
Experience with OpenType Font Production

Sivan Toledo∗and Zvika Rosenberg†

22nd January 2003

1 Introduction

This article describes the production of a large
number of Hebrew OpenType fonts. More specif-
ically, we describe the production of OpenType
fonts with TrueType glyph descriptions and with
advanced typographic layout features. The project
was conducted by MasterFont Studio Rosenberg, a
large Hebrew digital font foundry in Tel-Aviv, with
assistance from Sivan Toledo from the School of
Computer Science in Tel-Aviv University.

Hebrew is a right-to-left script that is used in
one of two ways: with or without diacritics. Most
Hebrew texts are printed almost without any dia-
critics, but childern’s books, poetry, and bibles are
printed with diacritics. Even texts that are printed
without diacritics use them occasionally to disam-
biguate pronounciation and meaning. The diacrit-
ics in children’s books and poetry are vowels and
consonant modifies, which are called nikud in He-
brew (meaning “to add points”). Bibles also use a
third kind, cantillation marks, which are not treated
in this article (but see [4, 5] for a thorough treat-
ment). Hebrew diacritics are quite hard to support
in fonts, since there are 15 of them and 27 letters,
with up to 3 diacritics per letter. Even though not
all the combinations are grammatically possible,
there are too many combinations to support them
conventiently using precomposed glyphs. In ad-
dition, diacritics must be positioned relative to the
base letter visually, rather than mathematically. For
example, the below-baseline diacritics must be set
below the visual axis of the letter [14], not below
its mathematical center. This means that ligatures,
pair kerning, and simple mathematical centering
alone are insufficient for correct placement of dia-
critics. In addition to diacritics, Hebrew fonts can
also benefit from pair kerning, although until re-
cently, pair kerning was not particularly common

∗School of Computer Science, Tel-Aviv University, Tel-Aviv
69978, Israel. Email: stoledo@tau.ac.il.

†MasterFont Studio Rosenberg, 159 Yigal Alon Street, Tel-
Aviv 67443, Israel. Web address: www.masterfont.co.il.

in Hebrew fonts. For further information about the
Hebrew script, see [1, 13, 14].

The initial objective of the project was to convert
older fonts into the new OpenType format. This
was motivated by the concurrent development of
Adobe InDesign 2.0 ME (middle eastern), the first
high-end page-layout program to support Hebrew
OpenType features. Microsoft’s Office XP also sup-
ports these features, so InDesign was not the only
motivator. But it quickly became evident that the
same tools that would be necessary to convert the
old fonts to the new format could also be used
to streamline the entire font production process at
MasterFont. Therefore, the project had two objec-
tives: to convert the old fonts to the new format,
and to streamline the production process.

The rest of the paper is organized as follows. The
next section provides background on font formats.
Section 3 describes how diacritic positioning in-
formation is represented in MasterFont’s old fonts.
Section 4 describes the objectives of the project,
and Section 5 describes the software tools that we
used to achieve these objectives. The overall pro-
duction process is described in Section 6, and our
conclusions from this development and production
experience is described in Section 7.

2 Fonts Formats

This section describes the OpenType font format
and other relevant font formats. Unfortunately, the
term OpenType is somewhat vague, so this section
also establishes a more precise nomeclature.

Type 1, TrueType, and Early Extensions

The first widely-accepted device-indepenent font
format was the PostScript Type 1 format [9]. Adobe
started selling retail Type 1 fonts in 1986, and pub-
lished the specification in the late 1980’s, after Bit-
stream figured out how to produce Type 1 fonts
(prior to that the specification was proprietary and

1

only Adobe could produce Type 1 fonts). Type 1
fonts consist of two or three main parts: scal-
able hinted glyph descriptions, metric information,
which include glyph dimensions, advance widths,
and pair kerning, and possibly bitmaps for screen
previewing. Today most systems can rasterize the
scalable glyph descriptions so the bitmaps are usu-
ally no longer necessary; Adobe distributes freely
the Adobe Type Manager which is a Type 1 raster-
izer for older Windows and Macintosh computers
without a built-in rasterizer. Type 1 fonts are rela-
tively easy to design and produce, and today there
are tens of thousands of commercial Type 1 fonts.

The next widely-accepted device-indepenent
font format was the TrueType format [6, 2], which
was invented by Apple in the late 1980’s, as part of
a collaboration between Apple and Microsoft, and
became the native scalable font format for both Ap-
ple Macintosh computers and Windows computers.
In a TrueType font, all the data associated with the
font, such as glyph descriptions, metric informa-
tion, administrative informaion (font name, for ex-
ample), and possibly bitmaps, are placed in a single
file, which is organized as a collection of tables.
For example, one table contains glyph description,
another character-to-glyph mappings, yet another
table contains kerning pairs, and so on.

The kinds of data in a TrueType font are almost
identical to the kinds of data in a Type 1 font,
but they are organized differently and sometimes
represented differently. Most importantly, glyph
descriptions and hints for low-resolution rasteriza-
tion are represented differently. In a Type 1 font,
glyphs are represented using cubic-spline outlines
with declarative hints. In a TrueType font, glyphs
are represented using quadratic-spline outlines and
a low-level programmable hinting language. Type 1
outlines are easier to design and hint, and most
designers use cubic splines when designing fonts.
Well-hinted TrueType fonts are hard to produce,
but they can achieve pixel-perfect rasterization at
low resolutions, something that Type 1 fonts can-
not achieve. Virtually all font editors can convert
one type to the other. the conversion of TrueType
outlines to Type 1 outlines is lossless, but the other
direction only produces an approximation. How-
ever, the approximation of a Type 1 outline by a
TrueType outline can be made arbitrarily accurate
and font editors produce approximations that are
visually indistinguishable from the original. Hint-
ing information is usually also converted, but not
as well.

