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Abstract. We present an algebraic theory of rigidity for finite-element ma-
trices. The theory provides a formal algebraic definition of finite-element ma-
trices; notions of rigidity of finite-element matrices and of mutual rigidity
between two such matrices; and sufficient conditions for rigidity and mutual
rigidity.

We also present a novel sparsification technique, called fretsaw extension, for
finite-element matrices. We show that this sparsification technique generates
matrices that are mutually-rigid with the original matrix. We also show that
one particular construction algorithm for fretsaw extensions generates matrices
that can be factored with essentially no fill. This algorithm can be used to
construct preconditioners for finite-element matrices.

Both our theory and our algorithms are applicable to a wide-range of finite-
element matrices, including matrices arising from finite-element discretizations
of both scalar and vector partial differential equations (e.g., electrostatics and
linear elasticity).

Both the theory and the algorithms are purely algebraic-combinatorial.
They manipulate only the element matrices and are oblivious to the geom-
etry, the material properties, and the discretization details of the underlying
continuous problem.

1. Introduction

This paper presents an algebraic-combinatorial theory of rigidity for finite-
element matrices and applies this theory to two important problems: determin-
ing whether a finite-element matrix represents a rigid structure, and determining
whether a matrix representing a structure and a matrix representing a substruc-
ture have the same range and null space. The paper addresses these problems by
providing simple sufficient conditions for rigidity and null-spaces equality, and
by providing linear-time algorithms (assuming bounded element degrees) to test
these conditions.

Our results employ three new technical tools, one combinatorial and two al-
gebraic. One algebraic tool is a purely-algebraic definition of the rigidity re-
lationships between two rank-deficient matrices. The other algebraic tool is a
definition of a finite-element matrix A as a sum of of symmetric semi-definite
matrices {Ae}k

e=1 that all satisfy a certain condition. The combinatorial tool is
a graph, called the rigidity graph, that represents the rigidity relationships be-
tween the terms Ae of a finite-element matrix A =

∑
e Ae. These tools may be

applicable to the solution of other problems involving finite-element matrices.
The concept of rigidity is usually associated with elastic structures and with

finite-element models of such structures. An elastic structure is rigid if any
deformation of it that is not a translation and/or rotation requires energy. A
coin is rigid; a door hinge is not. Our theory of rigidity is consistent with the
traditional concept of rigidity, but it is purely algebraic and more general. By
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purely algebraic, we mean that our theory uses only the element matrices Ae

and a basis for the rigid body motions (e.g. translations and rotations) of the
structure. Our theory and algorithms do not depend on the geometry of the
structure and on the details of the finite-element discretization. Our theory
generalizes the concept of rigidity in a natural way from finite-element models of
elastic structures to models of other physical systems, such as electrostatics.

On the other hand, our theory only provides sufficient conditions for rigidity.
Characterizing rigidity exactly is difficult, even if we limit our attention to spe-
cific families of elastic structures. Consider, for example a structure consisting
of struts (elastic bars) connected at their endpoints by pin joints. The struts can
only elongate or compress, and the struts connected to a pin are free to rotate
around the pin. The rigidity of such structures in two-dimensions has been ex-
tensively studied and is now well understood. However, the conditions that char-
acterize the rigidity of two-dimensional structure are expensive to check [13] and
they do not generalize easily to three-dimensional trusses and to other structures.
Our theory of rigidity avoids these difficulties by focusing on characterizations
that are simple and general but only sufficient. In fact, structures consisting of
struts always fail our sufficient conditions.

Our new theory is essentially an algebraic-combinatorial characterization of
finite-element models of structures that are, informally speaking, “evidently rigid”.
Models of structures that are rigid due to complex non-local interactions between
parts of the structure will usually fail our conditions. The main contributions of
this paper are formal and easily-computed characterizations of “evidently-rigid”
structures. We, therefore, call structures that pass our test evidently-rigid. We
apply these characterizations to the construction of algorithms that find certain
minimally-rigid substructures of a rigid structure.

The results in this paper are a step toward the generalization of results in spec-
tral graph theory from Laplacians to finite-element matrices. We are particularly
interested in an area of spectral graph theory called support theory or support
preconditioning. This area is mostly concerned with constructing an approxima-
tion B to a matrix A in three steps: (1) building a graph GA that represents
A, (2) approximating GA by a simpler graph GB, and (3) building the matrix
B that corresponds to GB. The graph GB should be simpler in some way than
GA (e.g., smaller balanced vertex separators) and the generalized eigenvalues λ
of Ax = λBx should not be very large or very small. Much progress has been
made in this area, but only when A is a Laplacian [2, 10, 17, 18, 4], a diagonally-
dominant symmetric matrix (i.e., GA is a signed graph) [3, 10], or can be well
approximated by a Laplacian [5].

This paper makes three contributions to support preconditioning of finite-
element matrices. First, the paper provides a reasonable definition of what a
finite-element matrix is: a sum of element matrices whose null spaces are derived
from a single global null space. Second, the paper provides a graph model of
finite-element matrices, and proposes graph algorithms for sparsifying the coeffi-
cient matrix A. Three, the paper provides simple combinatorial conditions that
allow us to show that the range and null space of the sparsified matrix (the pre-
conditioner) B are the same as those of A. The qualitative range and null-space
equalities are weaker statements than quantitative bounds on the generalized
eigenvalues, but they are a step toward eigenvalue bounds. A weighted rigidity
graph may allow us to bound eigenvalues and generalized eigenvalues. The same
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technical tools may also be applicable to the generalization of other results in
spectral graph theory, such as Cheeger-type bounds [6, 8, 1].

The paper is quite technical and fairly complex. It may seem strange that all
of this complexity is needed to prove results that are physically intuitive. If a
structure is evidently rigid, why is all the algebraic and notational complexity
needed? The answer appears to be that the complexity is a result of our insistence
on a purely algebraic and combinatorial analysis. We do not rely directly on any
physical or continuous properties of the structures that we analyze. Our analysis
reaches the physically-intuitive conclusions, but the algebraic path toward these
conclusions is complex. We believe that the generality and software-engineering
advantages of a purely-algebraic approach are worth the complexity of the paper.
Furthermore, the analysis is complex, but the algorithms that we propose are
both general and simple.

The paper is organized as follows. Finite-element matrices are sums of very
sparse terms called element matrices. Most of the rows and columns in each ele-
ment matrix contain only zeros. Such matrices have a trivial null space that the
zero columns generate, and sometimes another null subspace that is more inter-
esting. Our study of rigidity is essentially a study of these nontrivial subspaces.
Section 2 defines these subspaces and analyzes their properties. The combinato-
rial structure that we use, the rigidity graph, is defined by rigidity relationships
between pairs of element matrices. These relationships are defined and explored
in Sections 3 and 4. One of our ultimate goals in this paper is to show that a
connected rigidity graph implies that the underlying structure is rigid. Unfortu-
nately, this is not true for collections of arbitrary element matrices; they must
have something in common for their rigidity graph to be useful. This common
property is called null-space compatibility. Its definition and significance are ex-
plained in Section 5. The rigidity graph itself is defined in Section 6, along with
a proof that a connected rigidity graph implies the rigidity of the structure. Sec-
tion 7 studies three families of finite-element matrices and their rigidity graphs,
to further illustrate the concepts presented earlier. In Section 8 we present two
methods for sparsifying a finite-element matrix while preserving its null space.
The more sophisticated method, called spanning-tree fretsaw extension, always
leads to simplified finite-element matrices that can be factored with essentially
no fill. We present two numerical examples of the use of spanning-tree fretsaw
extension as preconditioners in Section 9. We conclude the paper with a few
open problems in Section 10.

2. The Essential Null Space of a Matrix

Rigidity is closely related to relationships between null spaces. We therefore
start our analysis with definitions and lemmas concerning the null space of ma-
trices with zero columns.

Definition 2.1. Let A be an m-by-n matrix, let ZA ⊆ {1, . . . n} be the set of its
zero columns, and let NA be the set of its nonzero columns. The essential null
space of A is the space of vectors x satisfying

• Ax = 0 and
• xi = 0 for i ∈ ZA.

The trivial null space of Ae is the space of vectors x satisfying xi = 0 for i ∈ NA.
We denote the two spaces by enull(A) and tnull(A).
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Clearly, the essential and trivial null spaces of a matrix are orthogonal and
their union is simply the null space of the matrix.

Definition 2.2. A restriction of a vector y to the indices NA is the vector

xi =

{
yi i ∈ NA

0 otherwise.

(The restriction is a projection.) An extension with respect to NA of a vector x
satisfying xi = 0 for i ∈ ZA is any vector y such that yi = xi for all i ∈ NA.

Lemma 2.3. Let y be the extension with respect to NA of a vector x ∈ enull(A).
Then y ∈ null(A).

Proof. Let z = y− x, so y = x + z. Since yi = xi for i =∈ Ne, we have zi = 0 for
i ∈ NA. Therefore Az = 0, so Ay = Ax + Az = 0 + 0 = 0. �
Lemma 2.4. The restriction x of a vector y ∈ null(A) to NA is in enull(A).

Proof. Follows directly from null(A) = enull(A) ∪ tnull(A). �
Lemma 2.5. Let A be an n-by-n symmetric positive semidefinite matrix, let
B be an n-by-n positive semidefinite matrix, and let x ∈ null(A + B). Then
x ∈ null(A).

Proof. Suppose for contradiction that Ax �= 0. A has a decomposition A = LLT .
Since Ax �= 0, we also have LT x �= 0, so xT LLT x = xT Ax > 0. Therefore,
xT Bx = xT (A + B)x − xT Ax = 0 − xT Ax < 0, a contradiction. �

A column that is nonzero in both A and B can be a zero in A + B due to
cancellation. The next lemma shows that this cannot happen when the terms
are symmetric positive semidefinite matrices (spsd).

Lemma 2.6. Let A and B be n-by-n symmetric positive semidefinite matrices.
Then NA+B = NA ∪ NB.

Proof. Clearly NA+B ⊆ NA ∪ NB. Suppose for contradiction that the lemma
does not hold. Then there is a column index j in NA or in NB that is not in
NA+B. Without loss of generality assume that j ∈ NA. Let x be the jth unit
vector. Since j ∈ NA, Ax, which is simply the jth column of A, is nonzero. But
since j �∈ NA+B, we also have (A + B)x = 0, a contradiction to Lemma 2.5. �

The last lemma in this section shows the relationship between null-space con-
tainment and the sets N and Z.

Lemma 2.7. Let A be an m-by-n matrix and let B be an l-by-n matrix with
null(B) ⊆ null(A). Then ZB ⊆ ZA and NA ⊆ NB.

Proof. Let j ∈ ZB and let ej be the jth unit vector. By definition, Bej = 0. By
the assumption on the null spaces, Aej = 0. This implies that j ∈ ZA. Therefore,
ZB ⊆ ZA, so the complements of these sets satisfy NA ⊆ NB. �

3. Rigidity Relationships

This section introduces the main notion of this paper: rigidity relationships.

Definition 3.1. An m-by-n matrix A is rigid with respect to another �-by-n
matrix B if for every vector x ∈ enull(A) there is a unique vector y ∈ enull(B),
called the rigid mapping of x, such that yi = xi for all i ∈ NA ∩ NB. The two
matrices are called mutually rigid if they are rigid with respect to each other.
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Example 3.2. Mutual rigidity does not follow automatically from one-sided
rigidity. Consider, for example,

A =




0 0 0 0
0 1 −1 0
0 −1 1 0
0 0 0 0


 , B =




1 −1 0 0
−1 1 0 0
0 0 1 −1
0 0 −1 1


 .

