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Abstract. The splitting lemma is one of the two main tools of support theory, a framework
for bounding the condition number of definite and semidefinite preconditioned linear systems. The
splitting lemma allows the analysis of a complicated system to be partitioned into analyses of simpler
systems. The other tool is the symmetric-product-support lemma, which provides an explicit spectral
bound on a preconditioned matrix.

The symmetric-product-support lemma shows that under suitable conditions on the null spaces of
A and B, the finite eigenvalues of the pencil (A, B) are bounded by ‖W‖2

2, where U = V W , A = UUT ,
and B = V V T . To apply the lemma, one has to construct a W satisfying these conditions, and to
bound its 2-norm.

In this paper we show that in all its existing applications, the splitting lemma can be viewed as a
mechanism to bound ‖W‖2

2 for a given W . We also show that this bound is sometimes tighter than

other easily-computed bounds on ‖W‖2
2, such as ‖W‖2

F and ‖W‖1 ‖W‖∞. The paper shows that
certain regular splittings have useful algebraic and combinatorial interpretations. In particular, we
derive six separate algebraic bounds on the 2-norm of a real matrix; to the best of our knowledge,
these bounds are new.
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1. Introduction. Support theory [1, 5] is a set of tools used to bound the con-
dition numbers of preconditioned systems. Support theory employs two devices to
bound the support of a preconditioner: one is the splitting lemma [1, 9], and the
other is the symmetric product support lemma [5]. In this paper we compare bounds
which arise from these two tools, and introduce new bounds.

Conjugate Gradient (CG) is a common iterative algorithm for solving symmetric
positive-definite linear systems Ax = b. Given a symmetric positive-definite matrix A,
the number of iterations needed to reduce the norm of the residual by a constant factor
is bounded by the spectral condition number of A. The spectral condition number
κ(A) is the ratio of the extreme eigenvalues of A, κ(A) = λmax(A)/λmin(A). The
convergence of CG, as well as of many other iterative solvers, can often be improved
by use of a preconditioner B. When using a preconditioner, the number of iterations
needed for convergence is bounded by the condition number of the preconditioned
system, which is the ratio of the extreme finite eigenvalues of the matrix pencil (A, B),
defined as follows.

Definition 1.1. The number λ is a finite generalized eigenvalue of the matrix
pencil (A, B) if there exists a vector x such that Ax = λBx and Bx �= 0.

Support theory [1, 5] is a framework for bounding the condition number of def-
inite and semidefinite preconditioned linear systems. In early support-theory pa-
pers [1, 9], three main tools were used: the support lemma, the splitting lemma and
the congestion-dilation lemma. The support lemma showed how to bound the fi-
nite eigenvalues of (A, B) in terms of a number σ(A, B) called the support of (A, B).
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The splitting lemma shows that σ(A, B) ≤ maxi σ(Ai, Bi), where A =
∑

i Ai and
B =

∑
i Bi. The congestion-dilation lemma showed how to directly bound σ(Ai, Bi)

when Ai and Bi are particularly simple: when the graph of Ai consists of a single
edge, and the graph of Bi is a simple path between that edge’s endpoints1. In these
early papers all the matrices involved had to be diagonally dominant, but that is
irrelevant for our paper. In essence, the splitting lemma allowed a complex problem
to be broken into simple parts, and the congestion-dilation lemma allowed each part
to be analyzed.

Boman and Hendrickson later presented support theory in a completely algebraic
framework, which does not refer to graphs, paths, and so on [5]. Their framework still
used the support lemma, but they replaced much of the rest with a single powerful
lemma, the symmetric-product-support lemma. This lemma shows that under suitable
conditions on the null spaces of A and B, the finite eigenvalues of the pencil (A, B)
are bounded by ‖W‖2

2, where U = V W , A = UUT , and B = V V T . To apply the
lemma, one has to construct a W satisfying these conditions, and to bound its 2-
norm. They also show that the bounds that were previously derived by the splitting
and congestion-dilation lemmas can be directly obtained by applying their new lemma
together with the norm bound ‖W‖2

2 ≤ ‖W‖1 ‖W‖∞. It seemed that the splitting
lemma was no longer useful.

However, recent results by Spielman and Teng again used the splitting lemma [14,
16]. What, then, is the role of the splitting lemma in the Boman-Hendrickson
symmetric-product-support framework? This paper shows that in all its existing ap-
plications [1, 9, 14, 16], the splitting lemma can be viewed as a mechanism to bound
‖W‖2

2 for a given W . We also show that this bound is sometimes tighter than other
easily-computed bounds on ‖W‖2

2, such as ‖W‖2
F and ‖W‖1 ‖W‖∞.

We also show that certain regular splittings have useful combinatorial interpre-
tations. These interpretations can be exploited to construct and analyze graph algo-
rithms for constructing preconditioners, such as the algorithms in [3, 9, 14, 16, 17].
In particular, one of these interpretations was used, with a different proof, in [14].

Path embeddings have also been used to bound the smallest nonzero eigenvalue of
Laplacian matrices. To do so, one embeds the complete graph in the target graph. Our
bounds apply to embeddings of arbitrary graphs, so they are more general. However,
special cases of some of our bounds have already been discovered in the more restricted
case [7, 10, 11, 12, 13].

This paper is organized as follows. The next section describes the basic re-
sults of support theory. Section 3 proves the splitting lemma and shows that the
symmetric-product-support lemma implies it. Section 4 describes our main technical
tools, orthonormal stretchings and fractional splittings. Section 5 proposes two split-
ting heuristics and shows that they lead to new algebraic and combinatorial bounds
on the 2-norm of a matrix. Section 6 shows two additional bounds on the 2-norm.
Section 7 quantifies the behavior of each one of the new norm bounds on an exam-
ple. In particular, the example shows that the different bounds can be asymptotically
different, some tight and some loose. Section 8 presents our conclusions.

2. Background. This section provides key definitions and known lemmas that
we use in the rest of the paper. We start with the definition of support and with the
support lemma.

1The graph GA of an n-by-n symmetric matrix A is a weighted graph G = (V, E, w), where
V = {1, 2, . . . , n}, E = {(i, j) : Aij �= 0}, and the weight of an edge w(i, j) is w(i, j) = −Aij .
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2.1. Support. Definition 2.1. The support σ(A, B) of a matrix pencil (A, B)
is the smallest number τ such that τB−A is positive semidefinite. If there is no such
number, we take σ(A, B) = ∞.

