖2 .

4.3 The singular values of L̃

The next step is to show that the singular values of L̃ cannot be much smaller than the
smallest eigenvalue of L̂. In fact, we show that they are at most a factor of

√
2 smaller.

The proof of Lemma 4.1 shows that the 2-norm of J is at most
√

2. It is easy to show that
the norm is, in fact, exactly

√
2, and that all the singular values of J are either 1 or

√
2. The

next lemma shows that the
√

2 bound on the norm of J ensures that σmin(L̃)≥ λmin(L̂)/
√

2.
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LEMMA 4.10. Let A, B, and C be matrices such that AB = C. Then

σmin(B) ≥ σmin(C)
σmax(A)

.

PROOF. Suppose for contradiction that σmin(B) = ε < σmin(C)/σmax(A). Then there
exist vectors x and y such that ‖x‖2 = ‖y‖2 = 1 and Bx = εy. (x and y are the right and left
singular vectors corresponding to σmin(B).) Therefore,

‖Cx‖2 = ‖ABx‖2 = ‖Aεy‖2 = ε‖Ay‖2 ≤ εσmax(A)‖y‖2 = εσmax(A) < σmin(C) ,

a contradiction.

We can now prove the main theorem of this subsection.

THEOREM 4.11.

σmin(L̃) ≥ λmin(L̂)√
2

.

PROOF. Since JL̃ = L̂, by the previous lemma

σmin(L̃) ≥ σmin(L̂)
σmax(J)

=
σmin(L̂)√

2

=
λmin(L̂)√

2
.

4.4 Singular vectors and the shape of the error

Why do we propose to use a rectangular Laplacian rather than a square invertible one? The
reason lies in the shape of the quantization error that each method generates.

We have already seen that adding anchor points increases the smallest singular value of
both the invertible and the rectangular Laplacians. Furthermore, in both cases the 2-norm

of the error x− x′ is bounded by
√

2λ−1
min(L̂)

∥∥∥q
L̃x

∥∥∥
2
, exactly the same bound. (The actual

errors will differ and the norms will most likely differ, since the bounds are not tight, but
the bounds we proved are exactly the same.)

We have found, however, that the shape of the error is visually better when we obtain
the approximation x′ from the rectangular Laplacian. The main difference between the two
errors is that the rectangular approximation x′ is usually smooth where x is smooth, but the
invertible approximation is not. The invertible approximation is almost always non-smooth
at the anchors, where “spikes” seem to always appear. This phenomenon is illustrated in
Figures 5 and 6.

The crucial observation is that the k-anchor invertible Laplacian essentially forces the
error x−x′ to zero at the anchors, and allows the error to grow as we get farther and farther
away from the anchor points. When we obtain x′ from solving a least-squares problem
whose coefficient matrix is L̃, x′ can differ from x everywhere, including at the anchor
points. This allows x′ to be smooth.
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Fig. 5. The same mesh as in Figure 3, but with an additional anchor point at vertex 86.
The transformed quantization error is no longer smooth at the anchor point, even though
the vector x is smooth there.

Fig. 6. Reconstruction of the mesh from quantized δ -coordinates using k-anchor invertible Laplacian is not
smooth at the anchor vertices.

Formalizing this explanation is hard and is beyond the scope of this paper. The error
x′ − x consists, in both cases, mainly of the singular vectors of L̃ or L̂ that correspond to
the smallest singular values. If these singular vectors are smooth, the error x− x′ will be
smooth, so x′ will be smooth where x is smooth. Are these vectors smooth?

The numerical examples in Figures 5 and 6 indicate that the relevant singular/eigen
vectors of L̂ are not smooth. Our experiments also indicate that the singular vectors of L̃
that correspond to small singular values are smooth.

In this paper we do not attempt to prove these statements about the shape of the sin-
gular vectors. In general, the singular vectors of Laplacian and Laplacian-like matrices
have not been researched as much as the singular values. It is generally believed that the
vectors corresponding to small singular values are indeed smooth. This belief underlies
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important algorithms such as multigrid [Briggs et al. 2000] and spectral separators [Pothen
et al. 1990]. Some additional progress towards an understanding of the relationships be-
tween the graph and the eigenvectors of its Laplacian were made recently by Ben-Chen
and Gotsman [Ben-Chen and Gotsman 2003]. On the other hand, there is also research
that indicates that these vectors are not always well-behaved [Guattery and Miller 2000].

