
PARALLEL UNSYMMETRIC-PATTEN MULTIFRONTAL
SPARSE LU WITH COLUMN PREORDERING

HAIM AVRON, GIL SHKLARSKI, AND SIVAN TOLEDO

Abstract. We present a new parallel sparse LU factorization algorithm
and code. The algorithm uses a column-preordering partial-pivoting
unsymmetric-pattern multifrontal approach. Our baseline sequential al-
gorithm is based on umfpack 4 but is somewhat simpler and is often
somewhat faster than umfpack version 4.0. Our parallel algorithm is
designed for shared-memory machines with a small or moderate number
of processors (we tested it on up to 32 processors). We experimentally
compare our algorithm with SuperLU MT, an existing shared-memory
sparse LU factorization with partial pivoting. SuperLU MT scales bet-
ter than our new algorithm, but our algorithm is more reliable and is
usually faster in absolute (on up to 16 processors; we were not able
to run SuperLU MT on 32). More specifically, on large matrices our
algorithm is always faster on up to 4 processors, and is usually faster
on 8 and 16. The main contribution of this paper is showing that the
column-preordering partial-pivoting unsymmetric-pattern multifrontal
approach, developed as a sequential algorithm by Davis in several re-
cent versions of umfpack, can be effectively parallelized.

1. Introduction

We present a new parallel sparse partial-pivoting LU factorization algo-
rithm. The experience of designers and implementors of sparse LU algo-
rithms has been that a single algorithm usually cannot perform well on ma-
chines ranging from uniprocessors to small parallel computers to massively-
parallel computers. For example, the SuperLU family of algorithms con-
sists of three different algorithms, one for uniprocessors [14], one for shared-
memory multiprocessors [15], and one for distributed-memory multiproces-
sors [33]. We chose to focus on one class of target machines, shared-memory
parallel computers with 1-32 processors.

The factorization of a general matrix into triangular factors often re-
quires some form of pivoting (row and/or column exchanges) in order to
avoid numerical instability. Three classes of pivoting techniques have been
proposed for sparse LU factorizations. Our algorithm belongs to the class
of partial-pivoting algorithms. At each elimination step, these algorithms
examine the numerical values in the next column to be eliminated, and
perform a row exchange that brings a matrix entry with a large absolute
value to the diagonal of that column. So-called static-pivoting algorithms,
such as [33], prepermute the rows to bring large elements to the diagonal.

1

2 HAIM AVRON, GIL SHKLARSKI, AND SIVAN TOLEDO

Static pivoting is a heuristic that may lead to numerical instability because
an element that was large in the original matrix may become tiny during
the elimination process. However, static pivoting often works well, espe-
cially when coupled with iterative refinement. Static pivoting allows more
detailed planning of the scheduling of a parallel algorithm, because the row
permutation is known before the numerical factorization begins. Finally,
delayed-pivoting algorithms, such as [30], perform both row and column ex-
changes during the numerical factorization. These algorithm precompute a
column ordering, and for each column, a set of potential pivot rows. Dur-
ing the elimination of a column the algorithm examines the elements in the
potential rows that have not been used as pivot rows. If one of them is
large enough, a row exchange is performed and the column is eliminated.
If all of them are too small, the elimination of the column is delayed. This
corresponds to a column exchange. During the column exchange, the set of
potential rows for that column is usually expanded.

We chose to use partial pivoting for two reasons. First, partial pivoting,
especially when performed strictly (the largest element in absolute value is
brought to the diagonal), is numerically very reliable. In particular, static-
pivoting algorithms sometimes fail on matrices that partial-pivoting algo-
rithms can factor successfully. Second, partial pivoting without column
exchanges allows the algorithm to select a column preordering. Preordering
the columns can provide a-priori guarantees on fill [24, 28, 4]; delayed pivot-
ing algorithms provide no such guarantees. Although delayed-pivoting has
been shown to work well in practice, in theory the factors may fill completely.

We note that sparse partial-pivoting algorithms have another advantage:
they can be implemented so that the total number of operations that they
perform is proportional to the number of arithmetic operations required [27]
(the number of arithmetic operations depends only on the non-zero structure
of the input matrix and of the factors). Our algorithm is not implemented
that way. We chose to use data structures for which this property does not
necessarily hold, but which lead to faster performance in practice.