The importance of support numbers stems from the following lemma:
Lemma 2.2. (Support Lemma [9]) If λ is a finite generalized eigenvalue of (A, B)

and B is positive semidefinite and null(A) ⊆ null(B), then λ ≤ σ(A, B). When
σ(A, B) is finite, the bound is tight.

Next, we state the key result in Boman and Hendrickson’s support framework.
Lemma 2.3. (Symmetric-product-support lemma [5]) Suppose U ∈ R

n×k is in the
range of V ∈ R

n×p. Then

σ
(
UUT , V V T

)
= min

W
‖W‖2

2 subject to V W = U .

2.2. Combinatorial Interpretations of Support Bounds. Lemma 2.3 is
often used after factoring the n-by-n coefficient matrix A into A = UUT , where
U is n-by-m and the preconditioner B into B = V V T , where V is n-by-k (note
that there are no special conditions on V and U ; they need not be triangular or
orthogonal). Typically, the columns of U are edge vectors [3], i.e. each column of
U corresponds to one off-diagonal in the matrix A. Similarly, each column of V
corresponds to one off-diagonal of B. This particular factorization is used when A
and B are symmetric diagonally-dominant (SDD) matrices. A matrix A that can be
decomposed into A = UUT where U has at most two nonzeros per column is called
a factor-width-2 matrix; the properties of such matrices have been explored in [4, 6].
When A is factor-width-2 and has nonpositive offdiagonal entries, it is often called a
weighted Laplacian matrix.

When A is decomposed into A = UUT in this way, every column of U corresponds
to an edge in the graph GA of A or to a vertex in GA, and similarly for B = V V T . In
this case, any matrix W satisfying U = V W can be seen as an embedding of GA in GB .
Suppose that column j of U is an edge vector in GA (otherwise it is a vertex vector).
Then U:,j = V W:,j (we use Matlab notation, in which a colon represents all the
possible indices). The nonzero entries in W:,j specify a set of edge and vertex vectors
in V . We say that the edge in GA is embedded into this set of edges and vertices in
GB. In some support preconditioners, the embedding is always of edges into simple
paths and vertices into single vertices [1, 9, 17]. In other support preconditioners,
some edges are embedded into up to two cycles and up to two paths [3].

In fact, the analysis of the preconditioner usually goes in the other direction.
One first shows that given A and B, there exists a “good” embedding of GA into
GB. Then, from this embedding, one shows how to construct W . Finally, some
bound on ‖W‖2

2 is proven, and this bounds the finite spectrum of the preconditioned
system. Common bounds on ‖W‖2

2 that have been used in support preconditioners
are ‖W‖2

2 ≤ ‖W‖1 ‖W‖∞, which has been used implicitly in [1, 3, 9, 17], and ‖W‖2
2 ≤

‖W‖2
F , which is used in [2]. In this setup, a good embedding is one that leads to a

small norm bound, that is, to a small value for ‖W‖1 ‖W‖∞ or ‖W‖2
F .

When W is an embedding of edges into simple paths and of vertices into vertices,
the two bounds ‖W‖2

2 ≤ ‖W‖1 ‖W‖∞ and ‖W‖2
2 ≤ ‖W‖2

F have useful combinatorial
interpretations. The first can be interpreted as product of the worst dilation of a
path times the worst congestion through an edge of GB. Here the dilation of a path
π between the endpoints of an edge e ∈ GA is defined to be

∑
e′∈π |We′,e|. The

congestion through an edge e′ ∈ GB is defined to be
∑

e : e′∈π(e) |We′,e|, where π(e)
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is the path that embeds e. The bound ‖W‖2
2 ≤ ‖W‖2

F can be interpreted as the
sum of all the dilations of all the paths, but with a different definition for dilation,∑

e′∈π W 2
e′,e.

2.3. The Splitting Lemma. We now state formally the Splitting Lemma,
which is the focus of this paper.

Lemma 2.4. (The Splitting Lemma) Let A = A1 + A2 + . . . + Aq and let B =
B1 + B2 + . . . + Bq. If all Ai and Bi are symmetric positive semidefinite, and if for
each i, Ai is in the range of Bi, then σ(A, B) ≤ maxi σ(Ai, Bi).

Typically, this lemma is used by decomposing A into a sum of rank-1 matrices,
each corresponding to one off-diagonal, and by decomposing B into path matrices,
matrices that can be symmetrically permuted to a tridiagonal form, and which have
only one nonzero irreducible block.

In the rest of this paper, we focus on symmetric positive semidefinite matrices,
but we do not assume that they are diagonally-dominant (unless specified otherwise).

3. The Symmetric Product Support Lemma Implies the Splitting Lemma.
What is the relationship of the splitting lemma to the symmetric-product-support
lemma? In this section we begin the study of this question. This section shows
that the splitting lemma is weaker, in the sense that the symmetric-product-support
lemma implies the splitting lemma. The following proof proves Lemma 2.4 using a
straightforward application of the symmetric-product support lemma.

Proof. Let Ai = UiU
T
i and Bi = ViV

T
i be arbitrary symmetric-product decom-

positions of Ai and Bi. Such a decomposition always exists, given our assumption
that both matrices are symmetric positive semidefinite. For example, we can use the
scaled eigenvectors of Ai as the columns of Ui, where the scaling is by the square root
of the corresponding eigenvalue, and similarly for Bi. Let US be the concatenation of
U1, U2, . . . , Uq and VS be the concatenation of V1, V2, . . . , Vq. That is,

US =
(

U1 U2 U3 · · · Uq

)
,

and similarly for VS . Then USUT
S =

∑
i UiU

T
i =

∑
i Ai = A, and VSV T

S = B.

By the assumption that Ai is in the range of Bi, the factor Ui must be in the
range of Vi. Therefore, there exists a Wi such that Ui = ViWi.

Let Ŵi be the minimizer of minWi ‖Wi‖2 subject to Ui = ViWi. By the Symmetric-

Product Support lemma, σ(Ai, Bi) =
∥∥∥Ŵi

∥∥∥2

2
.

Let

W =




Ŵ1

Ŵ2

. . .
Ŵq


 .
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We claim that VSW = US .

VSW =
(

V1 V2 V3 · · · Vq

)



Ŵ1

Ŵ2

. . .
Ŵq




=
(

V1Ŵ1 V2Ŵ2 V3Ŵ3 · · · VqŴq

)
=
(

U1 U2 U3 · · · Uq

)
= US

The norm of W is equal to maxi

∥∥∥Ŵi

∥∥∥, so by the Symmetric-Product Support

Lemma it follows that σ(A, B) ≤‖W‖2
2=maxi

∥∥∥Ŵi

∥∥∥2

2
= maxi σ(Ai, Bi).