We leave the full mathematical analysis of the shape of the errors as an open problem
in this paper, and provide instead empirical evidence that the errors indeed behave as we
claim.

4.5 The effect of anchor points on numerical accuracy

So far we have analyzed the norm of the error assuming that x′ is the exact solution of

L̂x′ = J(L̃x + q
L̃x

) or exact minimizer of
∥∥∥L̃x′ − (L̃x+q

L̃x
)
∥∥∥

2
. Since we cannot determine

x′ exactly using floating-point arithmetic, what we actually obtain is an approximation x′′
to x′. The total error x− x′′ depends on both x− x′ and x′ − x′′. In this section we analyze
the numerical error x′ − x′′, and show that it too depends primarily on the small singular
values of the coefficient matrices L̂ and L̃, and hence on the anchor points. The results in
this section rely on standard error bounds from numerical linear algebra. For details on
these error bounds, see for example [Higham 2002] or [Trefethen and Bau 2000]; the first
reference is an encyclopedic monograph, the second a readable textbook.

We assume that the approximation x′′ is obtained using a backward stable algorithm. For
the invertible problem, this means that x′′ is the exact solution of (L̂+δ L̂)x′′ = J(L̃x+q

L̃x
),

where δ L̂ is a small perturbation such that ‖δ L̂‖/‖δ L̂‖ = O(εmachine), where εmachine
is a small constant depending on the floating-point arithmetic, about 10−16 for double-
precision IEEE-754 arithmetic, which is now used on virtually all computers. For the rect-
angular problem, backward stability means that x′′ is the exact minimizer of (L̃+δ L̃)x′′ −
(L̃x+q

L̃x
) for a similarly small perturbation.

Since L̂ is a symmetric positive-definite matrix and since L̃ is full rank, most linear-
equation solvers and most least-squares solvers are backward stable when applied to them.
This includes sparse direct Cholesky factorization solvers for the square problem, sparse
QR solvers for the rectangular least-squares problem, and most iterative algorithms for
these problems.

When we obtain an approximation x′′ using a backward stable algorithm, the relative
norm of the so-called forward error x′ − x′′ is bounded by the condition number κ of the
problem times εmachine,

‖x′′ − x′‖2

‖x′‖2
= O(κεmachine) .

For the invertible problem, the condition number is simply the condition number of the
coefficient matrix,

κinv = κ2(L) =
∥∥L̂
∥∥∥∥L̂−1

∥∥ .

When we use the 2-norm,

κinv =
σmax(L̂)
σmin(L̂)

.

The condition number of least-squares problems is a little more complicated. We denote
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by θ the angle between the right-hand side (L̃x + q) (here q = q
L̃x

) and its projection into
the column space of L̃. Since L̃x is in this column space, the size of tanθ is roughly
proportional to ‖q‖2/‖‖L̃x‖, which is proportional to how aggressive the quantization is.
Therefore, tanθ will be usually small. We denote by η the quantity

η =
‖L̃‖2‖x‖2

‖L̃x‖2
.

This quantity is bounded by 1 ≤ η ≤ κ2(L̃). In our case, unfortunately, η will not be large,
because L̃x contains some values of x, namely the anchors, so its norm will not be much
smaller than the norm of x. Given θ and η , we can express the condition number of solving
least squares problems,

κrect = κ2(L̃)+
κ2(L̃)2 tanθ

η
.

In our case, κ2(L̃) and κ2(L̂) depend only on the small eigenvalue of L̂, which we have
already shown to be strongly influenced by the anchor points. Since σmax(L̂) = λmax(L̂) ≤
2dmax +1, where dmax is the maximal degree of a vertex in the mesh, and since σmax(L̃) ≤√

2λmax(L̂), in both cases the largest singular value is bounded by a small constant, so
κ(L) = O(λ−1

min(L̂)) for both L’s.

THEOREM 4.12. Let λ = λmin(L̂), ε = εmachine, and q = q
L̃x

. The 2-norm of the
error x− x′′, when x′′ is computed from the invertible Laplacian using a backward-stable
algorithm, is bounded by

‖x− x′′‖2 ≤ O(λ−1‖q‖2 +λ−1ε‖x‖2 +λ−2ε‖q‖2) .