Both Adobe and Apple introduced enhance-
ments to these font formats during the 1990s, but

none became widely used. Adobe introduced the
Multiple Master font technology [10, 11], which al-
lows users to interpolate between fonts in a family.
This enhancement transforms the font family from
a discrete set to a continuous spectrum. For ex-
ample, there aren’t just medium and bold fonts, for
example, but a continuous weight axis. Apple intro-
duced GX fonts [6] (now called AAT fonts), which
are TrueType fonts with additional tables that al-
low continuous interpolation, like Multiple Master
fonts, and which enable high-end typographic fea-
tures. In particualr, GX fonts can support multiple
glyphs for a single character, such as swash, small
caps, or old-style figures, they can reorder glyphs,
and so on. Neither format became widely accepted
by font vendors, probably because the fonts were
too hard to produce. No major font foundry be-
sides Adobe produced Multiple Master fonts, and
only a few GX fonts were produced by Bitstream
and Linotype.

OpenType

OpenType is a new font format [3] that Microsoft
and Adobe specified collaboratively. The format
was first used, under the name TrueType Open, in
the Arabic version of Windows 95, which was intro-
duced in 1996. Adobe later joined the specification
effort and the name was changed to OpenType.

OpenType adds three capabilities to the True-
Type format: advanced layout features, support for
Type 1 glyph descriptions, and digital signatures.
The advanced layout features are supported by five
new tables: , that define glyph properties and
glyph sets, , which defines glyph substitution
rules, , which speficies positioning informa-
tion, , which provides justification information,
and , which provides baseline-adjustment in-
formation. These features were designed to support
layout of text in complex scripts such as Arabic, He-
brew, Indic, and east Asian scripts (Hebrew is by no
means the most complex), and to support high-end
typographic features such swash letters and deco-
rative ligatures, old-syle and proportional figures,
and small capitals.

The support for Type 1 glyph descriptions is de-
signed to allow lossless conversion of Type 1 fonts
to a TrueType-like table-based file format. Such
fonts use two new tables,  and , to store
a losslessly-compressed Type 1 font. Technically,
the format of the  table corresponds to that of
PostScript Type 2 fonts [12], also known as the
compact font format, but the essense of the for-
mat is a lossless representation of Type 1 glyph

2

descriptions (outlines and hints). The need to sup-
port two kinds of glyph descriptions and hints con-
stained the design of the layout-related tables, in the
sense that positioning information in the  ta-
ble could not be hinted using the normal TrueType
or hinting language; a different hinting mechanism
is used, which supports both Type 1 and TrueType
glyphs.

The support for digitally signing fonts, which
uses the  table, is meant to allow users and font-
using software to verify the authenticity of fonts.
For example, future operating systems might re-
quire that certain system fonts are digitally signed
by the operating-system’s vendor, thereby prevent-
ing modified versions of these fonts from being
used instead. For independent font vendors, there
is currently little benefit in digitally signing fonts,
since users currently do not have means to verify
these signatures, and since fonts rarely pose secu-
rity or stability problems to systems.

OpenType fonts with TrueType outlines can be
used by any TrueType-capable software, since ex-
cept for extra tables (which are allowed by the True-
Type spefication), the fonts are also valid TrueType
fonts. Software such as rasterizers, layout engines,
and printer drivers can simply ignore the extra ta-
bles. OpenType fonts with Type 1 outlines require
special support in rasterizers and printer drivers,
support beyond that required to support Type 1 and
TrueType fonts. In principle any TrueType-capable
layout engine can use any OpenType font, since the
metric and layout information are compatible (an
exception is pair-kerning information, which can
appear in either the ‘kern’ table or the os table
or both in a font with TrueType glyphs, but only
in the  table in a font with Type 1 glyphs). To
emphasize the fact that OpenType fonts with True-
Type glyphs can be used by any TrueType-capable
software, whereas special support is required for
fonts with Type 1 fonts, files containing the first
kind use the ttf or ttc extension, whereas files
containing the second kind use the otf extension.

So what is an OpenType font? According to the
Microsoft/Adobe specification, any font that con-
forms to the specification, including both TrueType
and Type 1 glyphs, with or without advanced lay-
out tables and digital signatures. This is somewhat
confusing, especially since the file icons in Win-
dows do not correspond to the glyph descriptions
(Windows 2000 and XP use the ‘O’ icon for otf
files and for ttf or ttc files if the fonts have a 
table, and the ‘TT’ icon for all other ttf files). We
will use the acronyms  for OpenType fonts with
Type 1 glyphs, - for fonts with TrueType

glyphs and with advanced layout tables, and 
for fonts with TrueType glyphs but no advanced
layout tables.

Microsoft’s main interests in the OpenType for-
mat lies in supporting complex scripts in Windows,
with initial emphasis on Arabic and later on Indic
scripts, and in tighter operating-system/font inte-
gration using digital signatures. Adobe’s main in-
terests in the format lies in exploiting TrueType’s
advantages, mainly the support for non-latin char-
acter encodings and the convenient single-file for-
mat, and in providing its fonts and applications
easier access to so-called expert glyphs, such as
old-style figures and small capitals [8].