The decision to use partial pivoting left us with a choice between two
families of algorithms: left-looking and multifrontal. The most sophisti-
cated left-looking algorithm today is SuperLU [14, 16], a followup to earlier
algorithms, GP [27] and SupCol [19], all of which use partial pivoting. The
most sophisticated unsymmetric multifrontal algorithm today is umfpack

version 4.x [9]. Several other multifrontal algorithms, like wsmp [30, 31],
earlier versions of umfpack [6, 7], and ma41u [1], do not combine par-
tial pivoting with column preordering, so they are not relevant to us. We
decided to focus on the multifrontal family, for two reasons. First, compar-
isons between SuperLU and umfpack indicate that the latter is often faster,
and rarely significantly slower. In particular, comparisons between SuperLU
and umfpack 4, made by the author of umfpack, indicate that it is much
faster than SupreLU [9]. Comparisons between SuperLU and umfpack 3,
made by two teams not associated with either code, indicate that umfpack

PARALLEL UNSYMMETRIC-PATTERN MULTIFRONTAL SPARSE LU 3

is usually faster [1, 31]. These comparisons motivated us to try to paral-
lelize the partial-pivoting unsymmetric-pattern multifrontal approach. The
second reason for choosing a multifrontal approach is that there is already
a shared-memory parallel version of SuperLU, called SuperLU MT [15], so
parallelizing umfpack would shed additional light on the difference between
the two approaches, whereas another parallel left-looking algorithm would
probably not contribute much to our understanding.

Can the partial-pivoting unsymmetric-pattern multifrontal algorithm be
parallelized, and in particular, would such an algorithm be more effective
than a parallel left-looking algorithm? This is the question that our research
addresses.

This paper shows that the answer to this question is affirmative. The
partial-pivoting unsymmetric-pattern multifrontal algorithm can be paral-
lelized, and the resulting algorithm performs better on small-to-moderate
shared-memory multiprocessors than SuperLU MT.

We have conducted our research in two stages. In the first stage, we de-
signed and implemented a sequential partial-pivoting unsymmetric-pattern
multifrontal LU factorization. We refined and tuned the algorithm until it
matched or bettered the performance of umfpack (under some restrictions
that we explain later). In the process of doing so, we have simplified the
umfpack algorithm fairly significantly, and we have introduced one signifi-
cant improvement to the sequential algorithm. Obviously, we designed and
implemented this sequential version with parallelization in mind. At the
end of this stage, our algorithm was not only simpler than umfpack, but
outperformed it1 on most of the larger matrices.

In the second stage, we parallelized the algorithm. During this stage we
again refined the algorithm, mainly in order to obtain as much parallelism
as possible without increasing the total work. Our main benchmark code
at this stage was SuperLU MT. At the end of this stage, our algorithm
performed significantly better than SuperLU MT on most matrices and on
most processor numbers up to 32.

The rest of the paper is organized has follows. Section 2 provides some
necessary background. Section 3 presents the partial-pivoting unsymmetric-
pattern multifrontal algorithm. The material in that section is not new,
but the presentation is. Section 4 presents our new algorithm. Extensive
experimental results are given in section 5. We present our conclusions in
Section 6.

2. Background

This section provides some background material. We begin with a formal
description of the LU factorization algorithm with partial pivoting, mainly

1These comparisons are with umfpack version 4.0. During our research, Tim Davis has
produced two additional versions, 4.1 and 4.3; to provide a stable baseline to our research,
we kept using version 4.0.

4 HAIM AVRON, GIL SHKLARSKI, AND SIVAN TOLEDO

[L, U, p] = dense lu(A)
A(0) ←− A

for j ←− 1: n

p(j) ←− arg maxp̄(1 : j−1)

∣∣∣A(j−1)
p̄(1 : j−1),j

∣∣∣
Lp̄(1 : j−1),j ←− A

(j−1)
p̄(1 : j−1),j/A

(j−1)
p(j),j

Uj,j : n ←− A
(j−1)
p(j),j : n

A
(j)
p̄(1 : j),j+1: n ←− A

(j−1)
p̄(1 : j),j+1: n − Lp̄(1 : j),jUj,j+1: n

end

Figure 2.1. Dense LU factorization with partial pivoting.
At the end of the algorithm, L itself is not triangular, but
Lp(1 : n),1:n is.

in order to establish the notation. We then define the column elimination
tree and state its properties. The last part of the section briefly described
the parallel programming language that we use.

2.1. Dense LU Factorization with Partial Pivoting. The algorithm
works by factoring one column and one row in every step. We assume that
the columns of the matrix have already been preordered. Therefore, column
j is always factored in step j. The row that the algorithm factors in step
j depends on the numerical values in the reduced matrix. We denote that
row by p(j).