PROOF. By Lemma 4.9 we have

‖x′‖2 = ‖x′ + x− x‖2

≤ ‖x− x′‖2 +‖x‖2

≤ λ−1‖q‖2 +‖x‖2 .

The inequality and the discussion preceding the theorem yield

‖x− x′′‖2 = ‖x− x′ + x′ − x′′‖2

≤ ‖x− x′‖+‖x′ − x′′‖2

≤ λ−1‖q‖2 +‖x′ − x′′‖2 by Lemma 4.9

≤ λ−1‖q‖2 +O(κ2(L̂)ε‖x′‖2)

= λ−1‖q‖2 +O(λ−1ε(λ−1‖q‖2 +‖x‖2))

= λ−1‖q‖2 +O(λ−1ε‖x‖2 +λ−2ε‖q‖2)

We now state the corresponding theorem for the least squares case. The proof, which
we omit, is identical except for the expression of the condition number.

THEOREM 4.13. Let λ = λmin(L̂), ε = εmachine, and q = q
L̃x

. The 2-norm of the error
x−x′′, when x′′ is computed from the rectangular least-squares problem using a backward-
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stable algorithm, is bounded by

‖x− x′′‖2 ≤ O(λ−1‖q‖2 +λ−1ε‖x‖2 +
λ−2 tanθε‖x‖2

η
+λ−2ε‖q‖2 +

λ−3 tanθε‖q‖2

η
) .

One way of solving the least-squares problem is by constructing and solving the so-
called normal equations. This solution method relies on the fact that the least-squares
minimizer x′ is also the solution of the symmetric positive-definite linear system L̃T L̃x′ =
L̃T (L̃x + q

L̃x
). Even when the normal equations are solved using a backward-stable algo-

rithm, the whole algorithm is not backward stable with respect to the original least-squares
problem. The computed solution satisfies only

‖x′′ − x′‖2

‖x′‖2
= O(κ2(L̂)2εmachine) ,

Because the error bound is much larger in this case (and usually much larger in practice),
this method is usually not recommended.

However, since in our application we can control and estimate κ2(L̂) by adding anchor
points, we can ensure that even the normal-equations forward error is acceptable.

4.6 Algorithms for placing anchor points

We considered two classes of algorithms for placing anchor points. The first algorithm,
which is the one that we use in the experiments, is adaptive and greedy. We begin by plac-
ing one random anchor point and generating a 1-anchor rectangular Laplacian, denoted by
L̃1. We use this matrix to transform the coordinates, we quantize the relative coordinates,
compute an approximation x′′1, and compute the error x− x′′1. We then place the second
anchor at the vertex with the largest visual error, to yield L̃2. We continue iteratively either
until we obtain a satisfactory visual error, or until we place a given number k of anchors.
We can accelerate this method to some extend by adding more anchors at random points,
although the quality of the approximation will probably suffer. However, since typically we
use only a small number of anchors, we found the fully adaptive algorithm to be effective.

Figure 7 visualizes the errors over the mesh. In Figure 7(a) only two anchors are used;
the legs and the head of the horse exhibit some shift, indicated by the strong red and blue
colors. In (c) twenty anchors are used, “nailing” the horse in place. As expected, the errors
are nicely distributed.

It is also possible to devise anchor placement heuristics that select k anchors at once,
and which aim to minimize the congestion-dilation-contention bound. We have not exper-
imented with such heuristics.

5. THE VISUAL QUALITY MEASURE

The geometric error of a lossy mesh compression scheme can be measured by a per-vertex
Euclidean distance Mq(vi) = ‖vi −Q(vi)‖, where Q(vi) is the decompressed position of
vertex vi ∈ R

3. Then the root-mean-square (RMS) error that measures the “physical” dis-
tance between the original mesh and the decompressed mesh is:

Mq =

(
n

∑
i=1

‖vi −Q(vi)‖2

)1/2

.
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(a) (b)

(c) (d)

Fig. 7. Visualization of the visual error across the mesh surface. The surface was re-
constructed from δ -coordinates quantized to 7 bits/coordinate using 2 anchors (a), 4 an-
chors (b) and 20 anchors (c). The anchor points are shown as small red balls. Each vertex
v is colored according to its visual error value Evis(v). We have also added a sign to these
values, so that vertices that move outside of the surface have positive error values (colored
by red), and vertices that move inwards have negative error values (colored by blue). In (d),
the visual error of direct quantization of the Cartesian coordinates is shown.