Windows and Macintosh Font Files

Differences in the way font files are stored on dif-
ferent platforms cause a few additional difficulties
during font production.

On Windows and Unix/Linux systems, a True-
Type or OpenType font is stored in a single file. A
Type 1 font is represented by up to four files: a pfb
or pfa file that stores the glyph descriptions and a
character-to-glyph encoding, an afm and/or a pfm
files that store metric information, as well as the
encoding, but no glyphs, and an inf file that stores
administrative infomation about the font. On Win-
dows system, only the pfb and pfm files are used.

On Macintosh systems, there are multiple ways
to store fonts. The Macintosh operating system
supports two byte streams per file. One is called
the data fork and the other the resource fork, which
was meant to store application resources such as
localized strings, icons, and so on. The format of
the resource fork allows multiple resources to be
stored in a single file. Before MacOS X (that is,
before version 10), fonts were always stored in the
resource fork of files whose data fork was empty.
Fonts and font families are represented by several
kinds of resources, such as the  resource that
describes an entire family (regular, bold, italic, etc.),
the  for storing TrueType fonts, the  and
 for storing bitmap fonts, and so on. The fonts
of a family are usually stored in a single file called
a suitecase, whose resource fork contains multiple
resources. The Macintosh also associates a file type
(separate from the extension) and a creator code
with each file. Font files need to have a specific
type to be recognized as such by the Macintosh’s
operating system.

Storing fonts in multiple resources within a single
file, and storing the font data in the resource fork
rather than the data fork creates problems when

3

fonts are moved between platforms. To address this
issue, Apple introduced new ways to store fonts in
MacOS X. First, suitecases can now be placed in the
data fork, using a format called adfontfile (after its
extension). This format is essentially a traditional
Mac font file, but in the data rather than the resouce
fork. Second, MacOS X also allows Windows-style
packaging of TrueType and  files in a single file
in which the font data is stored in the data fork with
no header or trailer.

3 Diacritic-Positioning Infor-
mation in Older Fonts

Masterfont’s existing fonts used three mechanisms
for positioning diacritics. These mechanisms were
developed over a long period of time—each addi-
tional mechanism was designed to correct deficien-
cies in previous ones.

The first mechanism uses a number of precom-
posed glyphs. These are used for dagesh, a dot that
appears inside letters, and which must be carefully
positioned to prevent overstriking the letter itself.
Such combinations are also used for shin/sin dots,
for diacritics attached to a final letter (only two
combinations are used in modern Hebrew), and a
few other cases. There are Unicode code points for
these glyphs, as well as code points in the MacHe-
brew 8-bit encoding, and they are used by both
Macintosh and Windows systems.

On the Macintosh, precomposed glyphs are also
used to place diacritics on particularly difficult let-
ter: resh, dalet, and qof. The first two are wide
letters that have a single vertical stem at the right,
under which below-baseline diacritics should be
placed. Incorrect placement under these letters
looks awful. The qof is the only non-final letter
with a descender, so special attention is required to
prevent the below-baseline diacritics from colliding
with the descender. These glyphs do not have Uni-
code code points, but they are used in all the Mac’s
Hebrew fonts, including the fonts bundled by Ap-
ple with the operating system. These glyphs appear
to have been added by Apple quite early on. They
do fix the most serious placement cases, but they
do not fix all the placement problems. Further-
more, this glyph set appears to have been designed
by somebody without much expertise in Hebrew,
since some of the precomposed glyphs can never
appear in a text (e.g., dalet with a hataf-patah).

Since the precomposed glyphs are insufficient for
correctly positioning all the combinations, Master-

Font developed a few years ago a positioning aid
for the Macintosh. This software, called Mapik-Ve-
Day, is a Macintosh system extension that selects a
diacritic glyph according to the base letter. Fonts
designed to work with this software have three sets
of diacritics: one for narrow letters, one for wide
letters, and one for medium-width letter. The dia-
critics in all sets usually have the same shapes, and
all have zero advanced widths, but each set has dif-
ferent sidebearings. The three qamats glyphs, for
example, all have the same shape and zero width,
and all print to the right of the insertion point (so
they appear below the preceding letter in a right-
to-left text run), but the amount of right shifting is
different. The software essentially divides the let-
ters into three categories, each of which has its own
set of diacritics.

These two mechanisms, the precomposed glyphs
and the three sets of diacritics of different widths,
essentially mimic hot-led diacritics.

These two mechanisms allow fairly good control
over positioning, provided the font is designed for
this system in mind. In particular, special attention
must be given to the left sidebearings of base letters,
to ensure that the diacritics from the appropriate
category are well placed under them.

To allow more precise control over diacritic po-
sitioning, MasterFont began to use explicit posi-
tioning information in the fonts. These are stored
in the kerning table of the font, even though they
are not real kerning pairs, since the insersion point
should not move after the positioning adjustment.
For example, a kerning pair alef-qamats with value
35 means that the qamats glyph must be shifted
relative to the alef glyph by 35 font units. The in-
sertion point remains exactly after (to the left of)
the alef, as if no adjustment took place. This in-
formation is not used by the Macintosh operating
system, but a some Adobe applications can use it.

MasterFont currently has 86 fonts with this level
of diacritic positioing, which is essentially the set
of fonts designed for book work. In addition, there
are many more display fonts with pair kerning in-
formation but without elaborate diacritic support.