4. Splitting and Stretching. In this section we show a deeper connection be-
tween splitting and the symmetric-product-support lemma. We begin by defining an
operation called orthonormal stretching, which allows us to obtain one symmetric-
product-support triplet from another. We then show that an important class of
splittings, the one which has been used almost exclusively in applications, can be
interpreted as an orthonormal stretching. That is, splitting is usually a way to obtain
one symmetric-product-support triplet from another, and in particular, to obtain a
triplet in which computing ‖W‖2 is easy.

4.1. Orthonormal Stretching. The orthonormal stretching of a symmetric-
product-support triplet (U, V, W ) is a pair of matrices (S, W̃ ): a k-by-k̃ matrix S
with orthonormal rows (SST = I), and a matrix W̃ such that W = SW̃ .

Why is stretching important for support theory? Because, as the next lemma
shows, the triplet (U, V S, W̃ ) is also a symmetric-product-support triplet, because var-
ious norms of W̃ bound the corresponding norms of W and because σ(UUT , V V T ) ≤∥∥∥W̃∥∥∥2

2
.

Therefore, orthonormal stretching is useful when it allows us to take a symmetric-
product-support triplet (U, V, W ), for which bounding the norm of W is difficult, and
obtain a new triplet (U, V S, W̃ ), for which bounding the norm of W̃ is easier. The
norm of W̃ still bounds σ(UUT , V V T ), which in turn bounds the spectrum of the
preconditioned linear system.

Lemma 4.1. Let U = V W , and let S and W̃ be an orthonormal stretching of
(U, V, W ), so W = SW̃ . Then, using the notation Ṽ = V S, the following hold:

1. Ṽ Ṽ T = V V T

2. V = Ṽ ST

3. U = Ṽ W̃
4. ‖W‖2 ≤

∥∥∥W̃∥∥∥
2

5. ‖W‖F ≤
∥∥∥W̃∥∥∥

F

6. ‖W‖∞ ≤
√

k̃
∥∥∥W̃∥∥∥

∞
, where k̃ is the number of columns in S.

7. ‖W‖1 ≤
√

k̃
∥∥∥W̃∥∥∥

1
Proof. Most of the claims are nearly trivial.
1. Ṽ Ṽ T = (V S)(ST V T ) = V (SST )V = V V T
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2. V = V I = V (SST ) = (V S)ST = Ṽ ST

3. U = V W = V (SW̃ ) = (V S)W̃ = Ṽ W̃

4. ‖W‖2 =
∥∥∥SW̃

∥∥∥
2
≤ ‖S‖2

∥∥∥W̃∥∥∥
2

=
∥∥∥W̃∥∥∥

2
, because ‖S‖2 = 1.

5. To show that ‖W‖F ≤
∥∥∥W̃∥∥∥

F
, we need only compare each column of W to

the corresponding column in W̃ . Let wj (w̃j) be column j of W (of W̃ ).
Then wj = Sw̃j , so ‖wj‖2 = ‖Sw̃j‖2 ≤ ‖S‖2 ‖w̃j‖2 = ‖w̃j‖2 . Since the norm
of each column of W̃ is greater or equal to the norm of the corresponding
column of W , ‖W‖F ≤

∥∥∥W̃∥∥∥
F
.

6. Since W = SW̃ , we have ‖W‖∞ =
∥∥∥SW̃

∥∥∥
∞

≤ ‖S‖∞
∥∥∥W̃∥∥∥

∞
. We prove the

claim by bounding the ∞-norm of S, ‖S‖∞ = maxi

∑k̃
j=1 |Sij |. Each row in

S is a size-k̃ vector with unit norm. Let sum(v) be the sum of the absolute
values of the entries of a vector v. It is easy to show that the maximum of
sum(v), over all the vectors v with norm 1, is obtained when all the entries of v
are equal. The sum of the entries, for the maximal vector, is the square root of
the size of the vector. Therefore, for any row i of S we have

∑k̃
j=1 |Sij | ≤

√
k̃,

so ‖S‖∞ ≤
√

k̃, which proves the claim.
7. Let S′ be a completion of S to a k̃-by-k̃ orthonormal matrix. Then ‖S‖1 ≤

‖S′‖1 because

‖S‖1 = max
j

k∑
i=1

|Sij | = max
j

k∑
i=1

∣∣S′
ij

∣∣ ≤ max
j

k̃∑
i=1

∣∣S′
ij

∣∣ = ‖S′‖1 .

An equivalent argument to that of claim 6 shows that ‖S′‖1 ≤ k̃, which proves
the claim.

But how do we find a useful orthonormal stretching (S, W̃ ), a stretching for which
the norm of W̃ is easy to bound? The next part of this section shows that in many
cases, splitting can be interpreted as such a stretching.

4.2. Orthonormal Stretching Via Fractional Splitting. In this section we
explain the connection between the orthonormal stretching and splitting.

Definition 4.2. A splitting set for an n-by-m matrix U and an n-by-k matrix
V is a set D1, D2, . . . , Dm of k-row matrices satisfying

• ∑m
j=1 DjD

T
j = I, and

• for each j, U:,j is in the range of V Dj.

Lemma 4.3. Let D1, D2, . . . , Dm be a splitting set for U and V . Then Aj =
(U:,j) (U:,j)

T and Bj = (V Dj) (V Dj)
T is a splitting of A = UUT and B = V V T in

the sense of the splitting lemma. That is, A =
∑m

i=1 Ai, B =
∑m

i=1 Bi, and each Ai

is in the range of Bi.
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Proof. Clearly A =
∑m

j=1 Aj . The sum of the Bj ’s satisfies

m∑
j=1

Bi =
m∑

j=1

(V Dj) (V Dj)
T

=
m∑

j=1

V DjD
T
j V T

= V


 m∑

j=1

DjD
T
j


V T

= V V T

= B .

Since for each j, U:,j is in the range of V Dj , each Aj is in the range Bj .
A splitting set can be difficult to construct, due to the second condition in its

definition. But a W satisfying U = V W offers an opportunity to create a special
family of splitting sets.

Definition 4.4. Let U be an n-by-m matrix, V an n-by-k matrix, and W a
k-by-m matrix such that U = V W . A fractional splitting set for U , V , and W is a
set of k-by-k diagonal matrices D1, D2, . . . , Dm satisfying the following conditions.

• The indices of the nonzero diagonal entries in Dj is the set {i : Wi,j �= 0}.
• ∑m

j=1 DjD
T
j = I.