The Mq measure does not represent the visual quality of the mesh well, since the visual
quality should be more sensitive to the surface local differential properties that define the
surface appearance.

Karni and Gotsman [2000] suggest using a “geometric Laplacian” of a vertex vi, that is,
Sq(vi) = ‖S(vi)−S(Q(vi))‖, where S(vi) is the local differential measure of the smoothness
at vi:

S(vi) = vi −
∑

j∈N(i)
l−1
i j v j

∑
j∈N(i)

l−1
i j

.

In this formula, li j is the Euclidean distance between vi and v j, and N(i) is the set of indices
of the neighbors of vertex vi. Then:

Sq =

(
n

∑
i=1

‖S(vi)−S(Q(vi))‖2

)1/2

.

They further combine Mq and Sq as the visual quality measure:
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Evis = α Mq +(1−α)Sq.

Karni and Gotsman used α = 0.5. While this is a step towards a better visual measure,
we argue that α must be smaller since Sq has a more significant visual effect. This is quite
evident in Figure 9 (see the color section), where the surfaces in the middle column clearly
look visually closer to the original models than the surfaces in the right column. From
our informal empirical experiments, only when α � 0.15, does Evis agree with our per-
ception. We acknowledge that this metric and this particular α value are ad-hoc. Ideally,
compression methods should be evaluated using a quantitative visual measure backed by
psychophysical evidence. Unfortunately, such evidence is not available, so an ad-hoc mea-
sure must be used. Our results can also be evaluated in a visual-metric-independent way
as shown in Figure 9.

This agrees with the claim that our perception is more sensitive to lighting than geome-
try. A lighting distortion model would explain the phenomena depicted in Figure 1. When
the tessellation is finer, the same displacements have more effect on the normals and so the
distortion of the lighting is stronger.

Taubin [1995] shows that the δ -coordinates are an approximation of the vertex normal
for curvature-continuous surfaces, and the norm of the vector of the δ -coordinates is an
approximation of the mean curvature. Thus, quantization of the δ -coordinates provides
direct control over the normals and curvatures, and consequently on the shading of the
model.

It should be emphasized that for various CAD and engineering applications the geomet-
ric distance Mq must be accurate, and no loss of precision can be accepted. Moreover,
defining a visual error that measures the human perception of 3D models is an open prob-
lem. We believe that, just like a similarity metric among shapes, the perception problem
remains open, as it is subjective to the observers. We further discuss this in Section 7.

6. IMPLEMENTATION AND RESULTS

6.1 Quantization and compression

Our technique encodes the geometry of a 3D mesh by quantizing the δ -coordinates. We
now explain how this fits into an overall coding/decoding framework.

We assume that the connectivity of the mesh is first encoded using a state-of-the-art
connectivity encoder [Touma and Gotsman 1998; Alliez and Desbrun 2001]. Since the
Laplacian is a trivial function of the connectivity, this encoding also represents the Lapla-
cian of the mesh.

Next, we attach to the encoding the indices of the k anchor points, which are necessary
for constructing rows n+1, . . . ,n+ k of the k-rectangular Laplacian. This requires k log2 n
bits, which for reasonable values of k is insignificant.

The encoder then transforms the Cartesian coordinates x into δ -coordinates δ = Lx.
These transformed coordinates are quantized and compressed using an entropy-based en-
coder. Finally, we attach to the encoded δ -coordinates the original Cartesian coordinates
of the k anchors, separately quantized and encoded. The compression ratio of the encoding
of the anchors is fairly irrelevant, since k is typically less than one percent of n.

The decoder decompresses the connectivity and geometry data and solves the least-
squares problem to recover an approximation of the Cartesian coordinates from the δ and
anchor coordinates. As explained below, most of the computational effort in a least-squares
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solver involves a preprocessing step that depends only on L̃, but not on the coordinates data.
Therefore, once the connectivity and the indices of the anchors are available to the decoder,
it starts working. The bulk of its efforts can be completed before the compressed geometry
data is available. This behavior allows the decoder to hide the latency of processing the
geometry data.