A is rigid with respect to B, because vectors in enull(A) have the form
[
0 α α 0

]T ,
and they have a unique extension to vectors in enull(B), namely

[
α α α α

]T .
But vectors in enull(B), which have the form

[
α α β β

]T , are not in null(A)
unless α = β.

Example 3.3. Let A1 =
[
1 −1 0 0

]
and A2 =

[
0 1 −1 0

]
. The two

matrices are mutually rigid. We have

enull (A1) = span
[
1 1 0 0

]T

enull (A2) = span
[
0 1 1 0

]T

Therefore, for every x =
[
α α 0 0

]T ∈ enull(A1), there is a unique y =[
0 α α 0

]T ∈ enull(A1), and symmetrically for A2.
Now let A3 =

[
0 1 0 0

]
and A4 =

[
0 0 −1 1

]
. A1 is not rigid with

respect to these two. It is not rigid with respect to A3 because enull(A3) = {0},
so for an x ∈ enull(A1) there is no rigid y in enull(A3). A1 is not rigid with respect
to A4 because for x =

[
α α 0 0

]T ∈ enull(A1), any y =
[
0 0 β β

]T is in
enull(A4), so the mapping is not unique.

We now show how to test whether a matrix A is rigid with respect to another
matrix B. For an m-by-n matrix A, we define ΞA and ΞĀ to be the n-by-n
diagonal matrices

[
ΞA

]
jj

=

{
1 j ∈ NA

0 j ∈ ZA

and
[
ΞĀ

]
jj

=

{
0 j ∈ NA

1 j ∈ ZA .

For two matrices A and B with n columns each, we define ΞA,B to be the n-by-n
diagonal matrix [

ΞA,B

]
jj

=

{
1 j ∈ NA ∩ NB

0 otherwise .

Let x be a vector in enull(A). If x has a rigid mapping to y ∈ enull(B), then
y must satisfy the equations

ΞB̄y = 0

By = 0

ΞA,By = ΞA,Bx .

The first two conditions constrain y to be in enull(B) and the third condition
constrains y to be a mapping of x. If this linear system is inconsistent, then
x has no rigid mapping to y ∈ enull(B), so A is not rigid with respect to B.
Even if the system is consistent for all x ∈ enull(A), A is not necessarily rigid
with respect to B. If the coefficient matrix RA,B =

[
ΞT

B̄
BT ΞT

A,B

]T is rank
deficient, the mappings are not unique.
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Therefore, to test rigidity we must check that for all x ∈ enull(A), the vector[
0 0 xT ΞT

A,B

]T is spanned by the columns of RA,B, and that the columns of
RA,B are linearly independent. We now derive equivalent conditions, but on a
much smaller system. First, we drop rows and columns ZB from the coefficient
matrix and rows ZB from y. These rows correspond to equations that constrain
yi = 0 for i ∈ ZB. Since these elements of y are not used in any of the other equa-
tions, we can drop them without making an inconsistent system into a consistent
one. Also, these columns are linearly independent, and all the other columns are
independent of them. Therefore, dropping these |ZB| rows and columns reduces
the rank of RA,B by exactly |ZB|; therefore, RA,B is full rank if and only if the
remaining rows and columns form a full-rank matrix. Now we drop all the zero
rows from the system: Rows NB in the ΞB̄ block of RA,B, the zero rows from
the B block, and the zero rows from the ΞA,B block. These rows correspond to
equations that are consistent for any x and any y; being zero, they do not affect
the rank of RA,B.

We assume without loss of generality that columns NA∩NB are the last among
the nonzero columns of B. We denote by B̆ the matrix formed by dropping all
the zero rows and columns of B and by yNB

the vector formed by dropping
elements ZB from y. (For any n-vector v and a set S ⊆ {1, . . . n}, the notation
vS means the |S|-vector formed by dropping the elements of v whose indices are
not in S, and similarly for matrices.) Our reduced system is

R̆A,ByNB
=

[
B̆

0 | I

]
yNB

=

[
0

xNA∩NB

]
,

where the order of the identity matrix is |NA ∩ NB|. To test whether A is rigid
with respect to B, we construct a matrix NA whose columns span enull(A), and
check

(1) whether R̆A,B has full rank, and
(2) whether for every column x in NA,

R̆A,BR̆+
A,B

[
0

xNA∩NB

]
=

[
0

xNA∩NB

]
.

If B has only few nonzero rows and columns and if the number of columns in
NA is small, then this is is an inexpensive computation. The construction is
illustrated in Figure 3.1.

The next three lemmas show the relationship between null-space containment
and rigidity.

Lemma 3.4. Let A be an m-by-n matrix and let B be an l-by-n matrix. If
null(A) ⊆ null(B), then A is rigid with respect to B.

Proof. Let x ∈ enull(A). Therefore, x ∈ null(A) and x ∈ null(B). Define
y = ΞBx. We have that xi = yi for all i ∈ NA∩NB. By Lemma 2.4, y ∈ enull(B).
Therefore y is a rigid mapping of x in enull(B).

We now show that y is the unique mapping of x. Let ŷ be a rigid mapping of
x in enull(B). By Lemma 2.7, NB ⊆ NA. The equalities yi = xi = ŷi hold for
every i ∈ NA ∩NB = NB. Therefore, y = ŷ, so y is the unique rigid mapping of
x in enull(B). This implies that A is rigid with respect to B. �
Lemma 3.5. Let A be an m-by-n matrix and let B be an l-by-n matrix. If
NB ⊆ NA and A is rigid with respect to B, then null(A) ⊆ null(B).
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=

x

y

ΞA,B

0

0

ΞA,B

B

ΞB̄

the inner matrix is
R̆A,B

B (with A as an
overlay)

A

Figure 3.1. Testing rigidity. The top part of the figure shows the
entire linear system, and the bottom part shows the construction
of R̆A,B.

Proof. Let x ∈ null(A). We can write x as y + z where y ∈ enull(A) and z ∈
tnull(A). We have that z ∈ tnull(B), since NB ⊆ NA. Therefore, z ∈ null(B).

We now show that y is also in null(B). Let u be y’s rigid mapping to enull(B).
We have that ui = yi for every i ∈ NA ∩ NB = NB. Therefore, we can write y
as y = u + u′ where u′

i �= 0 only for i ∈ NA\NB. It clear that u′ ∈ tnull(B) ⊆
null(B). Therefore, y = u + u′ ∈ null(B) and x = y + z ∈ null(B). Since any
x ∈ null(A) is also in null(B), the lemma holds. �
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Corollary 3.6. Let A be an m-by-n matrix and let B be an l-by-n matrix, such
that NA = NB. Then A and B are mutually rigid if and only if null(A) =
null(B).

Proof. Directly follows from Lemma 3.4 and Lemma 3.5. �

The last lemma in this section shows that rigidity relationships are maintained
in certain Schur complements.

Lemma 3.7. Let A and B be n-by-n matrices of the form

A =

[
A11 0
0 0

]
, B =

[
B11 B12

B21 B22

]

where A11 and B11 are k-by-k matrices for some 0 < k < n. Assume that A is
rigid with respect to B, that NA = {1, . . . , k}, that NB = {1, . . . , n}, and that
B22 is nonsingular. Then null(A11) ⊆ null(B11 − B12B

−1
22 B21) and A11 is rigid

with respect to B11 − B12B
−1
22 B21.

Moreover, if A and B are mutually rigid, then null(A11) = null(B11−B12B
−1
22 B21).

Proof. Let x ∈ null(A11). Let x̂ be the vector of size n that equals x in its first k
coordinates and that contains zeros in its last (n − k) coordinates. Clearly, x̂ ∈
null(A). Since there are no zero columns in A11 we also have that x̂ ∈ enull(A).
Let ŷ be the rigid mapping of x̂ in enull(B). The equalities ŷi = x̂i = xi hold for
all i ∈ {1, . . . , k}. Let y be a vector of size (n − k) consisting of the last (n − k)
elements of ŷ. Writing the equation Bŷ = 0 in terms of x and y, we obtain[

B11 B12

B21 B22

] [
x
y

]
=

[
B11x + B12y
B21x + B22y

]
= 0

Multiplying the second block row by B−1
22 gives y = −B−1

22 B21x. Substituting y
with −B−1

22 B21x in the first block row, we get B11x − B12B
−1
22 B21x = 0. There-

fore, x ∈ null(B11 − B12B
−1
22 B21), so null(A11) ⊆ null(B11 − B12B

−1
22 B21). The

containment of the null spaces, along with Lemma 3.4, shows that A11 is rigid
with respect to B11 − B12B

−1
22 B21.

Now assume A and B are mutually rigid (we add the assumption that B is
rigid with respect to A). Let x ∈ null(B11 − B12B

−1
22 B21). Let x̂ be the vector

of size n that equals x in its first k coordinates and equals −B−1
22 B21x in its last

(n − k) coordinates. The vector x̂ is in enull(B), since

Bx̂ =

[
B11x + B12(−B−1

22 B21x)
B21x + B22(−B−1

22 B21x)

]
= 0 .

Because B is rigid with respect to A, the vector x̂ has a unique mapping to
enull(A). Since NA ⊆ NB, this mapping is ΞAx̂. Therefore, AΞAx̂ = 0, so
x ∈ null(A11). This implies that null(B11 − B12B

−1
22 B21) ⊆ null(A11). Therefore,

null(B11 −B12B
−1
22 B21) = null(A11). This concludes the proof of the lemma. �

4. Rigidity of Sums

Finite-element matrices are sums of mostly-zero matrices. This section extends
our study of rigidity to sums of matrices.

Lemma 4.1. Let A and B be symmetric positive-semidefinite n-by-n matrices.
The matrix (A + B) is always rigid with respect to A and with respect to B.
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Proof. Let x ∈ enull(A + B). By Lemma 2.5, x ∈ null(A), and by Lemma 2.4
the restriction x′ of x to NA is in enull(A). We now only have to prove that x′ is
unique. A rigid mapping must coincide with x at NA+B∩NA. Because A, B, and
A+B are spsd, Lemma 2.6 implies that NA+B = NA∪NB, so NA+B∩NA = NA.
Therefore, the mapping must coincide with x in all the indices in NA, so it must
be x′. �

The previous lemma showed that a sum of spsd matrices is rigid with respect
to the terms of the sum, but the terms are not always rigid with respect to the
sum, even when the terms are spsd. For example, A =

[
1 −1
−1 1

]
is not rigid

with respect to A + [ 0 0
0 1 ], because A is rank deficient but the sum is not. Hence,

vectors in enull(A) have no mapping at all to the essential null space of the sum.
Also, the lemma holds for spsd matrices but not for general matrices. Let

A = [ 1 0
0 1 ] and let B =

[
0 −1
0 −1

]
. Their sum is A + B = [ 1 −1

0 0 ]. The vector[
1 1

]T ∈ enull(A + B), but this vector has no mapping into enull(A) = {0}.
The next lemma strengthens both the hypothesis and the consequence of

Lemma 4.1. It shows that if the terms are mutually rigid, then rigidity between
the terms and the sum is mutual.

Lemma 4.2. Let A and B be mutually rigid symmetric positive-semidefinite n-
by-n matrices. Then A and A + B are mutually rigid, and B and A + B are
mutually rigid.

Proof. By Lemma 4.1, the sum is rigid with respect to the terms. So all we need
to prove is the opposite direction.

Let x �= 0 be a vector in enull(A). Let y be the rigid mapping of x into
enull(B). We now show that x has a rigid mapping into enull(A + B); we shall
show the uniqueness of the mapping later. We define

wi =




xi i ∈ NA

xi = yi i ∈ NA ∩NB

yi i ∈ NB

0 otherwise.