Lemma 4.5. A fractional splitting set is a splitting set.
Proof. We need to show that for each j, U:,j is in the range of V Dj . Let D+

j be
the Moore-Penrose pseudo-inverse of Dj . Since Dj is diagonal, D+

j is also diagonal,
with

(
D+

j

)
ii

=
{

(Dj)
−1
ii (Dj)ii �= 0

0 otherwise

(see, for instance, [8, Section 5.5.4]). The matrix DjD
+
j is diagonal with zeros and

ones on the diagonal, with ones in positions that correspond to nonzeros in W:,j .
Therefore, DjD

+
j W:,j = W:,j , so V DjD

+
j W:,j = V W:,j. Therefore,

V Dj

(
D+

j W:,j

)
= V W:,j

= U:,j ,

which proves the claim.
We now show that a fractional splitting set defines not only a splitting of A and

B, but also an orthonormal stretching of V and W . We begin by showing how to
derive S from the Dj ’s.

Lemma 4.6. Let D1, D2, . . . , Dm be a splitting set. Then the concatenation S of
the Dj’s, S =

(
D1 D2 D3 · · · Dm

)
has orthonormal rows (the concatenation

matrix S consists of the columns of D1 followed by the columns of D2, and so on).
Proof. SST =

∑m
j=1 DjD

T
j = I.

Clearly, the proof of the previous lemma only relies on one of the two conditions
that splitting sets must satisfy.

Next, we show how to construct W̃ . The example in the beginning of Section 5
illustrates this construction.
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Lemma 4.7. Let D1, D2, . . . , Dm be a fractional splitting set for some U , V , and
W , and let S be defined as in Lemma 4.6. Let

W̃:,j =
(

0 ; 0 ; · · · 0 ; D+
j W:,j ; 0 ; · · · 0 ; 0

)
,

where 0 denotes the k-by-1 zero vector. (We use the Matlab notation: a semicolon
denotes stacking blocks, so (A ; B) = (AT BT )T .) That is, in the first column of
W̃ the first k elements are D+

1 W:,1 and the rest are zeros. The second column of W̃
starts with k zeros, then the elements of D+

2 W:,2, followed by zeros, and so on. Then
W = SW̃ .

Proof. We prove the lemma column by column,(
SW̃

)
:,j

= SW̃:,j

=
(

D1 D2 · · · Dj−1 Dj Dj+1 · · · Dm−1 Dm

)




0
0
...
0

D+
j W:,j

0
...
0
0




=


∑

i�=j

Di · 0

+ DjD

+
j W:,j

= 0 + W:,j .

An important benefit of using a fractional splitting to define an orthonormal
stretching (S, W̃ ) is that the 2-norm of W̃ is easy to compute.

Lemma 4.8. Let (S, W̃ ) be an orthonormal stretching defined by a fractional
splitting as in Lemmas 4.6 and 4.7. Then∥∥∥W̃∥∥∥

2
=

m
max
j=1

∥∥∥W̃:,j

∥∥∥
2

.

Proof. By the construction of W̃ given in Lemma 4.7 it is clear that its columns
are orthogonal.

In general, splittings and symmetric products are not isomorphic. A splitting
A =

∑
Ai and B =

∑
Bi does not define symmetric products A = UUT and B =

V V T , not even implicitly. Also, a symmetric-product-support triplet does not define
a splitting. But we have shown that an important class of splittings does define
an orthonormal stretching, a way to get one symmetric-product-support triplet from
another.

In most of the applications of the splitting lemma [9, 1, 14, 16], there is also
a symmetric-product representation of A and B, a representation using edge and
vertex vectors, and an implicit W . Furthermore, in these applications, the splitting
of A and B can almost always be interpreted as a fractional splitting set D1, . . . , Dm
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of the symmetric-product factors U and V . In all of these cases, the splitting can be
interpreted as an orthonormal stretching of a symmetric-product-support triplet.

Before we conclude this section, we show that for orthonormal stretchings derived
from fractional splitting sets, one of the norm-bounds on W̃ can be tightened.

Lemma 4.9. Let (S, W̃ ) be an orthonormal stretching of (U, V, W ), derived from
a fractional splitting set, as defined in Lemmas 4.6 and 4.7. Then ‖W‖1 ≤

∥∥∥W̃∥∥∥
1
.

Proof. We show that ‖S‖1 ≤ 1. By definition, ‖S‖1 = maxj

∑k
i=1 |Sij |. By the

construction of S in Lemma 4.6, each column of S is a column of one of the Dj ’s.
Each column of Dj has exactly one nonzero. Because

∑
j DjD

T
j = I, that nonzero

must be no larger than 1 in absolute value. Therefore, each column of S has exactly
one nonzero no larger than 1 in absolute value, which proves the claim that ‖S‖1 ≤ 1.

Therefore ‖W‖1 =
∥∥∥SW̃

∥∥∥
1
≤ ‖S‖1

∥∥∥W̃∥∥∥
1
≤
∥∥∥W̃∥∥∥

1
.

Note that whenever each column of S has a single nonzero, ‖W‖1 ≤
∥∥∥W̃∥∥∥

1
,

even if W̃ was not derived from a fractional splitting set. In particular, the 1-norm
bound given in the previous lemma may hold even when the columns of W̃ are not
orthogonal. When (S, W̃ ) are obtained from a fractional splitting set, the bound
‖W‖2

2 ≤ ‖W‖1 ‖W‖∞ ≤
√

k̃
∥∥∥W̃∥∥∥

1

∥∥∥W̃∥∥∥
∞

is not particularly useful, because we can

directly compute
∥∥∥W̃∥∥∥

2
. But in more general cases this bound may be useful.

5. How to Split. The choice of Dj ’s in a fractional splitting can have a profound

influence on how close
∥∥∥W̃∥∥∥

2
is to ‖W‖2. We use a fractional splitting because

∥∥∥W̃∥∥∥
2

is easy to compute and it bounds ‖W‖2. In this section we show that a poor choice

of Dj’s can lead to
∥∥∥W̃∥∥∥

2
being so large that it teaches us nothing about ‖W‖2.

We also suggest two simple and efficient heuristics to find splittings with a small∥∥∥W̃∥∥∥. From one of these heuristics we obtain two combinatorial bounds on support
preconditioners; one of these bounds was already suggested in a more general form
by Spielman and Teng [14] using an entirely different proof, and the other is new.

5.1. An Example. We first show that if the choice of splitting is poor, then the
resulting norm bound is useless. Let

A =


 2 −1 −1

−1 2 −1
−1 −1 2


, U =


 1 0 1

−1 1 0
0 −1 −1




B =


 1 −1 0

−1 2 −1
0 −1 1


, V =


 1 0

−1 1
0 −1


 .