6.2 Rate-distortion

To evaluate the performance of our scheme we generated a number of rate-distortion curves
comparing our technique to the parallelogram scheme [Touma and Gotsman 1998], which
we denote by TG. The parallelogram scheme is simple and known to perform well, thus,
chosen to represent the general performance of a larger family of traversal-dependent pre-
dictors. The rate-distortion curves (see Figure 8) show the error measures as functions of
the entropy. The entropy is a reasonable estimate of the compression ratios of high quality
predictor-corrector compression schemes. In such schemes, including ours and TG, the
predictors capture virtually all the spatial information in the data. The vector of predictors,
therefore, behaves essentially like a vector of identically-distributed and independent ran-
dom variables. For such vectors, the entropy is a provable lower bound on compression
ratios. In addition, the publication of entropy data allows for an unbiased comparison of
different predictor schemes, whereas actual compression ratios depend on both the predic-
tion scheme and the specific entropy encoding that is used.

Figure 8 shows the curves of the Mq and Sq measures comparing our scheme and TG.
The Sq curves of our scheme are clearly below those of TG, while the Mq curves are
usually above. As argued in Section 5, the Sq measure is more visually important. This is
further supported by Figure 9 in a metric-independent way. The figure shows a series of
pairs of models quantized into about the same entropy by the two approaches. The visual
comparisons are samples of the rate-distortion curves at a given entropy.

The tables in Figures 10 and 11 demonstrate the behavior of our method when different
δ -quantization levels are applied, compared to adding more anchor vertices. Each row of
the table depicts the results when various numbers of anchors are used, for a fixed number
of bits/coordinate.

6.3 Solving least-squares problems

Decompressing a mesh function in our method requires solving a linear least-squares prob-
lem. Fortunately, there are efficient algorithms that can solve such problems very quickly.
In this section we briefly mention some of these algorithms, provide some sample perfor-
mance data, and explain how the quantization and compression methods can be tailored to
ensure fast decompression. For a more complete discussion of algorithms for sparse linear
least-squares problems, see Björck’s monograph [Björck 1996].

Sparse least-squares solvers fall into two categories, direct and iterative. Most direct
solvers factor the coefficient matrix L̃ into a product of an orthonormal matrix Q and an
upper triangular matrix R, L̃ = QR. Once the factorization is computed, the minimizer
x̂ of

∥∥L̃x−b
∥∥

2 is found by solving the triangular linear system of equations Rx̂ = QT b.
This algorithm is backward stable. The matrix R is typically very sparse, although not as
sparse as L̃; it is represented explicitly in such algorithms. In particular, since in our case
the meshes are almost planar graphs and have small vertex separators, R is guaranteed to
remain sparse [George and Ng 1988]. The matrix Q is not as sparse, but it is has a sparse
representation as a product of elementary orthogonal factors [George and Heath 1980;
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George and Ng 1986]. To reduce the work and storage required for the factorization, the
columns of the input matrix L̃ are usually reordered prior to the factorization [Brainman
and Toledo 2002; Davis et al. 2000; George and Ng 1983; Heggernes and Matstoms 1996].

Another class of direct solvers, which is normally considered numerically unstable, uses
a triangular factorization of the coefficient matrix L̃T L̃ of the so-called normal equations.
Once triangular factor R is found (it is mathematically the same R as in the L̃ = QR fac-
torization), the minimizer is found by solving two triangular linear systems of equations,
RT (Rx̂) = L̃T b. This procedure is faster than the QR procedure, but produces less accu-
rate solutions, because solving the normal equations is not backward stable. However, the
accuracy of the solutions depends on the condition number of L̃ (ratio of extreme singular
values), and as we have shown in Section 4.5, the matrix L̃ is well-conditioned thanks to the
anchors, so in this case solving the normal-equations procedure yields accurate solutions.

The running times and storage requirements of direct solvers can be further reduced by
cutting the mesh into patches, as proposed by Karni and Gotsman [Karni and Gotsman
2000], and solving on each patch separately. All the boundary vertices are then considered
anchors, to ensure that the solutions on different patches are consistent. We believe that
this optimization would not be usually needed, and that problems involving entire meshes
can be solved efficiently, but we mention it as a way of handling extremely large cases.
Note that to ensure that the patches are consistent, the k-anchor invertible Laplacian would
need to be used here, not the k-anchor rectangular Laplacian.