4 Objectives

Now that the setting has been described, we can
enumerate the objectives of this project in more
detail.

First and foremost, we wanted to convert the di-
acritic positioning information in the existing fonts
to OpenType advanced-layout tables. We wanted

4

to do this without specifying any additional po-
sitioning information. This restriction was moti-
vated by several reasons:

• Efficiency; there was no point in doing ex-
tra design work on fonts that already produce
perfecly-positioned texts. For example, there
is no point in specifying positioning informa-
tion for a combination represented by a care-
fully designed-precomposed glyph.

• Correctness; by not specifying new position-
ing information, the chances of introducing
new positioning bugs are minizized.

• Continued support for older applications; we
wanted to be able to produce additional new
fonts that would be able to work not only in
OpenType applications, but also in older ap-
plications. By building new fonts according
to the old specification and automatically con-
verting them to OpenType, the foundry would
be able to offer customers either an OpenType
font or an old-syle font for legacy applications.

Second, we wanted to automatically produce fonts
for both the Windows and Macintosh platforms
(Windows fonts also work on Unix and Linux).
More specifically, we wanted to produce the fonts
for the two platforms using the same source fonts,
rather than generate a Windows font and convert
it, and then generate a Mac font and convert it.
This meant that the glyph sets for Windows and
Mac fonts had to be merged, since previously the
foundry used different glyph sets for each platform.
Furthermore, if possible, we wanted to have identi-
cal finished fonts, except for the suitcase wrappers.
It turned out to be possible.

Two remaining choices had to be made, con-
cerning the glyph-description format and the Mac-
packaging format. After some deliberation, we de-
cided to produce - fonts rather than 
fonts. Producing  fonts has one advantage,
namely that the original Type 1 outlines and hints
remain intact, whereas automatic conversion is
used when producing  fonts from the same
source files. We felt that given the accuracy of
the conversion, this had essentially no impact on
high resolution output from printers or imageset-
ters. We also felt that modern on-screen rasterizers
that use antialiasing (font smoothing) produce ac-
ceptable output from automatically-hinted and un-
hinted TrueType outlines. Therefore, we felt that
’s advantage over - is not particularly

significant. On the other hand, on pre-2000 Win-
dows and pre-X Macs,  fonts require the Adobe
Type Manager utility, which is free but nonethe-
less requires downloading and installing by the end
user. Also, some applications, most importantly
Microsoft’s PowerPoint, cannot use  fonts even
on systems that do support them (this is true for
both PowerPoint 2000 and PowerPoint 2002). Fi-
nally, one of the tools we used in the production of
the fonts, Microsoft’s , provides much better
support for - fonts than for  fonts; this
is described more fully in the next section. Given
the clear disadvantages and only slight advantage
of  fonts, we decided to produce - fonts.

5 Tools

The production of the fonts uses a number of soft-
ware tools, which we describe in this section. We
also describe alternatives to some of the tools and
explain our choice of tools.

Assembly of the Advanced Typographic
Tables

The tool that we used to construct the advanced
typographic tables in the fonts is Microsoft’s Visual
OpenType Layout Tool (). Given a font, we
automatically construct input files for , and
use it to construct a derivative font with appropriate
, , and  tables.

Adobe’s OpenType Font Development Kit ()
can perform a similar function. However, when we
started the project, the  had incomplete support
for the  table, which meant that we could not
use it to convert our Hebrew fonts. The  is also
-oriented, in that it cannot accept TrueType
glyphs as input, where as we wanted a -to--
 conversion, in order not to modify the glyphs
or their hints. These restrictions appear to still
hold.

In addition to , microsoft also distributes
command-line tools that can construct advanced
typographic tables, but they are quite old and we
did not experiment with them.

Versions 4.0 and 4.5 of FontLab can also pro-
duce OpenType fonts with advanced typographic
tables. But our understanding has been that the
OpenType support in FontLab is based on Adobe’s
 and hence does not support the required 
mechanisms, so we did not explore this approach.

Since we used , we would like to comment
on its advantages and disadvantages. V is a

5

visual tool, designed to allow a font designer to
specify visually glyph substitutions and position-
ings. Together with the sample fonts, it is a su-
perb tool for understanding how OpenType layout
features work and for prototyping and developing
OpenType layout support. In addition to visual
design,  allows the user to export and im-
port the structure of the layout tables or parts of
the tables into text files with special syntax. Since
we had to convert many fonts, we opted for au-
tomatically generating these files, which are called
 project files (vtp) rather than for visually
constructing each font. On the other hand, 
does not have command-line options that can be
used to open a font and a  project file and ship
an assembled - font. This means that even
if the project files are constructed automatically en
mass, they cannot be processed in batch mode—
each font must be opened using a menu command,
the corresponding project file must be imported us-
ing another menu command, and the output font
must be shipped using yet another command.

Data Extraction and Project File Con-
struction
To produce the input file for , we had to con-
vert the data in the initial  fonts into 
project files. The format of the  project files
is complex and undocumented, but quite simple to
figure out by comparing the file to the font structure
in the graphical user interface.

We performed the conversion using two custom-
written programs. The first program, which is writ-
ten in C, reads a  font and outputs an afm-like
text file, which maps glyph indices to PostScript
glyph names, and which documents all the kerning
pairs (glyphs in TrueType fonts are stored in an ar-
ray and are refered to by  using their indices).