To complete U and V to a symmetric-product-support triplet, we use

W =
(

1 0 1
0 1 1

)
.

The 2-norm of W is ‖W‖2 =
√

3.
We now split A and B using the following fractional support set,

D1 =
(

ε 0
0 0

)
,D2 =

(
0 0
0 1/

√
2

)
,D3 =

( √
1 − ε2 0
0 1/

√
2

)
,
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where ε > 0 is small. Therefore,

S =
(

D1 D2 D3

)
=
(

ε 0 0 0
√

1 − ε2 0
0 0 0 1/

√
2 0 1/

√
2

)
.

We now construct W̃ according to lemma 4.7, starting with the pseudo-inverses,

D+
1 =

(
1/ε 0
0 0

)
,D+

2 =
(

0 0
0

√
2

)
, D+

3 =
(

1/
√

1 − ε2 0
0

√
2

)
,

so

W̃ =




1/ε
0

0√
2

1/
√

1 − ε2√
2




.

For small ε,
∥∥∥W̃∥∥∥

2
= 1/ε is arbitrarily large, so it is not a useful bound on ‖W‖2 =

√
3.

Clearly, ε = 1/
√

2 is a better choice than a small ε, yielding a
∥∥∥W̃∥∥∥

2
= 2, still not

completely tight, but better. In this case, a fractional splitting can actually achieve∥∥∥W̃∥∥∥
2

= ‖W‖2 =
√

3. Let

S =
( √

1/3 0 0 0
√

2/3 0
0 0 0

√
1/3 0

√
2/3

)
,

so

W̃ =




√
3

0
0√
3 √

3/2√
3/2




=




√
3 0 0

0 0 0
0 0 0
0

√
3 0

0 0
√

3/2
0 0

√
3/2




.

(We show W̃ twice, with and without all the zeros, to emphasize the structure of its
columns.) Still, the ε-example shows that a poor splitting yields useless bounds.

5.2. The Rowwise Heuristic . When W = SW̃ , row i in W is a linear com-
bination of a set of rows in W̃ , where the coefficients of the linear combinations come
from row i in S. When (S, W̃ ) is an orthonormal stretching derived from a fractional
splitting set, the row sets that combine to form rows of W are disjoint. This is a con-
sequence of the fact that columns in S have no more than a single nonzero. Therefore
such stretchings map disjoint sets of rows of W̃ to the rows of W .

The first heuristic that we propose finds a fractional splitting that ensures that
the 2-norm of each nonzero row of W̃ that maps onto row i in W is exactly ‖Wi,:‖2.
This ensures, in a heuristic way, that W̃ is not too large.

Here is another way to interpret this heuristic. Under an orthonormal stretching
derived from a fractional splitting set, each nonzero in W is mapped into a nonzero in
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W̃ . The rowwise heuristic ensures that all the nonzeros in W̃ that map to nonzeros
in row i of W have the same magnitude.

Lemma 5.1. Let us define m diagonal matrices, such that the (i, i) value in the
j-th matrix is

(Dj)i,i =
Wi,j

‖Wi,:‖2

.

Then the Dj’s are a fractional splitting set for W .
Proof. Clearly, the indices of the nonzero diagonal entries in Dj is the set

{i : Wi,j �= 0}.
We need to show that

∑m
j=1 DjD

T
j = I. A sum of diagonal matrices is also diag-

onal. Therefore,
∑m

j=1 DjD
T
j =

∑m
j=1 D2

j is diagonal. We need only show that each
diagonal entry in

∑m
j=1 D2

j is 1. By definition, the (i, i) entry in Dj is Wi,j/ ‖Wi,:‖2.
The (i, i) entry in

∑m
j=1 D2

j is

m∑
j=1

W 2
i,j

‖Wi,:‖2
2

=
1

‖Wi,:‖2
2

·
m∑

j=1

W 2
i,j =

1
‖Wi,:‖2

2

· ‖Wi,:‖2
2 = 1 .

We now prove that this splitting preserves the 2-norm of rows in W . We need
the following notation: η(i, j) = (j − 1) · k + i (for 1 ≤ i ≤ k and 1 ≤ j ≤ m). Matrix
S is a concatenation of the Dj matrices. Therefore, S is a concatenation of m k-by-k
matrices. η(i, j) is the index of the column in S corresponding to the i-th column in
Dj .

Lemma 5.2. Let W̃ be an orthonormal stretching of W derived using the rowwise
fractional-splitting heuristic. If Wi,j �= 0, then

∥∥∥W̃η(i,j),:

∥∥∥
2

=
∣∣∣(D+

j W:,j

)
i

∣∣∣ = ‖Wi,:‖2.

Therefore, the norm of each nonzero row in W̃ is the norm of some row in W , and
for each row in W , there is at least one row with the same norm in W̃ .

Proof. Rows in W̃ have at most a single nonzero, when W̃ is constructed from a
fractional splitting. Therefore, for each nonzero row, the norm of a row is the absolute
value of the single nonzero element in that row (the norm of a zero row is zero). All
nonzeros in column j of W̃ are entries of D+

j W:,j . Therefore, for each 1 ≤ i ≤ k and

1 ≤ j ≤ m,
∥∥∥W̃η(i,j),:

∥∥∥
2

=
∣∣∣(D+

j W:,j

)
i

∣∣∣ . If Wi,j �= 0, then (Dj)i,i = Wi,j/ ‖Wi,:‖2 �= 0.

Therefore
(
D+

j

)
i,i

= ‖Wi,:‖2 /Wi,j and thus:

(
D+

j W:,j

)
i
=
(
D+

j

)
i,i

· Wi,j

=
‖Wi,:‖2

Wi,j
· Wi,j

= ‖Wi,:‖2 .

This proves the lemma, because∥∥∥W̃η(i,j),:

∥∥∥
2

=
∣∣(D+

j W:,j)i

∣∣ = ‖Wi,:‖2 .

We now prove a new bound on ‖W‖2, a bound which we later show has a useful
combinatorial interpretation.
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Lemma 5.3. Let W be a k-by-m real matrix. Then

‖W‖2
2 ≤ max

j

∑
i : Wi,j �=0

‖Wi,:‖2
2 = max

j

∑
i : Wi,j �=0

m∑
c=1

W 2
i,c .

Proof. We stretch W orthonormally using the rowwise fractional-splitting heuris-

tic. Then ‖W‖2
2 ≤

∥∥∥W̃∥∥∥2

2
, and the columns of W̃ are orthogonal, so

∥∥∥W̃∥∥∥2

2
= max

j

∥∥∥W̃:,j

∥∥∥2

2
.