Because NA+B ⊆ NA ∪ NB, we have wi = 0 for i ∈ ZA+B. Therefore, to show
that w ∈ enull(A + B), we only need to show that (A + B)w = 0. This is indeed
the case because w is an extension of both x and y, so Aw = Bw = 0.

We now show that w is the only rigid mapping of x into enull(A+B). Suppose
that there is another rigid mapping w′ �= w. Under this supposition, there must
be w′

i �= wi for some i ∈ NB \ NA, so the restriction y′ of w′ to NB must be
different from y. By Lemmas 2.5 and 2.4, y′ ∈ enull(B). The vectors y and
y′ are both in enull(B) and both coincide with x on NA ∩ NB, so they are two
different rigid mappings of x, contradicting the hypothesis that A and B are
mutually rigid. �
Lemma 4.3. Let A and B be symmetric positive-semidefinite n-by-n matrices,
and let C be an m-by-n matrix . C and A + B are mutually rigid if and only if
C and A + αB are mutually rigid for any real α > 0.

Proof. Let α > 0. We first show that enull(A + αB) = enull(A + B). It is
clear that NαB = NB and that αB is symmetric positive-semidefinite. From
Lemma 2.6 we have NA+αB = NA ∪ NαB = NA ∪ NB = NA+B. Let x ∈
enull(A+B) ⊆ null(A+B). By Lemma 2.5, we have x ∈ null(A) and x ∈ null(B).
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Therefore, x ∈ null(A + αB). Clearly, xi = 0 for every i /∈ NA+αB. Therefore,
x ∈ enull(A + αB). This shows that enull(A + B) ⊆ enull(A + αB). The proof
of the other inclusion direction is the same, so enull(A + αB) = enull(A + B).

The lemma follows directly from the definition of mutual rigidity and the fact
that enull(A + αB) = enull(A + B). �

In some special cases, mutual rigidity between sums allows us to infer that the
terms of the sums are mutually rigid and vice versa.

Lemma 4.4. Let A, B and C be n-by-n symmetric positive-semidefinite matrices
such that NC ∩ NA = NC ∩ NB = ∅. Then A and B are mutually rigid if and
only if A + C and B + C are mutually rigid.

Proof. Assume that A and B are mutually rigid. We show that A + C is rigid
with respect to B + C. By symmetry, B + C is rigid with respect to A + C, so
the two sums are mutually rigid.

Let x ∈ enull(A + C). By Lemma 2.5, x ∈ null(A) and x ∈ null(C). Let
x̂ be x’s restriction to NA and let x̄ be its restriction to NC . By Lemma 2.4,
x̂ ∈ enull(A) and x̄ ∈ enull(C). Let ŷ be x̂’s unique rigid mapping to enull(B).
We define the vector

yi =




ŷi i ∈ NB

x̄i i ∈ NC

0 otherwise .

The definition is valid because NC ∩NB = ∅. We show that y is the unique rigid
mapping of x in enull(B + C). Multiplying B + C by y we obtain (B + C)y =
By + Cy = Bŷ + Cx̄ = 0 + 0 = 0. Since yi = 0 for all i /∈ NB ∪ NC = NB+C ,
y ∈ enull(B + C). By definition, yi = xi for all i ∈ (NA ∩ NB) ∪ NC = (NA ∪
NC) ∩ (NB ∪ NC) = NA+C ∩ NB+C . Therefore, y is a rigid mapping of x in
enull(B + C).

We now show that this mapping is indeed unique. Assume that there exists
u ∈ enull(B + C) that satisfies ui = xi for all i ∈ NA+C ∩ NB+C . We have that
ui = xi = yi for all i ∈ NC ⊆ NA+C ∩NB+C . Let û be u’s restriction to NB. We
have û ∈ enull(B) and ûi = xi = x̂i for all i ∈ NA ∩ NB. Therefore, û is a rigid
mapping of x̂ in enull(B). Since A and B are mutually rigid, û must equal ŷ.
Therefore, u = y and y is the unique rigid mapping of x in enull(B + C). This
shows that A + C is rigid with respect to B + C. Figure 4.1 (a) presents this
notation graphically.

We now show the other direction. Assume A + C and B + C are mutually
rigid. We show that A is rigid with respect to B; mutual rigidity follows by
symmetry. The notation for this part of the proof is presented graphically in
part (b) of Figure 4.1. Let x̂ ∈ enull(A). Since NC ∩ NA = ∅, x̂ ∈ tnull(C). We
also have x̂i = 0 for all i /∈ NA ∪NC = NA+C, so x̂ ∈ enull(A + C). Let ŷ be x̂’s
rigid mapping to enull(B +C). We show that ŷ is x̂’s rigid mapping to enull(B).
By Lemma 2.5, ŷ ∈ null(B). Also, ŷi = x̂i = 0 for all i in i ∈ NC ⊆ NB+C .
Therefore, ŷi = 0 for all i /∈ NB, so ŷ ∈ enull(B). By definition, x̂i = ŷi for
all (NA ∩ NB) ⊆ NA+C ∩ NB+C . This implies that ŷ is a rigid mapping of x̂ in
enull(B).

Finally, we claim that ŷ is a unique rigid mapping of x̂. Assume that there
exist û in enull(B) that satisfies x̂i = ûi for all i ∈ NA ∩ NB. We have that
x̂i = ûi = 0 for all i ∈ NC. Since û is also in enull(B + C) then it is a rigid
mapping of x̂ ∈ enull(A+C) in enull(B+C) . Because A+B is rigid with respect

10



(a) (b)

Figure 4.1. An illustration of the notation of Lemma 4.4: (a)
the vectors defined in the proof of the mutual rigidity of A + B
and A + C, and (b) the vectors defined in the proof of the mutual
rigidity of A and B.

to A + C, we have that û = ŷ. Therefore, ŷ is indeed unique. This implies that
A is rigid with respect to B, which concludes the proof of the lemma. �

We would like to build larger assemblies of mutually-rigid matrices from chains
of mutual rigidity, but this is not always possible, as the next example shows.

Example 4.5. Let

A =


 1 −1 0
−1 1 0
0 0 0


 , B =


0 0 0

0 1 −1
0 −1 1


 , C =


1 0 1

0 0 0
1 0 1


 .

These matrices are all spsd, and their essential null spaces are spanned by[
1 1 0

]T ,
[
0 1 1

]T and
[
1 0 −1

]T , respectively. The matrices A and B
are mutually rigid, and so are B and C. The essential null space of A + B

is spanned by
[
1 1 1

]T and the essential null space of B + C is spanned by[
1 −1 −1

]T . Therefore, C is not mutually rigid with A + B and A is not
mutually rigid with B + C. Moreover, neither A, B, C, A + B, nor B + C is
mutually rigid with A + B + C, because A + B + C has full rank. This example
is inspired by the analysis of signed graphs in [3], which shows that A + B + C
has full rank.

To build larger assemblies of mutually-rigid matrices, we need another tool.

5. Null-Space Compatibility

This section defines and explores a concept that we call null-space compatibil-
ity, which is the tool that allows us to build large assemblies of mutually-rigid
matrices.

Definition 5.1. Let N ⊆ R
n be a linear space. A matrix A is called N-compatible

(or compatible with N) if every vector in enull(A) has a unique extension into a
vector in N, and if the restriction of every vector in N to NA is always in enull(A).

11



Definition 5.2. Let A be an n-by-n matrix. If A is N-compatible and NA =
{1, . . . , n}, then we say that A is N-rigid. If N is clear from the context, we
simply say that A is rigid.

Given a basis for N, we can easily check the compatibility of a matrix A. Let
the columns of N be a basis for N, and let NA be a basis for enull(A). A is
compatible with N if and only if NA = ΞANA and ΞAN have the same range.
This can be checked numerically using the singular value decompositions of the
two matrices, for example.

Example 5.3. Let N = span
[
1 1 1

]T . The matrices A and B from Exam-
ple 4.5 are compatible with N, but C is not. Note that the mutual rigidity of A
and C together with the N-compatibility of A do not imply N-compatibility for
C. The matrix A + B from the same example is also compatible with N, and
since NA+B = {1, 2, 3}, A + B is rigid.

Lemma 5.4. Let A be an N-compatible matrix. Let N be a matrix whose columns
form a basis for N. Then enull(A) = span(ΞAN).

Proof. We first show that enull(A) ⊆ span(ΞAN). Let x ∈ enull(A). Since A
is N-compatible, x has a unique extension w in N. By definition, there exists a
vector y such that w = Ny. Substituting w in the equation x = ΞAw, we get
x = ΞANy. Therefore, x ∈ span(ΞAN) so enull(A) ⊆ span(ΞAN).

We now show that span(ΞAN) ⊆ enull(A). Let x = ΞANy ∈ span(ΞAN).
Define w = Ny ∈ N. Since A is N-compatible, x = ΞAw ∈ enull(A). This shows
that span(ΞAN) ⊆ enull(A). �

The definition of null-space compatibility is related to the definition of mutual
rigidity, but it defines compatibility with respect to a space, not with respect to
a particular matrix having that space as a null space. Here is the relationship of
N-compatibility with mutual rigidity.

Lemma 5.5. Let N ⊆ R
m be a linear space, and let B be some matrix with no

zero columns whose null space is N. Another matrix A is N-compatible if and
only if A and B are mutually rigid.

Proof. The equivalence follows from the fact that enull(B) = null(B) = N (be-
cause ZB = ∅) and from the fact that NA ∩ NB = NA. �

If the dimension of N is small, the N-compatibility test given after Defini-
tion 5.2 can be much more efficient than the test for mutual rigidity given earlier.

Example 5.6. Two matrices that are both compatible with some null space N

are not necessarily mutually rigid. For example

A =




1 −1 0 0
−1 1 0 0
0 0 0 0
0 0 0 0


 and B =




0 0 0 0
0 0 0 0
0 0 1 −1
0 0 −1 1




are both compatible with N = span
[
1 1 1 1

]T , but they are not mutually
rigid. Also, their sum is not N-compatible. Since NA+B = {1, 2, 3, 4}, enull(A) =
null(A), so A + B is N-compatible if and only if null(A) = N. However,
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enull(A + B) = enull




1 −1 0 0
−1 1 0 0
0 0 1 −1
0 0 −1 1


 = span




1 0
1 0
0 1
0 1


 �= N = span




1
1
1
1


 .

The next two lemmas are key results that will allow us to build large assemblies
of mutually-rigid matrices.

Lemma 5.7. Let A and B be mutually rigid, both N-compatible for some null
space N. Then A + B is also N-compatible.

Proof. Let u be a vector in enull(A+B), let x be the restriction of u to NA, and
let y be the restriction to NB. Let w be the extension of x to a vector in N. We
claim that w is a unique extension of u to N. If w is not an extension of u, then
they must differ on an index in NB \ NA, so the restriction of w to NB is some
y′ �= y. But both y and y′ are rigid mappings of x, a contradiction to the mutual
rigidity of A and B.

We now show that w is the unique extension of u to N. If there is another
extension, its restriction to NA must differ from x, so it cannot be an extension
of u.

We now show that the restriction u of a vector w ∈ N is in enull(A + B).
The restriction x of u to NA is also the restriction of w to NA, so Ax = Au =
Aw = 0. Similarly for the restrictions to NB. Therefore (A + B)u = 0, so
u ∈ enull(A + B). �

We now introduce a technical lemma that shows how to transform a null-space
extension of a vector into a rigid mapping of the same vector.

Lemma 5.8. Let A and B be mutually rigid matrices, both compatible with some
null space N. Let x ∈ enull(A) and let w ∈ N be its unique extension to N. The
vector ΞBw is the unique rigid mapping of x to enull(B). In particular, if some
vector u is a rigid mapping of x to enull(B), then the unique extension of u to
N is w.