The second program, which is written in the 
language, transforms this information into a 
project file. The transformation consists of:

• Mapping each glyph index to a glyph name
and Unicode code point(s).

• Defining glyph groups.

• Defining glyph substitution lookups, for
exmaple to map normal diacritics to wide
or narrow ones, to map glyph sequences to
precomposed glyphs, and in one case to de-
compose a precomposed sequence depend-
ing on the preceding glyphs (this supports
two meaning and vocalizations of the unicode

vav+holam sequence, which can stand for a
single long vowel or a consonant followed by a
short vowel; there is a single Unicode sequence
for both cases, but they should be printed and
vocalized differently).

• Defining diacritic positioning information.

• Defining kerning pairs.

We wrote the  program by developing a pro-
totype font visually in , exporting the project
file, and then writing the program so that given
the input file, it generates a similar project file. We
then loaded the resulting project file into  and
inspected the resulting OpenType structure. When
we discovered problems, we modified the  pro-
gram to correct them and so on. This methodology
exploits the two strengths of : the ability to de-
sign and inspect OpenType layout tables visually,
and the ability to accept automatically-generated
input.

Minor Modifications of Other TrueType
Tables
We gradually discovered that other TrueType tables
had to be modified to ensure that the fonts perform
properly. Here are the main modifications that we
perform on the fonts:

• We add code-page-support and unicode-range
information to the fonts. This information is
used by Windows and Windows applications
to determine which scripts a font supports.

• While we use  to construct the unicode
character-to-glyph mapping table (a subtable
of the ‘cmap’ table), we later add an 8-bit He-
brew encoding table to support older Mac ap-
plications. This encoding subtable must be
added even if the original TrueType font has
one, since  regenerates the ‘cmap’ table,
and to the best of our knowledge, cannot emit
this particular subtable.

• We remove the ‘kern’ table, which contains
diacritic-positioining data that are not true
kerning pairs, as described above.

• We add a ‘gasp’ table to specify that the fonts
should to be antialiased at all sizes.

• We make minor modifications to the ‘name’
table, which contains copyright, version, ,
and other textual information for the end user.

6

Figure 1: One of the OpenType fonts in  along with three types of OpenType lookups that we use
to position diacritics: anchor positioning, single contextual substitution, and ligature substitution. Our
fonts also use pair-kerning adjustments and more complex contextual substitutions.

7

Some of the modifications are done with a specially-
written C program. The other modifications are
performed by converting the appropriate table
to  format using Apple’s ftxdumperfuser
command-line tool for MacOS X, modifying the
 file using  and  programs, and then
fusing the resulting -formatted table to the font
file, again using ftxdumperfuser.

We perform some of the modification using a C
program and some using the Apple tool because
when we started the project, the Apple Font Tools
for MacOS X had not yet been released. We there-
fore wrote a custom C program to perform the
modifications we found necessary. As testing pro-
gressed and we discovered more required or desired
modifications, we switched to using the Apple tool,
which was easier than extending the C program.
One problem with the  format that Apple uses
to describe font tables is that simple text processing
tools like  and  do not understand ’s hi-
erarchical structure. But for relatively simple mod-
ifications, the combination of ftxdumperfuser
and  or  scripts works.

There is another tools that can perform
TrueType-to- and -to-TrueType conver-
sions, Just van Rossum’s 1. We experimented
with this tool, which is written in the Python lan-
guage, but we could not install it successfully. The
trouble was that  uses a number of other Python
packages, for example, to perform numerical cal-
culations, which did not install propely on our sys-
tems. But assuming that these issues in  are
easily solvable, it is certainly an alternative to the
Apple tools, and at least in principle, it is a multi-
platform tool that runs on Windows, MacOS, and
Linux.

General-Purpose Font Editors
Although no general-purpose font editor was used
for the actual conversion, we did use two font
editors to produce the input font files and to in-
spect fonts that seemed to have problems. We used
Fontographer to produce the input files to the con-
version process, and we used PfaEdit to inspect
fonts.

Machintosh Suitcase Generation
We used the ufond command-line program from
George Williams’ 2 package to package -
 fonts into suitcases, and we used command-

1http://www.letterror.com/code/ttx/
2http://fondu.sourceforge.net

line tools from the MacOS X developer kit to tag
the suitcases with the required file type and creator
code.

We also used a script to automatically scan an en-
tire directory with - fonts and classify them
into families. The classification is done using the
family name field of the font. Once the classifica-
tion is made, the script invokes ufond to package
the fonts of the family into a suitcase.

6 The Production Process

The final production process consists of four stages.
The prevolt stage is performed by a script that pro-
cesses all the input  fonts in a given directory.
For each input file, the script generates a modi-
fied  file and a volt project file. The modifica-
tion to the input files that we perform at this stage
involve fixing the ‘post’ table to overcome an ap-
parent Fontographer bug, upgrading the version of
the ‘OS/2’ table and adding to it Unicode-range and
code-page information, and removing the ‘kern’ ta-
ble. The volt project file is produced by invoking
the C program that generates an afm-like text file
with glyph infomation and kerning and diacritic-
positioning information, and converting that file to
a volt project file using a custom  program.

In the second stage, each modified  file is
opened in , the corresponding project file is
imported, and the resulting font is shipped out.
This requires only three menu commands in 
and clicking ‘okay’ a couple of times, but it is still
the most time consuming stage of the production
process.