All that remains to show is that
∥∥∥W̃:,j

∥∥∥2

2
=
∑

i : Wi,j �=0

∑m
c=1 W 2

i,c.

∥∥∥W̃:,j

∥∥∥2

2
=
∥∥D+

j W:,j

∥∥2

2

=
k∑

i=1

(
D+

j W:,j

)2
i

=
∑

i : Wi,j �=0

‖Wi, : ‖2
2 .

The last equality is by lemma 5.2.
Lemma 5.4. Let W be a k-by-m real matrix. Then

‖W‖2
2 ≤ max

i

∑
j : Wi,j �=0

‖W:,j‖2
2 = max

i

∑
j : Wi,j �=0

k∑
r=1

W 2
r,j .

Proof. The previous lemma, applied to WT , proves the claim, since
∥∥WT

∥∥
2

=
‖W‖2.

5.3. A Combinatorial Interpretation and the Spielman-Teng Bound.
Given a symmetric-product-support triplet (U, V, W ), a column of W can be viewed
as an embedding of a column of U into the columns of V , since U:,j = V W:,j . The
nonzero elements in the column of W specify a generalized path in V that supports
the column in U . When U and V have at most two nonzeros per column, (that is,
UUT and V V T have factor-width 2), they can be viewed as the weighted incidence
matrices of GUUT and GV V T . In that case, a generalized path defined by a column
of W is, indeed, an edge set, although this edge set may not form a simple path. We
now define the dilation of a path that supports a column of U , and the congestion
caused by the paths that utilize a column of V .

Definition 5.5. Let (U, V, W ) be a symmetric-product-support triplet. We say
that column i in V supports column j in U if Wi,j �= 0. The 2-dilation of a column
j in U is

dil2(U, V, W, j) = dil2(j) = ‖W:,j‖2
2 .

The 2-congestion of a column i in V is

cong2(U, V, W, i) = cong2(i) = ‖Wi,:‖2
2 .
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These definitions, together with Lemmas 5.3 and 5.4, give the following results.
Lemma 5.6. Let (U, V, W ) be a symmetric-product-support triplet. Then

‖W‖2
2 ≤ max

j

∑
i supports j

cong2(i) .

The next lemma is a special case of the Spielman-Teng Support Theorem [14,
Theorem 2.1]. Their proof technique, however, is different. The result stated in
Lemma 5.6 is, to the best of our knowledge, new.

Lemma 5.7. Let (U, V, W ) be a symmetric-product-support triplet. Then

‖W‖2
2 ≤ max

i

∑
i supports j

dil2(j) .

5.4. The Frobenius Heuristic. Another approach to fractionally splitting W
is to minimize the Frobenius norm of W̃ . The Frobenius heuristic defines m diagonal
matrices, such that the (i, i) value in the j-th matrix is

(Dj)i,i =

√|Wi,j |√∑m
c=1 |Wi,c|

.

Lemma 5.8. The preceding definition of the Dj’s defines a fractional splitting
set.

Proof. As in Lemma 5.1, we need to prove that
∑m

j=1 DjD
T
j = I. Matrix∑m

j=1 DjD
T
j =

∑m
j=1 D2

j , being the sum of diagonal matrices, is also diagonal. We
need only show that each diagonal entry in

∑m
j=1 D2

j is 1. By definition, the (i, i)
entry in Dj is

√|Wi,j |/
√∑m

c=1 |Wi,c|. The (i, i) entry in
∑m

j=1 D2
j is

m∑
j=1

|Wi,j |∑m
c=1 |Wi,c| =

1∑m
c=1 |Wi,c| ·

m∑
j=1

|Wi,j | = 1 .

Lemma 5.9. The Frobenius heuristic minimizes
∥∥∥W̃∥∥∥

F
over all fractional split-

tings of W .
Proof. We prove the lemma in two steps. We first show that the minimization

problem can be broken up into k separate problems, each involving one row of S and
one row of W . We then show that the Frobenius heuristic minimizes the contribu-
tion of each row to

∥∥∥W̃∥∥∥
F
, and is, hence, an optimal Frobenius-norm minimization

strategy.
The nonzero elements of W̃ are the nonzero elements of the vectors D+

j W:,j for
j = 1, . . . , m. The i-th element of the vector D+

j W:,j is
(
D+

j

)
i,i

Wi,j . If Wi,j = 0 then(
D+

j

)
i,i

Wi,j = 0, otherwise
(
D+

j

)
i,i

Wi,j = Wi,j/ (Dj)i,i.

Therefore, the Frobenius norm of W̃ is

∥∥∥W̃∥∥∥2

F
=

m∑
j=1

∑
i:Wi,j �=0

(
Wi,j

(Dj)i,i

)2

.
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In this double sum, the outer summation is over columns of W̃ , and inner summation
is over the nonzeros in a particular column. Each nonzero of W appears exactly once
in the summation. We can change the order of summation so that we sum over rows
of W ,

∥∥∥W̃∥∥∥2

F
=

k∑
i=1

m∑
j=1

Wi,j �=0

(
Wi,j

(Dj)i,i

)2

. (5.1)

To minimize the Frobenius norm, we minimize this sum subject to the constraints

m∑
j=1

Wi,j �=0

(Dj)
2
i,i = 1 for all i = 1, . . . , k .

Since we have a separate constraint for each one of the inner sums in Equation 5.1
(for each row of W ), the global minimum of the Frobenius norm is achieved when
each one of the inner sums is minimized.

We now turn to the second part of the proof, showing that the heuristic does
minimize each inner sum. The inner sum minimization is equivalent to finding the
vector (x1, . . . , xm) that minimizes

∑m
i=1(ci/xi)2 subject to

∑m
i=1 x2

i = 1. The vector
c corresponds to the nonzero elements in the ith row of W and the vector x to the
corresponding elements of S. We prove by induction on m that the minimum is
(
∑

ci)
2 and that it is achieved at

xi =

√|ci|√∑m
j=1 |cj |

.

The inductive claim is actually slightly stronger. We prove that when the constraint
is replaced by

∑m
i=1 x2

i = z for some z > 0, the minimum is z−1 (
∑

ci)
2 and that it is

achieved at

xi =

√
z |ci|√∑m
j=1 |cj |

.