In all direct methods, the factorization is computed once and used to solve for multiple
mesh functions. Most of the time is spent in computing the factorization, and the cost of
solving for a minimizer is negligible. Therefore, the cost of decompression using these
methods is almost independent of the number of mesh functions (x, y, z, and perhaps other
information, such as color).

Direct methods are fast. Table I records the solution times for the models used in our
experiments. The table shows the time to decompose the coefficient matrix of the nor-
mal equations into its triangular factors, and the subsequent solution time for one mesh
function. For example, computing the triangular factorization of the horse, a model with
19,851 vertices, took 0.9 seconds on a 2.4 GHz Pentium 4 computer, and solving for a sin-
gle mesh function took 0.032 seconds once the factorization has been computed. The linear
solver that we used for these experiments is TAUCS version 2.2 [Toledo 2003], which uses
internally two additional libraries, ATLAS version 3.4.1 [Whaley et al. 2000] and METIS

version 4.0 [Karypis and Kumar 1998]. TAUCS and METIS were compiled using the Intel
C/C++ compiler version 7.1 for Linux, and ATLAS was compiled using GCC version 2.95.2.
The options to the compilers included optimization options (-O3) and Pentium-4-specific
instructions (-xW for the Intel compiler and inlined assembly language in ATLAS). For
additional performance evaluations of TAUCS, see [Irony et al. 2002; Rotkin and Toledo
2003].

We did not have a code of similar performance for computing the sparse QR factoriza-
tion, but we estimate that it should be about 4–6 times slower.

Even though direct methods are fast, their running times usually scale superlinearly
with the size of the mesh. Iterative solvers least-squares solvers, which do not factor
the coefficient matrix, sometimes scale better than direct methods. Perhaps the most
widely-used least-squares iterative solver is LSQR, which is based on a Krylov bidiag-
onalization procedure [Paige and Saunders 1982b; 1982a]. Other popular solvers in-
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Table I. Running times of solving the linear least-squares systems for the different models. Most time
is spent on the factorization of the coefficient matrix, which can be done during the transmission of the
δ -coordinates. Solving for a single mesh function (x, y or z) takes only a negligible amount of time (see
rightmost column). The experimental setup is described in the text.

Model Number of vertices Factorization (sec.) Solving (sec.)

Eight 2,718 0.085 0.004
Twirl 5,201 0.098 0.006
Horse 19,851 0.900 0.032
Fandisk 20,111 1.091 0.040
Camel 39,074 2.096 0.073
Venus 50,002 3.402 0.112
Max Planck 100,086 7.713 0.240

clude CGLS, a conjugate-gradients algorithm for solving the normal equations [Björck
and Elfving 1979; Elfving 1978], and CRAIG, an error-minimization bidiagonalization
procedure [Craig 1955]; see also [Paige and Saunders 1982b; Saunders 1995].

The convergence of these methods depends on the distribution of the singular values of
the coefficient matrix L̃, as well as on the initial approximation. In our L̃ is always well
conditioned, so we can expect reasonably rapid convergence. Furthermore, the decoder
knows the the values of the mesh function at the anchor vertices. By interpolating these
values at non-anchor vertices, the decoder can quickly produce a good initial approxima-
tion (note, however, that even at the anchor points, the known values of the original mesh
function at the anchors need not coincide with the values of the least-squares minimizer).

The iterative methods mentioned above can be accelerated by using a preconditioner,
(informally, an approximate inverse of L̃). The relationship of our coefficient matrix L̃
to a graph Laplacian can be probably exploited when constructing a preconditioner, since
highly effective preconditioners have been discovered for Laplacians. The most important
classes of preconditioners for Laplacians are algebraic multigrid preconditioners [Brandt
et al. 1984], incomplete Cholesky preconditioners [Gustafsson 1978; Meijerink and van der
Vorst 1977], and more recently, support preconditioners [Boman and Hendrickson 2001;
Chen and Toledo 2003; Vaidya 1991]. For further information about iterative solvers and
preconditioning, see [Axelsson 1994; Saad 1996; Barret et al. 1993], and of course, [Björck
1996].

We have not yet compared the performance of iterative and direct solvers for our ap-
plication, but we expect that for large models, iterative solvers would outperform direct
ones.