We use matlab colon notation for contiguous sets of integers, i : j =
{i, i + 1, . . . , j − 1, j}. For an ordered set s of column indices, we denote by
p(s) their map under p. The complement of the row set p(s) is defined to be
p̄(s) = 1: n \ p(s). In particular, the set p(1: j) denotes the ordered set of
rows that have been factored during steps 1 through j, and p̄(1: j) denotes
the unordered set of yet-unfactored rows at the end of step j.

Factoring column j and row p(j) corresponds to the elimination of the
jth unknown from a linear system of equations using equation p(j). The
elimination step expresses the jth unknown as a linear combination of the
remaining unknowns, and eliminates j by substituting the symbolic expres-
sion for j in all the remaining equations. Therefore, the remaining equations
must be updated. The submatrix corresponding to the reduced equations
is called the reduced matrix, and we denote it by A(j) = A

(j)
p̄(1 : j),j+1: n. The

reduced matrix is an (n− j)-by-(n− j) matrix, with column indices starting
at j + 1 and with row indices p̄(1: j). We also denote A(0) = A.

The full algorithm is presented in Figure 2.1 using this notation.

PARALLEL UNSYMMETRIC-PATTERN MULTIFRONTAL SPARSE LU 5

2.2. Column Preordering. The rows and columns of a linear system Ax =
b are unordered, because the equations and variables are unordered. But
when A is sparse, re-ordering the rows and columns of the system prior to
the factorization of A can have a dramatic effect on the number of nonzeros
in the LU factors of A. However, if the rows and columns are re-ordered
arbitrarily, a factorization may not exist, or the algorithm may become
unstable. Partial pivoting solves this problem, but it requires that the row
permutation be determined dynamically during the factorization. This still
allows the algorithm to permute the columns arbitrarily to reduce fill.

There are two approaches to the selection of the column permutation. One
approach is to construct the column permutation dynamically during the
numerical factorization. In step j, the algorithm first selects the next column
q(j) to be factored, and then selects the pivot row. The goal in the selection
of q(j) is to produce as little fill as possible in the reduced matrix. Early
versions of umfpack use this approach [6, 7]. These algorithms maintain
an approximation of the number of nonzeros in each row and column of the
reduced matrix, and a column with a small approximate nonzero count is
selected as q(j) (the exact criteria is more complex, but uses this idea).

In the other approach, a column permutation is computed before the
factorization begins. The permutation is typically constructed so as to min-
imize the fill in the Cholesky factor R of AT A [4, 24, 28], because the fill in
R bounds from above the fill in L and U for any selection of pivot rows. An-
other popular method, colamd [11], uses a heuristic that selects the column
ordering using an approximation of their order during the factorization. A
precomputed permutation may not be optimal (even if it is optimal for R)
because it ignores actual pivot row selections. On the other hand, the fact
that the nonzero structure of L and U are contained in that of R allows the
factorization algorithm to precompute useful structural information, before
the numerical factorization begins. In particular, the algorithm can identify
columns that can be eliminated concurrently.

Delaying the construction of the column permutation until the numerical
factorization allows columns to be selected for elimination using complete
information about the structure of the reduced matrix (this information is
often represented only implicitly, so it is not always easy to use). On the
other hand, constructing the column permutation during the factorization
rules out almost any pre-estimation of the nonzero structure of the factors.
In particular, this approach does not allow a preprocessing algorithm to
identify columns that can be eliminated concurrently. Another potential
disadvantage of late column selection is the fact that greedy heuristics are
used in such algorithms, whereas column preordering algorithms can use
preordering algorithms with provable theoretical bounds [4, 24, 28]. Some
algorithms combine column preordering with slight dynamic modifications
to the precomputed ordering [9].

6 HAIM AVRON, GIL SHKLARSKI, AND SIVAN TOLEDO

2.3. The Column Elimination Tree. When the column ordering is known
in advance (before the numerical factorization begins), the factorization al-
gorithm can quickly compute a data structure that captures information
about all potential dependences in the numerical factorization process. This
data structure is called the column elimination tree; our algorithm uses it
for several purposes.

The column elimination tree of A is the symmetric elimination tree [34]
of AT A under the assumption that no numerical cancellation occurs during
the formation of AT A. The column elimination tree can be computed in
time almost linear in the number of nonzeros in A [22]. Our algorithm relies
on the following properties of the column elimination tree.