For m = 1 the only choice for x1 is x1 =
√

z and it is easy to verify that the claim
holds. Assume that the claim holds for m − 1. For any value of 0 < xm <

√
z, the

minimum of the sum
∑m−1

i=1 (ci/xi)2 subject to
∑m−1

i=1 x2
i = z−x2

m is, by the inductive

claim, (z−x2
m)−1

(∑m−1
i=1 ci

)2

. The total minimization problem, then, is to minimize

f (xm) =

(∑m−1
i=1 ci

)2

(z − x2
m)

+
c2
m

x2
m

subject to 0 < xm <
√

z. The derivative of this objective function with respect to x2
m

is

∂f

∂ (x2
m)

=

(∑m−1
i=1 ci

)2

(z − x2
m)2

− c2
m

(x2
m)2

.
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It is easy to verify that the derivative vanishes at

xm =

√
z |cm|√∑m
j=1 |cj |

.

Clearly, this value of xm satisfies 0 < xm <
√

z, so it solves the constrained minimiza-
tion problem. Given this value of xm, we have

(z − x2
m) = z

(∑m−1
j=1 |cj|∑m
j=1 |cj |

)
.

By induction, for i < m, the optimal value of xi under the constraint
∑m−1

i=1 x2
i =

z − x2
m is achieved at

xi =

√
(z − x2

m) |ci|√∑m−1
j=1 |cj |

=

√
z |ci|√∑m
j=1 |cj|

.

This concludes the inductive claim and the entire proof.
An alternative way to prove the second part of the proof, proposed by Dan Spiel-

man, uses Lagrange multipliers.
Proof. The proof that the minimization problem can be broken into k independent

subproblems is the same as in the first proof. We now show that xi =
√
|ci|/

∑
j |cj |

is a minimizer of
∑m

j=1(cj/xj)2 subject to
∑m

j=1 x2
j = 1.

Let f(x1, . . . , xm, λ) =
∑m

j=1

(
cj

xj

)2

+ λ
(∑m

j=1 x2
j − 1

)
. The minimizer satisfies

0 = ∂f
∂xi

= −2 · c2
i

x3
i

+ 2λxi ,

0 = ∂f
∂λ =

∑m
j=1 x2

j − 1 .

It follows that c2
i = λx4

i , therefore x2
i = |ci| /

√
λ. Since

∑m
j=1 x2

j = 1 it follows that

∑m
j=1

|cj |√
λ

= 1
1√
λ

∑m
j=1 |cj | = 1√
λ =

∑m
j=1 |cj | .

Since x2
i = |ci| /

√
λ it follows that

x2
i = |ci|P

m
j=1|cj | ,

and thus

xi =
√

|ci|√P
m
j=1|cj | .

Like the rowwise heuristic, the Frobenius heuristic also produces new algebraic
bounds on ‖W‖2. These bounds and their proofs were discovered by Dan Spiel-
man [15]. Before we state and prove the bounds, we prove an auxiliary result.
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Lemma 5.10. [15] Let W̃ be an orthonormal stretching of W derived using the
Frobenius fractional-splitting heuristic. If Wi,j �= 0, then

∥∥∥W̃η(i,j),:

∥∥∥
2

=
∣∣∣(D+

j W:,j

)
i

∣∣∣ =√|Wi,j | ·
√∑m

c=1 |Wi,c|.
Proof. As in lemma 5.2, for each 1 ≤ i ≤ k and 1 ≤ j ≤ m,

∥∥∥W̃η(i,j),:

∥∥∥
2

=∣∣∣(D+
j W:,j

)
i

∣∣∣ . If Wi,j �= 0, then (Dj)i,i =
√|Wi,j |/

√∑m
c=1 |Wi,c| �= 0. Therefore(

D+
j

)
i,i

=
√∑m

c=1 |Wi,c|/
√|Wi,j | and thus:

(
D+

j W:,j

)
i
=
(
D+

j

)
i,i

· Wi,j

=

√∑m
c=1 |Wi,c|√|Wi,j |

· Wi,j

=
√
|Wi,j | ·

√√√√ m∑
c=1

|Wi,c| .

This proves the lemma, because each row of W̃ has at most a single nonzero, so

∥∥∥W̃η(i,j),:

∥∥∥
2

=
∣∣(D+

j W:,j)i

∣∣ = √|Wi,j | ·
√√√√ m∑

c=1

|Wi,c| .

We now state and prove new bounds on ‖W‖2.
Lemma 5.11. [15] Let W be a k-by-m matrix. Then

‖W‖2
2 ≤ max

j

∑
i:Wi,j �=0

|Wi,j | ·
(

m∑
c=1

|Wi,c|
)

.

Proof. We stretch W orthonormally using the Frobenius fractional-splitting heuris-

tic. Then ‖W‖2
2 ≤

∥∥∥W̃∥∥∥2

2
, and the columns of W̃ are orthogonal, so

∥∥∥W̃∥∥∥2

2
= max

j

∥∥∥W̃:,j

∥∥∥2

2
.

All that remains to show is that
∥∥∥W̃:,j

∥∥∥2

2
=
∑

i:Wi,j �=0 |Wi,j | · (
∑m

c=1 |Wi,c|). We
have ∥∥∥W̃:,j

∥∥∥2

2
=
∥∥D+

j W:,j

∥∥2

2

=
k∑

i=1

(
D+

j W:,j

)2
i

=
k∑

i=1

|Wi,j | ·
(

m∑
c=1

|Wi,c|
)

=
∑

i:Wi,j �=0

|Wi,j | ·
(

m∑
c=1

|Wi,c|
)

.
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The equality of the second and third lines is by lemma 5.10.
Lemma 5.12. [15] Let W be a k-by-m matrix. Then

‖W‖2
2 ≤ max

i

∑
j:Wi,j �=0

|Wi,j | ·
(

k∑
r=1

|Wr,j |
)

.

Proof. The previous lemma, applied to WT , proves the claim, since
∥∥WT

∥∥
2

=
‖W‖2.

The bounds in lemmas 5.3 and 5.11 are structurally similar. Both bound ‖W‖2
2

using an expression of the form

‖W‖2
2 ≤ max

j

∑
i:Wi,j �=0

m∑
c=1

g (Wi,j , Wi,c) .

In lemma 5.3 we have g (Wi,j , Wi,c) = W 2
i,c and in lemma 5.11 we have g (Wi,j , Wi,c) =

|Wi,j |·|Wi,c|. In both cases the maximum is over sums of functions of the same nonzero
elements of W . A similar relationship exists between lemmas 5.4 and 5.12.