The next stage, the postvolt stage, processes all
the files shipped from  in a given directory.
A script invokes ftxdumperfuser a few times on
each font, to add a MacHebrew encoding subtable,
to fix the ‘name’ table, and to add a ‘gasp’ table.
Although some of the processing can be moved
from the prevolt to the postvolt or vice versa, some
processing must be done before  can process
the font and some processing must be done after
 ships the font. Hence, a prevolt and a postvolt
stages are necessary.

The final suitcases stage again uses a script to
process an entire directory. The script first extracts
the family name from each font file. Next, the script
finds all the font files that belong to a single family,
and invokes ufond on them to create a suitcase.
The suitcase is created by ufond in the data fork of
a file. We then move the font data to the resource
fork of the font file, and tag it with appropriate type

8

A-Reg.TTF
A-Ita.TTF
. . .
B-Reg.TTF
. . .

A-Reg.FIXED.TTF + A-Reg.VTP
A-Ita.FIXED.TTF + A-Ita.VTP
. . .
B-Reg.FIXED.TTF + B-Reg.VTP
. . .

A-Reg.VOLT.TTF
A-Ita.VOLT.TTF
. . .
B-Reg.VOLT.TTF
. . .

prevolt script processes
an entire directory

Microsoft VOLT processes
each font separately

postvolt script processes
an entire directory

A.OT.SUIT
B.OT.SUIT
. . .

suitcases script processes
an entire directory

A-Reg.OT.TTF
A-Ita.OT.TTF
. . .
B-Reg.OT.TTF
. . .

Figure 2: An overview of the production process.
The figures shows the input and output files for
each stage and how that stage operates. The postvolt
stage produces the final font files for Windows and
MacOS X, and the suitcases stage produces the final
font files for any Mac operating system, X or older.

Ligature substitution: ְָשֶׁלך
Anchor positioning: זמְָן
Contextual substitution: ָוְגם
מָצוֹת .vs מִצְוֹת
Insensitivity to mark orderings:
 dalet+dagesh+qamats ָגּל
 dalet+qamats+dagesh ָגּל

Figure 3: Hebrew diacritic positioning using Open-
Type features. The first three lines show how Open-
Type features utilize the mechanisms of older fonts.
These examples correspond exactly to the exam-
ples shown in Figure 1. The fourth line shows
a new application of contextual substitution that
yields correctly-positioned glyphs for two identi-
cal unicode sequences with different grammatical
meanings and different vocalizations. The last two
lines show that the OpenType features have been
encoded in a way that prints all valid diacritic se-
quences in the same way, as mandated by Unicode.
The sample was prepared using Adobe InDesign
2.0 ME.

and creator codes. The automatic recognition of
the font files that belong to each family minimizes
the chances for errors that could occur if a family-
configuration file was written by hand.

Due to the use of ftxdumperfuser, the prevolt
and postvolt stages must be performed on a Ma-
cOS X machine. The  stage must be performed
on a Windows machine. The suitcases stage is also
performed on a MacOS X, in order to move the font
data to the resource fork and in order to assign type
and creator tags; non-Macintosh operating systems
do not support these file-system features.

בְּרֵאשׁיִת, בָּרָא אֱלֹהִים, אֵת הַשָּׁמַיםִ, וְאֵת
הָאָרֶץ. וְהָאָרֶץ, הָיְתהָ תהֹוּ וָבהֹוּ, וְחֹשֶׁךְ, עלַ פְּניֵ

תְהוֹם; וְרוּחַ אֱלֹהיִם, מְרַחֶפתֶ עלַ פְּניֵ הַמָּיםִ.
וַיֹּאמֶר אֱלֹהִים, יְהִי אוֹר; וַיְהיִ אוֹר. וַיַּרְא אֱלֹהִים
אֶת האָוֹר, כּיִ טוֹב; וַיַּבְדֵּל אֱלֹהִים, בּיֵן הָאוֹר וּבֵין

הַחֹשׁךְֶ. וַיִּקְרָא אֱלֹהִים לאָוֹר יוֹם, וְלחַֹשׁךְֶ קָרָא
ליְָלהָ; וַיְהִי ערֶֶב וַיְהִי בֹקֶר, יוֹם אֶחדָ.

Figure 4: The first few phrases of Genesis, type-
set in Adobe InDesign 2.0 ME using an OpenType
version of Henri Fridlaender’s Hadassah typeface.

9

7 Conclusions

This project led us to several conclusions concern-
ing OpenType and font production in general.

Reflections on Font Production

Fonts are atypical objects that present special chal-
lenges to their manufecturers. The uniqueness of
fonts is caused by a combination of factors that is
not present similar products.

First, fonts are highly complex data objects.
While Type 1 fonts are fairly simple, TrueType,
OpenType, and other advanced font formats are
complex, with hundreds of individual fields that
client software uses.

Second, fonts, especially those produced by in-
dependent foundries, are supposed to work with a
variety of operating systems and software applica-
tions. Since different clients access different parts
of font data, a font that tests perfectly with a given
set of clients might fail on another client, as we
have often discovered during the production pro-
cess. To compound the problem, font-file specifi-
cations specify the format and intent of data fields,
but they specify only loosely the behavior of client
data. This is often done on purpose, to accomo-
date the behavior of older existing clients, but it
makes it almost impossible to create working fonts
without extensive testing. Let us give an example:
are the glyph names in a TrueType or OpenType
font significant, or are they present only to allow
printer drivers to download the font into a printer
in a consistent manner? Presumably, applications
should use the encoding table in the ‘cmap’ table to
find glyphs, not the PostScript names of the glyphs.
But if some application uses glyph names instead, a
font with variant names would not work in that ap-
plication (we note that even Microsoft- and Apple-
supplied fonts use names for the Hebrew glyphs
that are inconsistent with the Adobe Glyph List).