Proof. Let y = ΞBw. We first show that y is the unique rigid mapping of x
to enull(B). The vector y is in enull(B), since B is N-compatible and w ∈ N.
From the definition of w and y we have that xi = wi = yi for all i ∈ NA ∩ NB.
Therefore, y is a mapping of x in enull(B) and it is unique because A and B are
mutually rigid.

Let u be a rigid mapping of x to enull(B). Since this mapping is unique,
u = y = ΞBw. The vector w is an extension of u to N. The matrix B is N-
compatible so this extension is unique. �

The following lemma is the main result of this section. Compare this lemma
to Example 4.5: in the example, the three matrices were not all compatible with
some null space N; the conclusion of this lemma does not hold in that example.

Lemma 5.9. Let A, B, and C be symmetric positive-semidefinite n-by-n matri-
ces, all compatible with some null space N. Let A and B be mutually rigid and let
B and C be mutually rigid. Then A+B and C are mutually rigid (and similarly
for B + C and A).

Proof. We first show that A+B is rigid with respect to C. Let u be in enull(A+
B). By Lemma 5.7, the matrix A + B is N-compatible. Let w be u’s extension
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to N. Define x = ΞT
Aw, y = ΞT

Bw and z = ΞT
Cw. By definition, u = ΞT

A+Bw and
therefore zi = ui for all i ∈ NA+B ∩ NC. Since C is N compatible, z ∈ enull(C).
Therefore, z is a rigid mapping of u in enull(C).

We show that z is unique. The matrices A + B and A are mutually rigid
according to Lemma 4.2. According to Lemma 5.8, x is the unique rigid mapping
of u in enull(A), y is the unique rigid mapping of x in enull(B) and z is the unique
rigid mapping of y in enull(C). Therefore, z is the unique rigid mapping of u in
enull(C) and A + B is rigid with respect to C.

We show now that C is rigid with respect to A + B. Let z be in enull(C).
The matrix C is N-compatible. Let w be z’s extension to N. Define x = ΞT

Aw,
y = ΞT

Bw and u = ΞT
A+Bw. By definition, z = ΞT

Cw and therefore zi = ui for all
i ∈ NA+B ∩ NC . Therefore, u is a rigid mapping of z in enull(A + B).

We show that u is unique. According to Lemma 5.8, y is the unique rigid
mapping of z in enull(B), x is the unique rigid mapping of y in enull(A) and u is
the unique rigid mapping of x in enull(A + B). Therefore, u is the unique rigid
mapping of z in enull(A+B). This implies that C is rigid with respect to A+B
and concludes the proof of the lemma. �

The last lemma of this section characterizes the rigidity and N-compatibility
of certain larger sums.

Lemma 5.10. Let A and B1, B2, . . . , Bk be symmetric positive-semidefinite ma-
trices, all compatible with some null space N. Let A and Bi be mutually rigid for
i = 1, . . . , k. Then A and A +

∑k
i=1 Bi are mutually rigid and A +

∑k
i=1 Bi is

N-compatible.

Proof. We prove the lemma by induction on k. The case k = 1 is trivial by
Lemma 4.2 and Lemma 5.7. We assume that the claim is correct for k smaller
than n and show that it is correct for k = n. By the inductive assumption,
A and A +

∑n−1
i=1 Bi are mutually rigid and A +

∑n−1
i=1 Bi is N-compatible. A

and Bn are mutually rigid. Therefore, by Lemma 5.9 we have that Bn and
A + A +

∑n−1
i=1 Bi = 2A +

∑n−1
i=1 Bi are mutually rigid. By lemma 4.3, Bn and

A +
∑n−1

i=1 Bi are mutually rigid. Therefore, by Lemma 5.9, we have that A and
Bn + A +

∑n−1
i=1 Bi = A +

∑n
i=1 Bi are mutually rigid. By Lemma 5.7, we also

have that Bn +A+
∑n−1

i=1 Bi = A+
∑n

i=1 Bi is N-compatible. This concludes the
proof of the lemma. �

6. The Rigidity Graph

Mutual rigidity relationships in a collection of N-compatible spsd matrices
define a graph structure that we can use to demonstrate the rigidity of finite-
element matrices.

Definition 6.1. Let A1, A2, . . . , Ak be N-compatible symmetric positive semi-
definite n-by-n matrices for some null space N. The rigidity graph G = (V, E) of
{A1, . . . , Ak} is the undirected graph with V = {A1, . . . , Ak} and

E = {(Ae, Af) : Ae and Af are mutually rigid} .

We could also define the rigidity graph of a collection of matrices that are
not necessarily N-compatible, but Example 4.5 suggests that such a definition
might not have interesting applications. On the other hand, the N-compatibility
requirement in the definition enables an important result, which we state and
prove next.
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Lemma 6.2. Let G be the rigidity graph of a collection A1, A2, . . . , Ak of N-
compatible symmetric positive semidefinite n-by-n matrices. Let H be a connected
subgraph of G, and let Ae be a vertex in H. Then Ae and

∑
Af∈V (H) Af are

mutually rigid, and
∑

Af∈V (H) Af is N-compatible.

Proof. Let T be a depth-first-search tree of H whose root is Ae. Denote by
{T1, T2, . . . , Tc} the trees in forest formed from T by removing Ae. We show by
induction on the height h of T that the following claims holds: Ae and Ae +∑c

i=1

∑
Af∈Ti

Af are mutually rigid, and Ae +
∑c

i=1

∑
Af∈Ti

Af is N-compatible.
The claim holds trivially for k = 1 (a single-vertex tree), because Ae is N-

compatible and is mutually rigid with itself.
Now, we assume that the inductive claim is correct for trees with height h

or less and we show it is correct for trees with height h + 1. Let T be a tree
of height h + 1 whose root is Ae, vertex, and let T1, T2, . . . , Tc be the subtrees
defined above. The height of every Ti is h or less. Let Ai be the root vertex
of Ti, and let Fi be the forest of A′

is descendants. By definition, Ae and Ai are
mutually rigid. By the inductive claim on Ti, we have that Ai +

∑
Af∈Fi

Af is
N-compatible and mutually rigid with Ai. We note that all the sums of the form∑

Af are symmetric and positive-semidefinite. Therefore, by Lemma 5.9 Ae and
Ai + (Ai +

∑
Af∈Fi

Af ) = 2Ai +
∑

Af∈Fi
Af are mutually rigid. By Lemma 4.3,

we have that Ae and Ai +
∑

Af∈Fi
Af =

∑
Af∈Ti

Af are mutually rigid for every
i. By Corollary 5.10, we have that Ae and Ae +

∑c
i=1

∑
Af∈Ti

Af are mutually
rigid and Ae +

∑c
i=1

∑
Af∈Ti

Af is N-compatible. This concludes the proof of the
lemma. �

The next result generalizes the previous lemma.

Theorem 6.3. Let G be the rigidity graph of a collection A1, A2, . . . , Ak of N-
compatible symmetric positive semidefinite n-by-n matrices. Let H1 and H2 be
two connected subgraphs of G that share a vertex Ae. Then B =

∑
Af∈V (H1) Af

and C =
∑

Af∈V (H2) Af are mutually rigid.

Proof. According to Lemma 6.2, B and Ae are mutually rigid and so are C and
Ae. By Lemma 5.9, we have that B and Ae + C are mutually rigid. The sum
Ae + C equals

∑
Af∈V (H2)\Ae

Af + 2Ae. By Lemma 4.3, we have that B and∑
Af∈V (H2) Af = C are mutually rigid. �

The next theorem shows that the rigidity graph can sometimes tell us that a
finite-element matrix is rigid in the sense that its null space is exactly N. This
is only a sufficient condition; it is not necessary.

Theorem 6.4. Let G be the rigidity graph of a collection A1, A2, . . . , Ak of N-
compatible symmetric positive semidefinite n-by-n matrices. Let A =

∑k
e=1 Ae.

Let N be a matrix whose columns form a basis for N. If G is connected, then
enull(A) = span(ΞAN). In particular, if

⋃k
e=1 NAe = {1, . . . n}, then null(A) =

N and A is rigid.

Proof. According to Lemma 6.2, A is N-compatible. Therefore, by Lemma 5.4,
enull(A) = span(ΞAN).

If
⋃k

e=1 NAe = {1, . . . n}, then ΞAN = N and enull(A) = null(A). Therefore,
null(A) = enull(A) = span(ΞAN) = span(N) = N. By definition, A is rigid. �
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When the rigidity graph is not connected, the null space may or may not be
N. To show that a disconnected rigidity graph sometimes corresponds to a null
space larger than N, consider

A1 =

[
1 −1 0 0
−1 1 0 0
0 0 0 0
0 0 0 0

]
and A2 =

[
0 0 0 0
0 0 0 0
0 0 1 −1
0 0 −1 1

]
.

Both are compatible with N = span
[
1 1 1 1

]T , but they are not mutually
rigid. Therefore, their rigidity graph consists of two disconnected vertices. The
null space of A1 + A2 is spanned by both

[
1 1 1 1

]T and
[
1 1 −1 −1

]T ,
so it is indeed larger than N, even though NA1 ∪NA2 = {1, 2, 3, 4}. Examples in
which the rigidity graph is not connected but the null space of the sum is N are
more complex; we show an example later in the paper, in section 7.3.

7. Three Case Studies

This section presents three families of N-compatible spsd matrices for two
different Ns. One is well known and we present it without proofs. The second
and third are more complex and we present them in full.

7.1. Laplacians. The first family of matrices that we present consists of Lapla-
cians, matrices that are often used in spectral graph theory and in other areas.
The results in this sections are all adaptations of known results, so we omit the
proofs. All the matrices and vectors are of order n.

Definition 7.1. For a pair (k, j) of indices, 1 ≤ k < j ≤ n, we define the vector
u(k,j),

u
(k,j)
i =




+1 i = k

−1 i = j

0 otherwise .

We define the (k, j) edge matrix using A(k,j) = u(k,j) u(k,j) T .

Lemma 7.2. Let , 1 ≤ k < j ≤ n and let A(k,j) be an edge matrix. Then
(1) A(k,j) is symmetric positive-semidefinite.
(2) NA(k,j) = {k, j}.
(3) A(k,j) is compatible with N1 = span

[
1 1 · · · 1

]T .

The next lemma gives a sufficient and necessary condition for two edge matrices
to be mutually rigid.

Lemma 7.3. The edge matrices A(i,j) and A(k,�) are mutually rigid if and only
if |{i, j} ∩ {k, �}| ≥ 1.

Laplacians are sums of edge matrices (sometimes of positively-scaled edge ma-
trices). They are often defined using an undirected graph G = ({1, 2, . . . , n}, E),

A(G) =
∑

(i,j)∈E

A(i,j) .

Each edge matrix A(i,j) is then associated with an edge (i, j) ∈ E in the graph
G. Lemma 7.3 states that two edge matrices are mutually rigid if and only if the
corresponding edges are incident on a common vertex.

The rigidity graph of {A(i,j)|(i, j) ∈ E} is a dual of G,

Gdual = (E, {(e, f) : e and f share a vertex in G}) .
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The rigidity graph of Laplacians is special in that its connectivity is not only
a sufficient condition for the rigidity of the Laplacian, as shown in Theorem 6.4,
but also a necessary condition.

Lemma 7.4. Let G = ({1, 2, . . . , n}, E) be an undirected graph. If A(G) =∑
E A(i,j) is rigid then the rigidity graph Gdual of {A(i,j)|(i, j) ∈ E} is connected.