We note that there exist matrices W for which applying the Frobenius heuristic
gives a smaller

∥∥∥W̃∥∥∥
2

than the rowwise heuristic, and that there are matrices for

which the rowwise heuristic gives a smaller
∥∥∥W̃∥∥∥

2
. In general, neither of the two is

an optimal 2-norm minimization strategy.

6. Gram Bounds on the Two Norm. In this section we suggest two addi-
tional bounds on the 2-norm of W . In one particular case, these two bounds are
equivalent to the bounds proved in Lemmas 5.6 and 5.7.

Lemma 6.1. For any matrix W ,

‖W‖2
2 ≤ ∥∥WWT

∥∥
1

=
∥∥WWT

∥∥
∞ .

Proof. For all matrices W , ‖W‖2
2 =

∥∥WWT
∥∥

2
. For any matrix A, we have

‖A‖2
2 ≤ ‖A‖1 ‖A‖∞. In particular,

∥∥WWT
∥∥2

2
≤ ∥∥WWT

∥∥
1

∥∥WWT
∥∥
∞. Since WWT

is symmetric,
∥∥WWT

∥∥
1

=
∥∥WWT

∥∥
∞. This concludes the proof.

Similarly,
Lemma 6.2. For any matrix W ,

‖W‖2
2 ≤ ∥∥WT W

∥∥
1

=
∥∥WT W

∥∥
∞ .

Consider the case where A and B are symmetric and diagonally-dominant matri-
ces, and the weights of all the edges in A’s and B’s underlying graphs are 1. Given
an embedding of the edges of A into simple paths in B, all the entries of W are either
0, 1 or −1. In this case, the dilation of an edge is exactly the length of its supporting
path. It is easy to see that, in this case, the

∥∥WWT
∥∥

1
bound is the same as the

bound given in lemma 5.7. Similarly, the
∥∥WT W

∥∥
1

bound is the same as the bound
in lemma 5.6.

In more complex cases, however, the two norm bounds given in this section are
not equivalent to the bounds in Lemmas 5.6 and 5.7.
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m

√
m

1

1

1

1

1

1

1

√
m

√
m

√
m

√
m

√
m

√
m

1

Fig. 7.1. A weighted graph GUUT with 2m + 4 vertices (m + 2 on the top and m + 2 on
the bottom). The dashed edges are in GUUT but not in GV V T . The edge weights given are the
nonzero coefficients of the corresponding columns of U and V ; for example, the edge with weight m
corresponds to a column (m,−m, 0, . . . , 0)T in U .

7. An Example. The example that we present in this section shows that the
new norm bound given in Lemma 5.6 is sometimes asymptotically tighter than all the
other norm bounds that we are aware of. In this example, Lemma 5.6 tightly bounds
the two norm, while all the other bounds are asymptotically loose. In particular, the
‖W‖F -norm bound, the ‖W‖1 ‖W‖∞-norm bound, the

∥∥WWT
∥∥

1
-norm bound and

its equivalents, and the bound in Lemma 5.4 are all loose.
Consider the 1-by-2 block matrix W = (W ′|I), where I is the (2m+3)-by-(2m+3)

identity for some m, and where W ′ is the (2m + 3)-by-(m + 1) matrix

W ′ =




√
m 1 · · · 1√
m √

m
. . . √

m√
m √

m
. . . √

m




.

The matrix W corresponds to an embedding of the edges of the graph shown in
Figure 7.1 onto paths in the same graph, but without the dashed edges. Because the
graph without the dashed edges is a tree, each edge in the original graph is supported
by exactly one simple path.

We can prove the following norm bounds on W . We omit the proofs.
• ‖W‖2

2 = 4m + 1.
• ‖W‖2

F = 2m2 + 6m + 3 = Θ(m2).
• ‖W‖1 ‖W‖∞ = (

√
m + m + 1)(3

√
m) = Θ(m1.5).

• ∥∥WT W
∥∥

1
= 3m + (m + 3)

√
m = Θ(m1.5).

• ∥∥WWT
∥∥

1
= 4m + 2m

√
m + 1 = Θ(m1.5).

• maxj

∑
i : Wi,j �=0 ‖Wi,:‖2

2 = 4m + 3 = Θ(m).

• maxi

∑
j : Wi,j �=0 ‖W:,j‖2

2 = ‖W ′‖2
F + 1 = 2m2 + 4m + 1 = Θ(m2).

• maxj

∑
i : Wi,j �=0 |Wi,j | · (

∑m
c=1 |Wi,c|) =

√
m(

√
m+m+1)+2

√
m(

√
m+1) =

Θ(m1.5).
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• maxi

∑
j:Wi,j �=0 |Wi,j | ·

(∑k
r=1 |Wr,j |

)
=

√
m · 3

√
m + m(1 + 2

√
m) + 1 =

Θ(m1.5).
For large m, none of these bounds on the 2-norm are tight, except for one, 4m + 3,
which is not only asymptotically tight, but is off by only a small additive constant.

8. Conclusions. We have shown that applying the splitting lemma to the anal-
ysis of support-graph preconditioners can be viewed as a mechanism to bound the
norm of a matrix W . The mechanism works by orthonormally stretching W into a
larger matrix W̃ whose 2-norm bounds that of W but is easier to compute.

In doing so, we have unified the “old-style” support theory, in which the analysis
of a preconditioner usually starts by splitting, and the “new-style” support theory,
which relies on the symmetric-product-support lemma, usually without splitting.

We also presented six new bounds on the 2-norm of the matrix, given in Lem-
mas 5.3, 5.4, 5.11, 5.12, 6.1, and 6.2. One of the four was already given by Spiel-
man and Teng, but not in the form of a norm bound. Four of the new bounds
have useful combinatorial interpretations. Special cases of some of our new bounds
were previously used to bound the smallest nonzero eigenvalue of Laplacian matri-
ces [7, 10, 11, 12, 13].

Viewing splitting as a way of bounding ‖W‖2 using
∥∥∥W̃∥∥∥

2
leads to systematic

splitting strategies that aim to minimize some other norm of W̃ . We propose two such
strategies in this paper; one is a heuristic which preserves in W̃ the 2-norm of rows
of W , and another which minimizes the Frobenius norm of W̃ . Both are analytically
and computationally simple.

We have also shown that one of the new bounds can be asymptotically tighter
than all the other norm bounds that we are aware of. The problem of ranking the
bounds by tightness, or showing that they cannot be ranked, remains open.

Acknowledgements. Thanks to the three anonymous referees for numerous cor-
rections, suggestions and comments. Lemmas 5.11 and 5.12 were discovered by one
of the referees, who turned out to be Dan Spielman; he also suggested the alternative
proof of Lemma 5.9.
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