Third, font data, such as glyph outlines, hints,
and metric information has a very long life, but
font files have a shorter life span. The outlines and
metrics of widely-used fonts by foundries such as
Linotype, Bitstream, or Agfa-Monotype are prob-
ably more than 20 years old, clearly an old age in
the digital world. On the other hand, font files
need to be recreated from this data once in a while.
Font data that might have been used to create pre-
PostScript fonts, were used again in the mid 1980s
to create PostScript Type 3 fonts, then PostScript
Type 1 fonts, then TrueType fonts. The TrueType
font might have been upgraded once with better

hints, then again to add the Euro symbol, then
again to add non-latin glyphs for supporting addi-
tional scripts. In between, special versions might
have been produced for bundling with operating
systems or software packages. In the non-latin font
market, special versions might have been produced
to work with various layout programs. And to-
day, the same font data is used to produce -
and/or  fonts. Even a relatively young foundry
like MasterFont has font data going back about 15
years.

Forth, font foundries are typically small busi-
nesses or small business units [7]. This limits their
ability to invest in custom programming to auto-
mate font production. This again is a particular
problem in the non-latin font market, where fonts
are more specialized.

The longevity of font data from which new font
files must be occasionally produced, together with
the fact that many foundries accumulate hundered
or thousands of fonts, should imply that automa-
tion should be widely employed in font produc-
tion. That is, producing a new font by launching
a font editor, loading an older version, making the
required changes, and generating a new font, is in-
efficient when a large number of fonts must be pro-
duced. Manual production is also prone to errors
and hence requires more testing than an automatic
conversion that processes all the fonts in exactly the
same way. However, the size of most independent
foundries preclude large investments in custom au-
tomation (that is, paying programmers to automate
font production).

This problem has been addressed recently in
three ways:

• Microsoft, Adobe, and Apple, who need to
encourage font production, release free font-
production tools (Adobe’s interest in indepe-
dent font production stems from its role as a
vendor of application, not from its role as a
font foundry). Microsoft has released 
and a large number of other tools for hinting,
adding digital signatures, editing strings in a
font, and so on. Adobe has released the ,
and Apple has released a number of font tools.
To a large extent, the three companies release
the tools that they use themselves to produce
fonts. Still, the effort in publicly releasing and
supporting these tools is significant, and the
wide availability of these tools does help inde-
penent foundries. In some cases the tools are
not ideal for automated production. For ex-
ample, the inability of  to process a font

10

without invoking the graphical user interface
slows down production.

• General-purpose font editors now include
scripting languages. Specifically, FontLab uses
Python and PfaEdit it’s own scripting lan-
guage. These tools will reduce the cost of
automation and hence of font production, es-
pecially if scripts can be applied to a font from
the command line (this is true for PfaEdit, and
perhaps also for FontLab). Obviously, this ap-
proach requires programming, but at least the
programming environment is the familiar font
editor. One remaining problem in this ap-
proach is that these font editors read the font
data into their own in-memory data structures
and then generate a new font, which can have
side effects on tables that are not supposed to
be modified by a script. FontLab is careful not
to modify data it does not need to (for example,
not to modify TrueType glyphs unless glyphs
are edited), but PfaEdit regenerates TrueType
glyphs whenever it outputs a font file.

• Individuals produce powerful free tools that
can assist in automating font production.
These include  and PfaEdit. One prob-
lem with using these tools in commercial font
production is that they tend to be less stable.
One might expect that they would not be as
well supported as commercial tools, but that is
not always true: George Williams, for exam-
ple, the creator of PfaEdit, provides excellent
and prompt support.

Font production requires careful management over
time of source files, deliverables, and software.
Source files are used to produce fonts over many
years, and they need to be updated by adding
glyphs, metric infomation, and so on. When the
source files are updates or when deliverables in
new formats are needed, deliverables are produced
again. It is beneficial to automate new production
cycles as much as possible, especially when many
fonts are involved. Since foundries often cannot
invest significant funds in custom programming,
standard font-production tools must support au-
tomation and re-production. The scripting support
in FontLab is a step in this direction, and essentially
any command-line tool is usable in script-driven
batch processing. But other tools, like , do not
support automated production and re-production.
The importance of automation and the require-
ments of multiple production cycles may be evident

to large font foundries, but are usually not evident
to smaller foundries.