Proof. We first show that if A(G) is rigid, then G is a connected graph. Assume
for contradiction that G is not connected. Therefore, there are two nonempty
sets of vertices S and S̄ = {1, . . . , n}\S that are disconnected. Define the vector
x,

xi =

{
+1 i ∈ S

−1 i ∈ S̄ .

By definition, A(i,j)x = 0 for every (i, j) ∈ E. Therefore, A(G)x =
∑

(i,j)∈E A(i,j)x =

0. The vector x is in enull(A(G)) and has no extension to N1. This contradicts
the assumption that A(G) is rigid, since this assumption implies that it is N1-
compatible. Therefore, G is a connected graph.

It is clear that if G is connected, then Gdual is connected. This concludes the
proof of the lemma. �

All the results on the rigidity of Laplacians hold for weighted Laplacians, which
are sums of positively-scaled edge matrices.

7.2. Elastic Struts in Two Dimensions. The second family of matrices model
a collection of pin-jointed struts. Such a collection may form a rigid structure
called a truss (e.g., a triangle in two dimensions) or a non-rigid structure called
a mechanism (e.g., two struts connected by a pin). The rigidity graph of such
a structure, however, is never connected: it has no edges at all. Therefore, the
rigidity graph can never show that the underlying structure is rigid.

We note that there is a combinatorial technique that can determine whether
such a structure is rigid, under a technical assumption on the geometrical location
of the pins. The structure is modeled by a graph in which vertices correspond
to pins (assuming there is a pin at the end of each strut) and in which edges
correspond to struts. If the pins are an an appropriately-defined general position,
then several equivalent conditions on the graph characterize exactly the rigidity
of the structure [12, 14, 16, 19, 13]. These conditions can be tested in O(n2)
operations [11].

Our technique is more general but less precise than these techniques. It applies
to any finite-element matrix, but it only provides sufficient conditions for rigidity.
In the cases of two-dimensional struts, our sufficient conditions are never satisfied.
We show later in this section that our technique does work for other families of
elastic structures.

Definition 7.5. Let P = {pl}n
l=1 be a set of different points in the plain, pl =

(xl, yl). For every pi �= pj , let v(i,j) be the 2P -by-1 vector defined by

v
(k,j)
i =




(xk − xj)/rk,j i = 2k − 1

(yk − y)/rk,j i = 2k

−(xk − xj)/rk,j i = 2j − 1

−(yk − yj)/rk,j i = 2j

0 otherwise

,
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where rk,j =
√

(xk − xj)2 + (yk − yj)2. We define the (i, j) strut matrix to be
A(i,j) = v(i,j) v(i,j) T .

Definition 7.6. Given a collection P = {pl}n
l=1 of points in the plane, we define

the translation and rotation vectors

N
(x)
P =




1
0
1
0
...
1
0




, N
(y)
P =




0
1
0
1
...
0
1




, and N
(r)
P =




−y1

x1

−y2

x2
...

−yn

xn




.

The planar null-space of the collection is NP = span NP , where NP =
[
N

(x)
P N

(y)
P N

(r)
P

]
.

The next lemma shows that the strut matrices are NP compatible.

Lemma 7.7. Let P = {pl}n
l=1 be a set of different points in the plain. Then

(1) A(i,j) is symmetric and positive semidefinite.
(2) NA(i,j) = {2i − 1, 2i, 2j − 1, 2j}.
(3) A(i,j) is NP -compatible.

Proof. The first two claims in the lemma follow directly from the definition of
A(i,j). We show that A(i,j) is NP -compatible by showing that the columns of
ΞA(i,j)NP form a basis for enull(A(i,j)).

A direct calculation, which we omit, shows that AΞA(i,j)NP = 0. The points
pi and pj are different, so the rank of ΞA(i,j)NP is 3. The rank of A(i,j) is 1, so its
essential null space has dimension 3. Therefore, ΞA(i,j)NP spans enull(A(i,j)), so
A(i,j) is NP compatible. �

The following lemma indicates that the rigidity graph of a collection of strut
matrices contains only trivial edges (self loops, which are always present).

Lemma 7.8. Let P = {pl}n
l=1 be a set of different points in the plain. Let A(i,j)

and A(k,�) be two strut matrices. A(i,j) and A(k,�) are mutually rigid if and only
if {i, j} = {k, �}.

Proof. Assume A(i,j) and A(k,�) are mutually rigid. Let A = A(i,j) + A(k,�). By
Lemma 5.7, A is NP -compatible. Therefore, rank(enull(A)) = rank(NP ) = 3.
Since A(i,j) and A(k,�) are mutually rigid, |{i, j} ∩ {k, �}| ≥ 1. Assume for con-
tradiction that |{i, j} ∩ {k, �}| = 1. This implies that |NA| = 6, so rank(A) =

|NA| − rank(enull(A)) = 3. But we also have rank(A) = rank(v(i,j) v(i,j) T
+

v(k,l) v(k,l) T
) ≤ 2, a contradiction. Therefore, |{i, j} ∩ {k, �}| = 2 and {i, j} =

{k, �}.
The other direction is immediate; a matrix is always mutually rigid with itself.

�

7.3. Elastic Triangles in Two Dimensions. We now study another family of
matrices that also arise in two-dimensional linear elasticity, matrices that model
triangular elements. The rigidity graph of such a collection can be connected,
so the rigidity graph can sometimes tell us that the structure is rigid. There are
also cases in which the structure is rigid but its rigidity graph is not connected.
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Definition 7.9. Let P = {pl}n
l=1 be a set of different points in the plain, pl =

(xl, yl), let v(i,j) and A(i,j) be defined as in Definition 7.5. For three different
points pi, pj, and pk, we define the (i, j, k) element matrix in this family to be

A(i,j,k) = A(i,j) + A(i,k) + A(j,k) = v(i,j) v(i,j) T
+ v(j,k) v(j,k) T

+ v(k,i) v(k,i) T
.

The next lemma is the equivalent of Lemma 7.7. We omit the proof, which is
similar to the proof of Lemma 7.7.

Lemma 7.10. Let P = {pl}n
l=1 be a set of different points in the plain. Let A be

an (i, j, k) element matrix. Then
(1) A is symmetric and positive semidefinite.
(2) NA = {2i − 1, 2i, 2j − 1, 2j, 2k − 1, 2k}.
(3) A is NP -compatible, where NP is the planar null space defined in Defini-

tion 7.6.

The following lemma characterizes mutual rigidity between NP -compatible ma-
trices.

Lemma 7.11. Let P = {pl}n
l=1 be a set of different points in the plain. Let A

and B be NP -compatible matrices. Assume that there exist i and j �= i such that
{2i − 1, 2i, 2j − 1, 2j} ⊆ NA ∩ NB. Then, A and B are mutually rigid.

Proof. We show that A is rigid with respect to B. Let i and j be two different
indices such that {2i − 1, 2i, 2j − 1, 2j} ⊆ NA ∩ NB. Let u ∈ enull(A). We can
write u = ΞANP z for some z. Define the vector v = ΞBNP z. By definition,
v ∈ enull(B) and um = vm for every m ∈ NA ∩ NB. Therefore, v is a rigid
mapping of u to enull(B). Let v̂ be a vector in enull(B) such that v̂m = um for
every m ∈ NA ∩ NB. We show that v = v̂. We can write v̂ = ΞBNP w for some
w. We have that v̂m = um for every m ∈ {2i−1, 2i, 2j−1, 2j} ⊆ NA ∩NB. This
gives us ΞA,B(NP z − NPw) = 0, which we expand into

z1 − z3yi = w1 − w3yi

z2 + z3xi = w2 + w3xi

z1 − z3yj = w1 − w3yj

z2 + z3xj = w2 + w3xj

Subtracting the third equation from the first and the fourth equation from the
second, we obtain

z3(yj − yi) = w3(yj − yi)

z3(xi − xj) = w3(xi − xj)

Since (xi, yi) �= (xj , yj), we have that z3 = w3. Substituting w3 with z3 in the
first two equations, we obtain w1 = z1 and w2 = z2. Therefore, v = v̂. This
shows that A is rigid with respect to B. By symmetry, B is rigid with respect
to A. Therefore, A and B are mutually rigid. �

The last lemma of this section shows how to construct the rigidity graph for
this family of matrices.

Lemma 7.12. Let P = {pl}n
l=1 be a set of different points in the plain. Let

A = A(i,j,k) and let B = A(p,q,r) be element matrices Then, A and B are mutually
rigid if and only if |{i, j, k} ∩ {p, q, r}| ≥ 2.
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Proof. If |{i, j, k} ∩ {p, q, r}| ≥ 2, there exist m �= l such that {2m − 1, 2m, 2l −
1, 2l} ⊆ NA ∩ NB. Then, by Lemma 7.11, A and B are mutually rigid.

Let c = |{i, j, k} ∩ {p, q, r}|. We show that if A and B are mutually rigid,
then c ≥ 2. It is clear that if c = 0 then A and B are not mutually rigid. It
is sufficient to show that c �= 1. Assume for contradiction that c = 1. Assume
without loss of generality that (i, j, k) = (1, 4, 5) and (p, q, r) = (1, 2, 3). We show
that the vector u = 0 ∈ enull(A) has two different rigid mappings in enull(B).
The first rigid mapping is the vector u = 0 itself. The second rigid mapping is
v = ΞBNP

[
y1 −x1 1

]T . This vector is different from u = 0, since we either
y1 �= y2 or x1 �= x2, so

v = ΞB




1 0 −y1

0 1 x1

1 0 −y2

0 1 x2
...

...
...





 y1

−x1

1


 =




y1 − y1

−x1 + x1

y1 − y2

−x1 + x2
...


 �= 0

By definition, v ∈ enull(B) and

ΞA,Bv =




y1 − x1 · 0 − y1

y1 · 0 − x1 + x1

0
...
0


 =




0
0
0
...
0


 = ΞA,Bu .

Therefore, both u and v �= u are rigid mappings of u to enull(B), so A is not
rigid with respect to B. This contradicts our assumption and shows that c �= 1.
Therefore, c = |{i, j, k} ∩ {p, q, r}| ≥ 2. �

Informally speaking, Lemma 7.12 shows that edges in the rigidity graph cor-
respond to pairs of triangles whose mutual rigidity is evident: they share a side.
The lemma can be generalized to higher dimensions: elastic elements are mutu-
ally rigid if and only if they share a face. For elasticity, this may be a trivial
statement, but it shows that our algebraic definition of mutual rigidity indeed
captures the domain-specific notion of rigidity.

Figure 7.1 shows a few examples of triangular plane elements and their rigidity
graphs. The structures in cases (a) and (b) are not rigid, and the rigidity graph
is not connected. Case (c) is rigid, and the rigidity graph is connected. Case (d)
is rigid, but the rigidity graph does not show it; the graph is not connected. This
shows, again, that connectivity of the rigidity graph is not a necessary condition
for rigidity.

8. Rigid Sparsifications

Our next goal is to sparsify a matrix A defined as a sum of N-compatible
symmetric positive semidefinite n-by-n matrices, but without changing null(A).
By sparsify we mean that linear systems of the form Bz = r, where B is the
sparsification of A, should be easier to solve than linear systems of the form
Ax = b. In this sense, B is sparser than A if it has a subset of the nonzeros of
A, or if the pattern graph of B has smaller balanced vertex separators than the
pattern graph of A [9, 15]. There may be other meanings.
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(a) (b)

(c) (d)

Figure 7.1. Triangular plane elements and their rigidity graphs
(in blue).