For extremely huge systems, the running times and storage requirements of direct solvers
can be further reduced by cutting the mesh into patches, as proposed by Karni and Gots-
man [2000], and solving on each patch separately. All the boundary vertices are then
considered anchors, to ensure that the solutions on different patches are consistent.

6.4 Discussion

Instead of directly pre-quantizing the Cartesian coordinates, one could first compute the
predictions in floating-point precision and then quantize the offsets from the predictions
[Chou and Meng 2002]. A naive implementation of such scheme would result in accumu-
lating error along the traversal path. Therefore, the offsets are rounded in such a way that
after decompression the Mq error is kept bounded.

This method is computationally cheaper than solving a least-squares system, but it does
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Table II. Comparison of the entropies of the offsets using different multi-way predictors. All models
where pre-quantized to 12 bits/coordinate. Clearly, adding more prediction directions makes the prediction
better and lowers the entropy of the offsets.

Model 1-way 2-way 3-way 4-way 5-way 6-way All-way
Eight 16.9212 15.2487 14.3161 14.2064 13.8455 13.5434 13.5285
Horse 15.7501 14.9716 14.2978 13.7994 14.4517 13.2583 13.1568
Fandisk 12.1724 10.7292 9.8037 9.3536 8.8192 8.3925 8.3369
Venus 14.5413 13.4164 12.7131 12.1663 11.7758 11.5464 11.4519
Max Planck 10.2935 8.5432 7.6266 6.8253 6.1680 5.8708 5.7795

not possess the same properties as the Laplacian transform. In particular, the spectrum of
the resulting quantization error will contain high-frequency and not low frequency modes.

Moreover, a predictor that takes into account known locations from many directions,
yields better predictions than that based on only one direction or just few. A prediction
based on the Laplacian uses all possible directions and in general yields better prediction
than the 1-way parallelogram rule. This fact is demonstrated in Table II, where the en-
tropy of the offsets is computed using a single or several known positions. To compute
the entropy of a multi-way predictor, we take several 1-way predictions around the vertex
and average them. The offset is then taken from that averaged prediction. The more di-
rections are used for prediction, the better the prediction is, and the entropy of the offsets
is lower (see also [Gumhold and Amjoun 2003]). However, multi-way predictor cannot
be employed by traversal-dependent schemes. Our δ -coordinates serve in a sense as the
offsets of all-way predictor.

7. OPEN PROBLEMS

Our research raises a number of interesting open problems for future research.

(1) Evaluating lossy mesh-compression methods requires a quantitative visual-quality met-
ric that is widely accepted and agreed upon, but no such metric exists. Ideally, the
validity of such a metric should be established using psychophysic evidence.

(2) Can we compress the quantized δ -coordinates into less space than predicted by their
entropy? Our overall compression scheme relies on a transformation of the vertex
coordinates, quantization, and compression. If the coordinates of nearby mesh ver-
tices remain correlated in some way even after transformation and quantization, the
compressor can probably exploit these correlations to achieve high compression ra-
tios. If there are no remaining correlations, on the other hand, then the entropy of the
quantized transformed coordinates, which is the metric that we reported in this paper,
indeed determines the best possible compression ratio.

(3) Can one rigorously analyze the behavior of the eigenvectors of the Laplacian of 3D
meshes? Our method works because for a vector x of mesh coordinates, the norm of
the Lx tends to be much smaller than the norm of x. This happens because x most
of the energy of x is concentrated in the subspace of Rn that is spanned by the eigen-
vectors of L that correspond to small eigenvalues. But does this always happen? The
answer depends on the relationship between the eigenvectors of the Laplacian and typ-
ical mesh-coordinate vectors. Ben-Chen and Gotsman have done the first step towards
resolving this question [Ben-Chen and Gotsman 2003]. They have shown that under
certain probabilistic assumptions on the shape of 3D meshes, most of the energy of
the mesh-coordinate vectors indeed lies in the subspaces spanned by the small eigen-
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vectors. Another analysis of Laplacian eigenvectors, done by Guattery and Miller in a
completely different context, may provide another perspective on the issue [Guattery
and Miller 2000].