Reflections on OpenType

Will the OpenType format, and in particular the
advanced typographic layout, succeed, or will it
fail like Multiple Master fonts and GX fonts? This
question is important for font vendors, applica-
tion developers, and font consumers, who all need
to decide whether or not to invest in OpenType.
There are several reasons to believe that Open-
Type layout will become successful and widespead.
First, both Adobe and Microsoft are pushing this
technology. In particular, both companies provide
font producers with free production tools, Adobe
has converted almost its entire typeface library to
OpenType (which was not the case with Multiple
Masters), and Microsoft has provided application
developers with both tools to utilize OpenType lay-
out features (through the Uniscribe and OTLS li-
braries) and with assistance with developing lay-
out engines. Both companies already produce ma-
jor applications that exploit OpenType’s layout fea-
tures, namely Office XP and InDesign. Other com-
panies are also developing OpenType layout en-
gines, such as IBM’s ICU open-source engine. Sec-
ond, the technology is essential for presenting text
in some scripts, such as Indic scripts, and essential
for presenting Arabic and Hebrew text with dia-
critics (Arabic and Hebrew without diacritics can
be set without OpenType layout features). In par-
ticular, Microsoft has used OpenType layout in its
Arabic fonts and operating systems for years now.
Third, the OpenType format has been designed to
make font design easy, which was not the case for
Multiple Masters and GX. The structure of Open-
Type’s layout support is declerative. For example,
the font designer can declare that a certain glyph
substitution only occurs in a certain glyph context
(preceding and following glyphs). The algorithmic
question of how to recognize the context is left to
the layout engine. In contrast, GX’s structure is
procedural/programmable, and the font designer
must specify a finite-state machine that the lay-
out engine uses to detect the context. In general,
declarative font technologies like outline fonts and
Type 1 hinting have been more successful than pro-
grammable technologies like TrueType hinting, GX
state machines, or metafont. (TrueType hinting is
unsuccessful in the sense that the cost of hinting
causes most fonts to remain unhinted or automati-
caly hinted.) The obvious reason is that most font
designers are graphic designers by training, rather

11

than programmers.
One must acknowledge, however, a few problems

related to OpenType layout. First, the main ben-
efit that OpenType brings to the Latin-script mar-
ket are alternate glyphs, especially small caps, old-
style figures, proportional figures, and swashes. But
these glyphs have been available for years, although
in separate small-caps, old-style-figures, and ex-
pert fonts. Using these separate fonts is not much
harder than using OpenType layout features: in-
stead of marking a run of text or a character style
with OpenType features, the document designer
or graphic designer marks the text or style with
an alternate font. This makes it a bit harder to
switch font families, but the difference is not that
dramatic. It is interesting to note that Adobe did
not go all the way in its efforts to make OpenType
layout useful. For example, using OpenType fea-
tures to automatically select optically-scaled glyphs
would have made optically-scaled fonts easier to
use, but Adobe kept optically-scaled glyphs in sep-
arate fonts, probably in order to support different
pricing for fonts with and without optical scaling.

Acknowledgements

Thanks to Microsoft’s Paul Nelson for answer-
ing numerous OpenType-related questions on the
-community’s message board, on the Open-
Type mailing list, and via private email exachanges.
Thanks to WinSoft’s Pascal Rubini for answering
questions regarding the behavior of InDesign 2.0’s
Hebrew layout engine, and regarding the Hebrew-
diacritic-handling mechanisms of older applica-
tions. Thanks for George Williams for making
PfaEdit available. Some of the historical informa-
tion concerning font formats was gathered from
replies to a question that Adam Twardoch posted
on the OpenType mailing list.

References
[1] The Unicode Consortium. The Uni-

code Standard Version 3.0, 2000. Parts
of the standard are available online at
http://www.unicode.org.

[2] Microsoft Corporation. TrueType 1.0 Font
Files, Technical Specification Revision 1.66,
1995. Available online from http://www.
microsoft.com/typography.

[3] Microsoft Corporation. OpenType Specifi-
cations Version 1.4, 2002. Available on-

line from http://www.microsoft.com/
typography.

[4] Yannis Haralambous. Typesetting the holy
bible in hebrew, with TEX. TUGboat,
15(3):174–191, 1994. Also appeared in the
Proceedings of EuroTEX 1994, Gdańsk.

[5] Yannis Haralambous. “tiqwah”: a typesetting
system for biblical hebrew, based on TEX. Bible
et Informatique, 4:445–470, 1995.

[6] Apple Computer Inc. TrueType Reference
Manual, 1999. Available online from http:
//fonts.apple.com.

[7] Emily King. New Faces: Type Design in
the First Decade of Device-Independent Dig-
ital Typesetting. PhD thesis, Kingston Uni-
versity, 1999. Available online at http:
//www.typotheque.com under ‘Articles’.

[8] Thomas W. Phinney. TrueType, PostScript
Type 1, & OpenType: What’s the differ-
ence? PDF document available online
at http://www.font.to/downloads/TT_
PS_OT.pdf, 2001.

[9] Adobe Systems. Adobe Type 1 Font
Format, 1990. Avilable online from
http://partners.adobe.com/asn/
developer/technotes/main.html.

[10] Adobe Systems. Type 1 Font Format
Supplement, 1994. Technical Speci-
fication #5015, Avilable online from
http://partners.adobe.com/asn/
developer/technotes/main.html.

[11] Adobe Systems. Designing Multiple Mas-
ter Typefaces, 1997. Technical Spec-
ification #5091, Avilable online from
http://partners.adobe.com/asn/
developer/technotes/main.html.

[12] Adobe Systems. The Type 2 Charstring
Format, 2000. Technical Specifi-
cation #5177, Avilable online from
http://partners.adobe.com/asn/
developer/technotes/main.html.

[13] Sivan Toledo. A simple technique for type-
setting hebrew with vowel points. TUGBoat,
20(1):15–19, 1999.

[14] Ada Yardeni. The Book of the Hebrew Script:
History, Palaeography, Script Styles, Calligra-
phy and Design. Carta, Jerusalem, 1997.

12