8.1. Dropping Vertices from the Rigidity Graph. Perhaps the most obvi-
ous way to sparsify A =

∑
e Ae is to drop some of the element matrices from the

assembly. This section gives a condition that guarantees that the subset-sum has
the same range and null space as A. The analysis is inductive: it analyzes the
effect of dropping one element at a time.

Lemma 8.1. Let G be the rigidity graph of a collection A1, A2, . . . , Ak of N-
compatible symmetric positive semidefinite n-by-n matrices. Let {H1, H2, . . . , H�}
be the connected components of the G. Assume that NHi

∩ NHj
= φ for every

i �= j.
Let A =

∑k
f=1 Af and let

B =
k∑

f=1
f �=e

Af = A − Ae

for some vertex Ae. If
(1) G and the rigidity graph of B have the same number of connected com-

ponents, and
(2) NA = NB,

then the matrices A and B have the same null space.

Proof. By Corollary 3.6 and by the condition NA = NB, it is sufficient to show
that A and B are mutually rigid. By Lemma 4.1, A = B + Ae is rigid with
respect to B. All that is left to show is that B is rigid with respect to A.

Assume without loss of generality that Ae is in H1. Let

C =
∑

Af∈H1

f �=e

Af .

The first condition of the lemma implies that H1\{Ae} is a nonempty connected
subgraph of G. Therefore, there exist a vertex Ac in H1\{Ae} such that Ae
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and Ac are mutually rigid. Applying Theorem 6.3 to {Ae, Ac} and to H1\{Ae}
shows that Ae + Ac and C are mutually rigid. Therefore, by Lemma 4.2, C
and C + Ae + Ac are mutually rigid. Finally, by Lemma 4.3, C and C + Ae are
mutually rigid.

Let D =
∑�

i=2

∑
Af∈Hi

Af . We have that ND ∩NC = φ and ND ∩NC+Ae = φ,
since NHi

are pairwise disjoint. By Lemma 4.4, we have that C+D and C+Ae+D
are mutually rigid. Therefore, A = C + Ae + D and B = C + D are mutually
rigid, so null(A) = null(B). �

In particular, if G is connected, then the lemma allows us to drop element ma-
trices only as long as the rigidity graph of the remaining elements remains con-
nected. Clearly, there are cases where we can drop an element matrix that would
disconnect the rigidity graph without changing the null space of the sum. In this
case dropping the element violates the sufficient condition stated in Lemma 8.1,
but without actually changing the null space. For example, dropping A(2,5,6)

from the structure shown in Figure 7.1.(c) leads to the structure shown in Fig-
ure 7.1.(d), which is also rigid, but has a disconnected rigidity graph.

The examples shown in Figure 7.1 parts (a) and (b) show that the lemma does
not hold if the NHi

are not mutually disjoint. Dropping A(3,4,5) from the structure
shown in part (a) of the figure gives the structure shown in part (b). The rigidity
graphs of both structures have the same number of connected components, 2,
and NA = NA−A(3,4,5) . But the null space of the structure in (a) has dimension
4 (rigid body motions and a rotation around p3), where as the null space of
the structure in (b) has dimension 6 (separate rigid body motions for the two
elements).

If we use Lemma 8.1 to construct a preconditioner B by repeatedly dropping
element matrices from the sum A =

∑
i Ai, the generalized eigenvalues of (B, A)

are clearly bounded from above by 1, since for any λ that satisfies Bx = λAx
for an x �∈ null(A) we have

λ ≤ max
x

Ax �=0

xT Bx

xT Ax

= max
x

Ax �=0

xT
(∑

i∈S⊂{1,...k} Ai

)
x

xT
(∑k

i=1 Ai

)
x

≤ 1 .

8.2. Dropping Edges from the Rigidity Graph by Fretsaw Extensions.
We now show and analyze a more sophisticated sparsification technique that
drops edges from the rigidity graph.

Definition 8.2. An extension mapping for matrices with n rows is a length �
vector s =

[
s1 s2 · · · s�

]
of integers in the range 1 to n. The master extension

matrix P of an extension mapping s is an (n + �)-by-n matrix with a single 1 in
each row,

P
(s)
ij =




1 i ≤ n and j = i

1 i > n and j = si−n

0 otherwise .

An extension matrix Q(s) of an extension mapping s is an (n + �)-by-n with a
single 1 in each column and at most a single 1 in each row such that P

(s)
ij = 0
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implies Q
(s)
ij = 0. When the mapping is clear from the context, we drop the

superscript from the extension matrices.

In the product Q(s)A of an extension matrix Q(s) and an arbitrary matrix A,
each row of the product is either all zeros or a copy of some row of A, and each
row of A is mapped to a row of the product. In particular, row i of A is either
mapped to row i of the product or to row n + j where sj = i.

The following lemma states some properties of extension matrices and their
relation to the projection matrices ΞA. We omit its proof.

Lemma 8.3. Let P = P (s) and Q = Q(s) be a master extension matrix and an
extension matrix for some extension mapping s of length �. Let A be an n-by-n
symmetric matrix and let In be the n-by-n identity matrix. Then QT Q = P T Q =
QT P = In and ΞQAQT = QΞAQT .

Definition 8.4. The extension of a subspace N ⊆ R
n under an extension map-

ping s is the subspace span
(
P (s)N

)
where N is a matrix whose columns form a

basis for N. To keep the notation simple, we abuse the notation and denote this
space by P (s)

N.

Lemma 8.5. The space P (s)
N depends only on P (s) and on N, not on a particular

basis N . That is, for any two matrices N1 and N2 whose columns span N,
span

(
P (s)N1

)
= span

(
P (s)N2

)
.

Proof. Let x ∈ span
(
P (s)N1

)
. There exists a vector y such that x = P (s)N1y.

Since N1y ∈ N, there exists a vector z such that N1y = N2z. Therefore,
x = P (s)N1y = P (s)N2z ∈ span(P (s)N2). This implies that span

(
P (s)N1

)
⊆

span
(
P (s)N2

)
. Equality follows by symmetry. �

The extension of an N-compatible symmetric positive semidefinite matrix A
retains the essential properties of A.

Lemma 8.6. Let A be an N-compatible symmetric positive semidefinite matrix,
and let Q = Q(s) be an extension matrix for some extension mapping s. Then
QAQT is symmetric positive semidefinite and compatible with P (s)

N.

Proof. The matrix QAQT is symmetric since A is symmetric. For an arbitrary
vector x, let y = QT x. We have that xT QAQT x = yTAy ≥ 0, since A is positive
semidefinite. This implies that QAQT is positive semidefinite.

We now show that QAQT is compatible with P (s)
N. Let N be a matrix whose

columns form a basis for N. It is sufficient to show that span(ΞQAQT P (s)N) =

enull(QAQT ). Let x ∈ span(ΞQAQT P (s)N), so there is a vector y such that
x = ΞQAQT P (s)Ny. By Lemma 8.3,

QAQT x = QAQT ΞQAQT P (s)Ny = QAQT P (s)Ny = QAInNy = Q(AN)y = 0 .

The last equality is due to the fact that A is N-compatible, so AN = 0. Therefore,
x ∈ null(QAQT ). Moreover, by definition xi = 0 for all i /∈ NQAQT , so x ∈
enull(QAQT ). This implies that span(ΞQAQT P (s)N) ⊆ enull(QAQT ).

We now show the inclusion in the other direction. Let x ∈ enull(QAQT ).
Since QAQT x = 0, AQT x = QT QAQT x = 0. Therefore QT x ∈ null(A), so
ΞAQT x ∈ enull(A). Since A is N-compatible, there exists a vector y such that
ΞAQT x = ΞANy. By Lemma 8.3,

x = ΞQAQT x = QΞAQT x = QΞANy = QΞA(QT P (s))Ny = ΞQAQT P (s)Ny .
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Therefore, x ∈ span(ΞQAQT P (s)N). This shows that enull(QAQT ) ⊆ span(ΞQAQT P (s)N)
and concludes the proof of the lemma. �

Similarly-extended matrices maintain their rigidity relationship.

Lemma 8.7. Let {Ai}k
i=1 be a collection of N-compatible symmetric positive

semidefinite matrices, and let Qe = Q
(s)
e and Qf = Q

(s)
f be extension matrices

for some s, such that [Qe] : ,j = [Qf ] : ,j for any j ∈ NAe ∩NAf
. Then QeAeQ

T
e is

rigid with respect to QfAfQ
T
f if and only if Ae is rigid with respect to Af .

In particular, if Q is an (n + �)-by-n identity matrix (the first n columns of
an (n + �)-by-(n + �) identity matrix; such a matrix is an extension matrix for
any s), then (Ae, Af) is an edge of the rigidity graph of {Ai}k

i=1 if and only if
(QAeQ

T , QAfQ
T ) is an edge of the rigidity graph of {QAiQ

T}k
i=1.

Proof. Assume Ae is rigid with respect to Af . Let x ∈ enull(QeAeQ
T
e ), define

x̂ = QT
e x. Since Aex̂ = AeQ

T
e x = QT

e QeAeQ
T
e x = 0, x̂ is in null(Ae). The vector

x̂ is also in enull(Ae), since

x̂ = QT
e x = QT

e ΞQeAeQT
e
x = QT

e QeΞAeQ
T
e x = ΞAeQ

T
e x .

Let ŷ be x̂’s unique rigid mapping in enull(Af ). Define y = Qf ŷ. We have that
QfAfQ

T
f y = QfAfQ

T
f Qf ŷ = QfAf ŷ = 0. Therefore, y ∈ null(QfAfQ

T
f ). Since

y = Qf ŷ = QfΞAf
ŷ = QfΞAf

QT
f Qf ŷ = ΞQf AfQT

f
Qf ŷ ,

y is also in enull(QfAfQ
T
f ).

We still need to show that x and y coincide on NQeAeQT
e
∩ NQfAfQT

f
. Let

i ∈ NQeAeQT
e
∩ NQfAf QT

f
. There exists an index j such that [Qe]i,j = [Qf ]i,j = 1.

Therefore, j ∈ NAe∩NAf
. By definition, x̂j = ŷj, so (Qex̂)i = (Qf ŷ)i. Therefore,

xi = yi. This implies that y is a mapping of x to enull(QfAfQ
T
f ).

We now show that this mapping is unique. Let u be a rigid mapping of x into
enull(QfAfQ

T
f ). Define û = QT

f u. Let j ∈ NAe ∩ NAf
. There exists an index i

such that [Qe]i,j = [Qf ]i,j = 1. Therefore, i ∈ NQeAeQT
e
∩NQf AfQT

f
. By definition,

ui = xi, so (QT
f u)j = (QT

e x)j . Therefore, û and x̂ coincide on NAe ∩ NAf
. We

have that

û = QT
f u = QT

f ΞQf AfQT
f
u = QT

f QfΞAf
QT

f u = ΞAf
QT

f u .

Be definition, Af û = AfQ
T
f u = QT

f QfAfQ
T
f u = 0. Therefore, û ∈ enull(Af ).

Since Ae is rigid with respect to Af , û = ŷ. Therefore,

y = Qf ŷ = Qf û = QfQ
T
f u = ΞQfQT

f
u = u ,

so y is unique. Therefore, QeAeQ
T
e is rigid with respect to QfAfQ

T
f .

The other direction of the equivalence can be shown in a similar manner, so
we omit its proof. �

We are particularly interested in certain extensions, described by the following
definition.