(4) Can one solve the least-squares problems that arise in our method in time linear or
almost linear in the size of the mesh? We have shown reasonably small running times
even for large meshes, but our solution method scales superlinearly. It would be useful
to find solution methods with better scaling. Algebraic multigrid methods can almost
certainly solve the invertible k-anchor Laplacian equations in O(n) work, and we have
begun experiments in that direction. We are not yet sure whether algebraic multigrid
methods can also effectively solve the least-squares problem arising from the rect-
angular Laplacian. Another direction might be an iterative solver, such as LSQR or
CGLS, coupled with an effective preconditioner. In particular, it would be interesting
to know whether graph-theoretical preconditioners, such as support-tree [Gremban
1996; Gremban et al. 1995] and support-graph [Bern et al. 2001; Boman et al. 2001;
Spielman and Teng 2003; Vaidya 1991] preconditioners could be adapted to this task.

8. CONCLUSIONS

This paper addressed the issue of reducing the visual effects of aggressive quantization
of 3D meshes. We argue that low-frequency quantization errors are less distracting than
high-frequency errors. We presented a quantization method that achieves this goal and
results in mostly low-frequency errors. Our approach is in complete contrast to that of
common wisdom and practice, which aims at preserving low-frequency information while
discarding high-frequency data.

While it is true that 3D models often contain high-frequency noise that can be safely
discarded, further aggressive compression should introduce mostly low-frequency errors.
Indeed, models produced by high-resolution input devices are often denoised. Denoising is
basically a sophisticated low-pass filter that preserves important high-frequency features,
such as folds and corners. We claim that the remaining high-frequency data in the model
is an essential part of its visual appearance, and in particular, it is more important to pre-
serve it than to preserve low-frequency data. This is exactly what our quantization method
does. In contrast, most other mesh compression techniques continue to erode the high-
frequency data, which quickly degrades the appearance of the model, but fail to exploit the
insensitivity of the human eye to moderate low-frequency errors.

We feel that it is premature to quantitatively compare the distortion introduced by differ-
ent lossy mesh-compression methods, since none of the proposed visual-error metrics has
yet been convincingly shown to correlate with human perception. We suggest that the spec-
trum of the error is essential for understanding distortion; that moderate low-frequency er-
rors are usually acceptable, whereas high-frequency errors beyond some threshold are not.
Obviously, there are applications and situations in which low-frequency errors are unac-
ceptable, such as mechanical CAD or, for example, almost-touching features. Nonetheless,
we have shown that our method performs well using a visual-quality metric based on the
one introduced by Karni and Gotsman.

Fundamentally, our main contribution is a technique for manipulating 3D models in the
frequency domain. We use this technique to effectively quantize the geometry of models.
Others are using similar techniques in other applications, such as watermarking [Ohbuchi
et al. 2002]. We believe that the ability to manipulate 3D models in the frequency domain
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Fig. 8. Rate distortion curves for five known models. The graphs show the Mq and Sq

measures as functions of the entropy, for δ -coordinates and the TG method.

will find additional applications in the future.
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original Max Planck δ -entropy = 7.6252 Cartesian-entropy = 7.6481
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Fig. 9. Comparison of visual quality of the meshes using δ -coordinates quantization vs.
standard Cartesian coordinates quantization. The original meshes are shown in the left col-
umn, meshes with quantized δ -coordinates in the middle column, and meshes with quan-
tized Cartesian coordinates in the right column. Note that the entropy of the δ -coordinates
is slightly lower than the entropy of parallelogram-prediction displacements, while visu-
ally, the surfaces look closer to the original. Using Evis with α = 0.5 (denoted by E [α=0.5]

vis
),

most models in the right column have a smaller error, while clearly the ones in the middle
column seem to have a better visual quality. Only when using α = 0.15, Evis indeed agrees
with our perception. The error values are given in units of 10−4.
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1 anchor 15 anchors 30 anchors 45 anchors

6 bits

7 bits

8 bits

9 bits

Fig. 10. Visual table of quantization results for the Twirl model (5201 vertices). The
vertical axis corresponds to the number of bits per coordinate used in δ -quantization. The
horizontal axis corresponds to the number of anchor points used.
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20 anchors 60 anchors 200 anchors 400 anchors

2 bits

3 bits

4 bits

5 bits

Fig. 11. Visual table of quantization results for the Camel model (39074 vertices). The
vertical axis corresponds to the number of bits per coordinate used in δ -quantization. The
horizontal axis corresponds to the number of anchor points used.
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