Definition 8.8. Let {Ai}k
i=1 be a collection of N-compatible symmetric positive

semidefinite matrices, let s be an extension mapping, and let {Qi}k
i=1 be a col-

lection of extension matrices for this s. Let G be the rigidity graph of {Ai}k
i=1,

and let Ĝ be the rigidity graph of {QiAiQ
T
i }k

i=1. If
• For every j ∈ NA, there is some i such that j ∈ NAi

and [Qi]j,j = 1,
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• for every connected component Ai1 , . . . , Aim of G, the matrices
Qi1Ai1Q

T
i2 , . . . , QimAimQT

im are a connected component of Ĝ and vice
versa, and

• for every connected component Ai1, . . . , Aimof G, there is at least one
j ∈ {i1, . . . , im} such that Qj is the (n + �)-by-n identity matrix,

then we say that {QiAiQ
T
i }k

i=1 is a fretsaw extension of {Ai}k
i=1. (The rationale

behind the name fretsaw is explained below.) When the Qis are clear from the
context, we use F(A) to denote

∑k
i=1 QiAiQ

T
i ; we call this matrix the fretsaw

extension of A =
∑k

i=1 Ai.

We note that the first fretsaw condition ensures that NA ⊆ NF(A).

Transforming an extended matrix B =
∑

Q
(s)
i Ai Q

(s)
i

T
back to A =

∑
Ai is

simple, as shown in the next lemma.

Lemma 8.9. Let A1, A2, . . . , Ak be a collection of n-by-n matrices. Let P be
a master extension matrix for some extension mapping s and let {Qi}k

i=1 be
a collection of extension matrices for this s. Denote A =

∑k
i=1 Ai and B =∑k

i=1 QiAiQ
T
i . Then A = P T BP .

Proof. By Lemma 8.3, P T Qi = I, so

P T BP =

k∑
i=1

P T QiAiQ
T
i P =

k∑
i=1

Ai = A .

�
Definition 8.10. Let B be an (n + �)-by-(n + �) matrix. Partition

B =

[
B11 B12

B21 B22

]
such that B11 is n-by-n and B22 is �-by-�. If B22 is nonsingular, we denote
schur�(B) = B11 − B12B

−1
22 B21. When � is clear from the context, we simply use

schur(B).

The following theorem is the main structural result of this section. The the-
orem lists conditions that guarantee the preservation of the null space under a
fretsaw extension.

Theorem 8.11. Let A =
∑k

i=1 Ai, where A1, A2, . . . , Ak is a collection of N-
compatible symmetric positive semidefinite n-by-n matrices, let Q be the (n+ �)-
by-n identity matrix, and let F(A) be a fretsaw extension of A. If the rigidity
graph of A1, A2, . . . , Ak is connected, then

(1) QAQT and F(A) are mutually rigid.
(2) For every x ∈ enull(QAQT ), there exist a vector y ∈ enull(F(A)) such

that ΞQAQT y = x.
(3) null(F(A)) ⊆ null(QAQT ).
(4) If schur(F(A)) exists, then null(A) = null(schur(F(A))).

Proof. Let {Qi}k
i=1 be the collection of the extension matrices used in F(A).

By Lemma 8.6, the matrices in collections {QiAiQ
T
i }k

i=1 and {QAiQ
T}k

i=1 are
compatible with P (s)

N. By definition, the rigidity graph of {QiAiQ
T
i }k

i=1 is con-
nected. By Lemma 8.7 and the assumption that the rigidity graph of {Ai}k

i=1 is
connected, the rigidity graph of {QAiQ

T}k
i=1 is also connected. By definition, the
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rigidity graph of {QAiQ
T}k

i=1 shares at least one vertex with the rigidity graph
of {QiAiQ

T
i }k

i=1. Therefore, by Lemma 6.3, QAQT and F(A) are mutually rigid.
The second part of the lemma follows the fact that QAQT is rigid with respect

to F(A) and that NQAQT = NA ⊆ NF(A).
The matrix F(A) is rigid with respect to QAQT . We also have that NQAQT =

NA ⊆ NF(A). Therefore, by Lemma 3.5, null(F(A)) ⊆ null(QAQT ). This proves
the third part of the lemma.

Assume, without loss of generality, that NA = {1, . . . , m} for some m. Under
this assumption, the fourth part of the lemma follows from Lemma 3.7 and the
fact that QAQT and F(A) are mutually rigid. �

8.3. Constructing a Fretsaw Extension from a Spanning Tree. We now
show a practical way to construct nontrivial fretsaw extensions. The extensions
that we build here are essentially as sparse as possible: we can factor F(A) with
no fill. Our simple spanning-tree extensions may not be effective preconditioners
(the generalized eigenvalues may be large), but the construction shows that there
are efficient algorithms for constructing nontrivial fretsaw extensions.

Let A = {A1, A2, . . . , Ak} be a collection of N-compatible symmetric positive
semidefinite n-by-n matrices. Let G = (A, E) be the rigidity graph of A. With-
out loss of generality, we assume that G is connected (otherwise we repeat the
construction for each connected component of G). The construction builds the
Qis by columns. This introduces a slight notational difficulty, since we do not
know the number of rows in the Qis until the construction ends. We use the
convention that the columns are tall enough (nk is tall enough) and then chop
the Qis to remove zero rows. We denote by er the rth (long enough) unit vector.

We use a spanning tree T of G to define an extension F(A). We initialize a
variable r to n. This variable stores the index of the last nonzero row in the Qis.
The algorithm iterates over the column indices j ∈ {1, . . . , n} (in any order). In
iteration j, we construct column j of Q1 . . . , Qk.

We begin iteration j by setting the jth column of Q1 to ej. This ensures
that Q1 is an identity matrix, so the second fretsaw condition is automatically
satisfied.

We now construct the set V (j) = {Ai ∈ A|j ∈ NAi
} of elements that are

incident on the index j. We also construct the subgraph G(j) = (V (j), E(j)) of
T that is induced by V (j). We partition G(j) into its connected components and
process each component separately. The ordering of the components is arbitrary,
except that if A1 ∈ V (j), then we process the component containing A1 first. Let
{Ai1 , Ai2, . . . , Aim} ⊆ V (j) be the vertices of the next component to be processed.
If this component is the first component of G(j), then we set the jth columns
of Qi1 , . . . , Qim to ej . Otherwise, we increment r and set the jth columns of
Qi1 , . . . , Qim to er.

This process specifies the jth column of every Qi such that j ∈ NAi
. We

complete the construction of the Qis by setting the jth column of every Qi such
that j �∈ NAi

to ej .
Sometimes the row/column indices of A =

∑
Ai have a natural grouping.

For example, in problems arising in two-dimensional linear elasticity, each point
in the geometry of the discrete structure is associated with two indices, an x-
direction index, say j1, and a y-direction index, say j2. This usually implies that
G(j1) and G(j2) are identical graphs. In such cases, we extend A consistently :
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(a) (b)

(c) (d)

Figure 8.1. The construction of a spanning-tree fretsaw-
extended matrix. (a) The elements of the original structure and
its rigidity graph in blue; elements are mutually rigid iff they share
a side. (b) A spanning tree T (yellow) of the rigidity graph. (c)
The structure induced by the spanning tree; duplicated nodes are
marked by red circles. In the illustration, the triangles have been
slightly shrunk to show how rigidity relationships have been sev-
ered, but the element matrices are only permuted, so they still
model the original triangles. (d) The fretsaw-extended structure.

we order the connected components of G(j1) and G(j2) consistently, which means
that [Qi] : ,j1

= ej1 if and only if [Qi] : ,j2
= ej2 .

Figure 8.1 illustrates the construction of a spanning-tree fretsaw-extended ma-
trix for a structure consisting of linear elastic elements in two dimensions. The
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figure explains the rationale behind the term fretsaw. A fretsaw is a fine-toothed
saw held under tension, designed for cutting thin slits in flat materials, such as
sheets of plywood. When applied to two dimensional elastic structures, like the
one shown in Figure 8.1, the spanning-tree fretsaw construction appears to cut
the original structure like a fretsaw.

Once the Qis are constructed, we form F(A) =
∑k

i=1 QiAiQ
T
i . The next

theorem shows that the Qis are extension matrices for some s and that F(A) is
a fretsaw extension of A.

Theorem 8.12. Let {Ai}k
i=1 be a collection of N-compatible symmetric positive

semidefinite n-by-n matrices, let s be a spanning-tree extension mapping, and let
{Qi}k

i=1 be the extension matrices for this extension. Then F(A) =
∑k

i=1 QiAiQ
T
i

is a fretsaw extension of A.

Proof. We first show that the Qis are indeed valid extension matrices for a single
s. We can construct an s step-by-step along the construction of the Qis. We
initialize s = 〈〉. When we increment the value r, we concatenate the current
index j to the end of s. By definition, Qi contains a nonzero in (r, j) if and only if
s contains the value j in its (r−n)th position. Therefore, the Qis are consistent
with P (s). Moreover, by definition, every column j of a matrix Qi is either ej or
er where r > n and r is unique in among the columns of Qi. Therefore, the Qis
are valid extension matrices.

Let G be the rigidity graph of {Ai}k
i=1, and let Ĝ be the rigidity graph of

{QiAiQ
T
i }k

i=1. We show now that every connected component Ai1 , Ai2 , . . . , Aimin
G, the matrices Qi1Ai1Q

T
i1
, Qi2Ai2Q

T
i2
, . . . , QimAimQT

im form a connected compo-
nent in Ĝ and vice versa. Let Ai1 , Ai2, . . . , Aim be a connected component of G.
Let T be the spanning tree used to create Qi1 , Qi2 , . . . , Qim. Let Ap and Aq be
to matrices adjacent in T . For every index j ∈ NAp ∩NAq , Ap and Aq belong to
the same connected component of G(j). Therefore, Qp and Qj coincide on their
jth column. Therefore, by Lemma 8.7, QpApQ

T
p and QqAqQ

T
q are mutually rigid.

Therefore, Qi1Ai1Q
T
i1
, Qi2Ai2Q

T
i2
, . . . , QimAimQT

im is a connected component in Ĝ.
In a similar manner if Qi1Ai1Q

T
i1 , Qi2Ai2Q

T
i2 , . . . , QimAimQT

im form a connected
component in Ĝ, by Lemma 8.7, Ai1 , Ai2 , . . . , Aim is a connected component in
G.

There are two additional properties that need to be verified in order to show
that F(A) is a fretsaw extension. By definition, the construction ensures that
there is at least one Qi1 for every connected component which is an (n + l)-by-
n identity matrix. The second property that we need to show is that NA ⊆
NF(A). Let j ∈ NA. Let Ap be a matrix in the connected component of G(j)

that was processed first. By definition, column j of Qp contains ej . Therefore,
j ∈ NQpApQT

p
. Lemma 2.6, ensures that j ∈ NF(A). �

8.4. Perfect Elimination Orderings for Spanning-Tree Fretsaw Exten-
sions. The spanning-tree fretsaw construction is motivated by an elimination
ordering that guarantees that all the fill occurs within the nonzero structure of
the element matrices. If [Ae]i,j �= 0 for all i, j ∈ NA, this ordering is a no-fill
ordering of F(A).

Lemma 8.13. Let A = {A1, A2, . . . , Ak} be a collection of N-compatible sym-
metric positive semidefinite n-by-n matrices. Let F(A) be a spanning-tree fretsaw
extension of A =

∑k
i=1 Ai. There is a permutation matrix Ψ such that all the
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nonzeros Li,j of the Cholesky factor L of ΨF(A)ΨT satisfy i, j ∈ NΨQeAeQT
e ΨT

for some e (e depends on i and j).

Proof. We root the spanning tree T of the rigidity graph at A1 and take φ to be
a postorder of this rooted tree. That is, φ is an ordering of the element matrices
in which the leaves of the rooted tree appear first, followed by parents of leaves,
etc. We construct an elimination ordering ψ incrementally. Initially, ψ = 〈〉 is
an empty ordering. Let Ae be the next unprocessed element matrix in φ, and let
Af be the parent of Ae in the rooted tree (if it has a parent). Let {i1, . . . , im}
be the indices in

NQeAeQT
e
\

(
NQfAfQT

f

⋃
ψ

)
(with ψ taken to be a set of already ordered indices). We concatenate 〈i1, . . . , im〉
to ψ in an arbitrary order. The permutation matrix Ψ is the matrix that corre-
sponds to ψ. That is, Ψi,ψi

= 1.
Now that we have specified Ψ, we show that it limits fill as claimed.
Claim A. Let i ∈ {1, . . . , n, n+1, . . . , n+ �}. Let j be the column in P (s) such

that P
(s)
i,j �= 0 (recall that every row in P (s) contains exactly one nonzero). We

denote by G
(j)
i the connected component of G(j) in which j is mapped to i. The

graph G
(j)
i is a connected subgraph of G(j) which is an induced subgraph of a

rooted tree. Therefore, G
(j)
i is itself a rooted tree. We claim that i is added to

ψ during the processing of the root Ah of G
(j)
i .

Proof of Claim A. We first show that if i is added to ψ, then it is added during
the processing of the root of G

(j)
i .Let Ae be the element during the processing

of which we add i to ψ. We first show that Ae ∈ G
(j)
i . Clearly, i ∈ NQeAeQT

e
.

Therefore, j ∈ NAe. By the definition of G(j), Ae ∈ G(j), and by the definition of
G

(j)
i , Ae ∈ G

(j)
i . Now suppose for contradiction that Ae is not the root of G

(j)
i .

Then Ae has a parent Af in G
(j)
i . Because Af is in G

(j)
i , i ∈ NQfAf QT

f
, so the

algorithm would not have added i to ψ during the processing of Ae. Therefore,
Ae is the root of G

(j)
i .

To complete the proof of Claim A, we show that i is added to ψ. Suppose for
contradiction that it is not. When we process the root Ah of G

(j)
i , i �∈ ψ. But i

cannot be in NQfAfQT
f
, where Af is the parent of Ah in the global rooted tree. If

it was, then j ∈ NAf
, so Af would be in G(j), and because it is connected to Ah,

it must also be in G
(j)
i . But Ah is the root of G

(j)
i , so i �∈ NQfAf QT

f
. Therefore, i

is added to ψ. This concludes the proof of Claim A.
Claim B. Just before Af is processed, ψ is exactly the set

ψ =
{
i : i ∈ NQeAeQT

e
for some Ae that appears before Af in φ

}
\

(
NQfAfQT

f
∪

{
i : i ∈ NQgAgQT

g
for some Ag that appears after Af in φ

})
.

Proof of Claim B. The claim follows by induction from the process of con-
structing ψ and from the fact that φ is a postorder of the rooted tree.

Claim C. If Lr̂,ĉ �= 0 then r̂, ĉ ∈ NΨQeAeQT
e ΨT for some e.

Proof of Claim C. If Lr̂,ĉ �= 0, then either
[
ΨF(A)ΨT

]
r̂,ĉ

�= 0 or there is
some ı̂ < r̂, ĉ such that Lr̂,̂ı �= 0 and Lĉ,̂ı �= 0. The first condition cannot
violate Claim B, because if

[
ΨF(A)ΨT

]
r̂,ĉ

�= 0 then there is some e such that[
ΨQeAeQ

T
e ΨT

]
r̂,ĉ

�= 0, so r̂, ĉ ∈ NΨQeAeQT
e ΨT .
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If for some r̂ and ĉ we have Lr̂,ĉ �= 0 because of the second condition, then let
ı̂ be the minimal index such that Lr̂,̂ı �= 0 and Lr̂,̂ı �= 0 for all such (r̂, ĉ) pairs.
This definition of ı̂ guarantees that

[
ΨF(A)ΨT

]
r̂,̂ı

�= 0 and
[
ΨF(A)ΨT

]
ĉ,̂ı

�= 0.
Define i = ψı̂, r = ψr̂ and c = ψĉ.

Let Af be the element during the processing of which i was added to ψ.
Because ı̂ < r̂, ĉ, when i is added to ψ, r and c are not yet in ψ. We claim
that r and c are in NQfAf QT

f
; if true, Claim C holds. Suppose for contradiction

that r �∈ NQfAfQT
f
. By Claim B, r ∈ NAg for some Ag that appears after Af in

φ. Because
[
ΨF(A)ΨT

]
r̂,̂ı

�= 0 and because Ag is symmetric, we must also have
i ∈ NAg . But this implies that i cannot be added to ψ when Af is processed (by
Claim B). This concludes the proof of Claim C and of the entire proof. �

8.5. Quantitative analysis. Lemma 8.11 showed that if the rigidity graph of
a finite-element matrix A =

∑
Ae is connected and if schur(F(A)) exists for a

fretsaw extension F(A), then A and schur(F(A)) have the same range and null
space. We now strengthen this result and show that the generalized eigenvalues
of (schur(F(A)), A) are bounded from above by 1. We note that schur(F(A)) can
be implicitly used as a preconditioner; in the preconditioning step of an iterative
linear solver, we can solve a linear system whose coefficient matrix is F(A), not
schur(F(A)) [2, 4]. In particular, the previous section showed that we can factor
a spanning-tree fretsaw-extension F(A) with essentially no fill.

Lemma 8.14. Let A1, A2, . . . , Ak be a collection of N-compatible symmetric pos-
itive semidefinite n-by-n matrices. Let A =

∑k
i=1 Ai. Let F(A) be a fretsaw

extension of A. Then if schur(F(A)) exists, and λ is a finite generalized eigen-
value of the pencil (schur(F(A)), A), then λ ≤ 1.

Proof. We partition F(A) into

F(A) =

[
B11 B12

BT
12 B22

]
,

where B11 is n-by-n and B22 is �-by-�. By the assumption that schur(F(A))
exists, B22 is symmetric positive definite. In this notation, schur(F(A)) = B11 −
B12B

−1
22 BT

12. Let P be the (n + �)-by-n master extension matrix corresponding
to the fretsaw extension F(A) and let Q be the (n + �)-by-n identity matrix.

Let λmax be the maximal finite generalized eigenvalue of the pencil (schur(F(A)), A)
and let x be the corresponding eigenvector. We let

x̂ =

[
x

−B−1
22 B21x

]
and multiply it by F(A),

F(A)x̂ =

[
B11x + B12(−B−1

22 B21x)
B21x + B22(−B−1

22 B21x)

]

=

[
schur(F(A))x

0

]

=

[
λmaxAx

0

]
= λmaxQAQT x̂ .

Multiplying both sides by x̂T , we obtain x̂TF(A)x̂ = λmaxx̂
T QAQT x̂.
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We now show that x̂TF(A)x̂ ≤ x̂T QAQT x̂. For a length-� vector y, define the

function f(y) =
[
xT yT

]
F(A)

[
x
y

]
. We note that f(−B−1

22 B21x) = x̂TF(A)x̂.

For an arbitrary y,[
xT yT

]
F(A)

[
x
y

]
=

[
xT yT

] [
B11 B12

BT
12 B22

] [
x
y

]
= xT B11x + yTBT

12x + xT B12y + yTB22y

= xT
(
B11 − B12B

−1
22 BT

12

)
x + xT B12B

−1
22 BT

12x

+yTBT
12x + xT B12y + yTB22y

= xT
(
B11 − B12B

−1
22 BT

12

)
x

+
(
y + B−1

22 BT
12x

)T
B22

(
y + B−1

22 BT
12x

)
.

Because B22 is positive definite, f(y) is minimized at y = −B−1
22 BT

12x.
By Lemma 8.9, x̂T QAQT x̂ = x̂T Q(P TF(A)P )QT x̂ = xT P TF(A)Px. By the

definition of a master extension matrix, the vector Px contains the vector x in
its first n coordinates, so Px =

[
xT zT

]
for some z and xT P TF(A)Px = f(z).

Since −B−1
22 BT

12x minimizes f ,

x̂T QAQT x̂ = xT P TF(A)Px = f(z) ≥ f(−B−1
22 BT

12x) = x̂TF(A)x̂

This implies that λmax ≤ 1 and concludes the proof of the lemma. �

9. Numerical Examples

In this section we present experimental results that indicate that fretsaw-tree
sparsifications can be used as preconditioners. We do not claim that they are
particularly effective. Our only goal in this section is to demonstrate that fretsaw-
tree sparsifications can be used computationally as preconditioners. The results
presented in this section also suggest that the qualitative convergence behavior
of fretsaw-extension preconditioners is similar to that of Vaidya’s precondioners
when applied to weighted Laplacians [7].

Figure 9.1 shows convergence results for an iterative solver (preconditioned
conjugate gradients) with a fretsaw-tree preconditioner. The figure shows re-
sults for two different physical two-dimensional problems that we discretized on
the same triangulated mesh. One problem was a Poisson problem and the other
a linear-elasticity problem, both with constant coefficients and with Neumann
(natural) boundary conditions. In each case, we constrained one or three un-
knowns belonging to a single triangle to transform the coefficient matrix into a
non-singular one.

Each graph shows convergence results for three conjugate-gradients solvers:
with no preconditioning, with no-fill incomplete-Cholesky preconditioning (de-
noted cholinc(0) in the graphs), and with fretsaw-tree preconditioning. The
fretsaw trees for the two problems are different, of course, because the rigidity
graphs are different. We chose to compare the fretsaw-tree preconditioner with
a no-fill incomplete-Cholesky preconditioner because both are equally sparse.

The results show that fretsaw trees can be used as preconditioners. The ex-
periments are too limited to fully judge them, but the experiments do indicate
that they are not worse than another no-fill preconditioner. Two other observa-
tions on the graphs are (1) the fretsaw is better than incomplete Cholesky on the
Poisson problem, but the two are comparable on the linear-elasticity problem,
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Figure 9.1. A triangularization of a two-dimensional domain
(top) and convergence plots for two problems discretized on this
domain. The triangularization used in the plots is finer than the
one shown in the top part of the figure. The graph on the left
shows the convergence of iterative solvers on a discretization of a
Poisson problem, and the graph on the right shows convergence on
a linear-elasticity problem, both with constant coefficients.

and (2) the steady linear convergence behavior of the fretsaw trees is similar to
the convergence behavior of Vaidya’s preconditioners on weighted Laplacians [7].

10. Concluding Remarks

To keep the paper readable and of reasonable length, we have omitted from it
several topics, which we plan to cover in other papers.

• Element matrices that represent boundary conditions. In much of this
paper, we have assumed that all the element matrices are compatible with
N. This means, in particular, that the element matrix is singular. In
many practical computations, boundary conditions are added to remove
the singularity. We kept the discussion focused on singular matrices to
reduce clutter. We plan to explore the handling of boundary conditions
in a future paper.

• Fretsaw constructions other than spanning-tree fretsaw extensions. Pre-
vious work on combinatorial preconditioners indicates, both theoretically
and experimentally, that tree and tree-like preconditioners are not effec-
tive; augmented trees and other constructions usually work better. We
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have developed augmented-spanning-tree fretsaw extension algorithms for
Laplacians, but this construction is beyond the scope of this paper.

In addition, there are several interesting problems that we have not yet solved.
The most interesting one is proving lower bounds on the generalized eigenvalues
of (schur(F(A)), A) and finding fretsaw constructions that ensure that this bound
is not too small. A particularly interesting question is whether this can be done
by assigning weights to the edges of the rigidity graph.

Another question is what other results from spectral graph theory can be
generalized to finite-element matrices as defined in this paper, and whether the
rigidity graph, perhaps weighted, would be useful in such generalizations.
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