Theorem 2.1. (from [26]) Let A be a square, nonsingular, possibly unsym-
metric matrix, and let PA = LU be any factorization of A with pivoting by
row interchanges. Let T be the column etree of A. (1) If vertex i is an an-
cestor of vertex j in T then i ≥ j. (2) If Lij �= 0 then vertex i is an ancestor
of vertex j in T . (3) If Uij �= 0 then vertex j is an ancestor of vertex i in T .
(4) Suppose in addition that A is strong Hall (that is, A cannot be permuted
to a nontrivial block triangular form). If vertex j is the parent of vertex i
in T , then there is some choice of values for the nonzeros of A that makes
Uij �= 0 when the factorization PA = LU is computed with partial pivoting.

2.4. Parallel Programming with Cilk. We have implemented the algo-
rithm in Cilk [20, 39], a programming environment that supports a fairly
minimal parallel extension of the C programming language. Cilk programs
use a specialized run-time system that performs the scheduling of the com-
putation using a fixed number of operating-system threads.

The key constructs of the Cilk language are illustrated in Figure 2.2. The
spawn keyword declares that the function call that follows can be executed
concurrently with the calling function. The operating-system thread that
spawns a computation always suspends the calling function (saving its state
on the stack) and executes the spawned function. In most cases, when the
spawned function returns, the calling function is still waiting on the stack
and its execution is resumed by the same thread that suspended it. But
if, during the execution of the spawned function, another thread becomes
idle, it may steal the activation frame of the calling function from the stack
and resume its execution concurrently with the spawned function. The sync
keyword is the main synchronization mechanism. It suspends the execution
of a function until all the functions that it has spawned return.

Another synchronization mechanism that Cilk supports is the inlet. An
inlet is a subfunction that spawned functions activate when they return.
At most one copy of an inlet of an invocation of a function may be active
at a given time. This scheduling constraint can be used to serialize the
processing of values returned by spawned functions. For further details,
see [20, 39] or [32].

PARALLEL UNSYMMETRIC-PATTERN MULTIFRONTAL SPARSE LU 7

cilk void mat mult add(int n,
matrix A, matrix B, matrix C) {

if (n < blocksize) {
mat mult add kernel(n, A, B, C);

} else {
// Partition A into A 11, A 12, A 21, A 22
// Partition B and C similarly
spawn mat mult add(n/2,A 11,B 11,C 11);
spawn mat mult add(n/2,A 11,B 12,C 12);
spawn mat mult add(n/2,A 21,B 11,C 21);
spawn mat mult add(n/2,A 21,B 12,C 22);
sync; // wait for the 4 calls to return
spawn mat mult add(n/2,A 12,B 21,C 11);
spawn mat mult add(n/2,A 12,B 22,C 12);
spawn mat mult add(n/2,A 22,B 21,C 21);
spawn mat mult add(n/2,A 22,B 22,C 22);

}
}

Figure 2.2. A simplified Cilk code for square matrix
multiply-add. The code is used as an illustration of the main
features of Cilk.

3. The Unsymmetric-Pattern Multifrontal Method with

Column Preordering

The aim of this section is to provide a complete but easy-to-understand
description of the unsymmetric-pattern multifrontal method with column
preordering. Neither the unsymmetric-pattern multifrontal method itself
nor its column preordering variant is new. Both have been described be-
fore [6, 5], but to better explain our improvements and our parallel strategies,
we provide here a complete and easy-to-understand description of the ba-
sic method. To keep the description simple, we ignore supernodes in this
chapter.

3.1. Multifrontal Representation of the Reduced Matrix. In modern
sparse-matrix factorizations, the reduced matrices A(j) are almost never
represented explicitly. One possible representation for the reduced matrices,
which is used by unsymmetric-pattern multifrontal algorithm, relies on the

8 HAIM AVRON, GIL SHKLARSKI, AND SIVAN TOLEDO

expansion

A
(j)
p̄(1 : j),j+1: n = A

(j−1)
p̄(1 : j),j+1: n − Lp̄(1 : j),jUj,j+1: n

= A
(j−2)
p̄(1 : j),j+1: n − Lp̄(1 : j),j−1Uj−1,j+1: n − Lp̄(1 : j),jUj,j+1: n

= A
(0)
p̄(1 : j),j+1: n −

j∑
k=1

Lp̄(1 : j),kUk,j+1: n .

(we continue to use the notation introduced in section 2.1.)
Multifrontal algorithms multiply, at every step, the L-U product inside

the summation, but they do not sum them up immediately. That is, the
reduced matrix is always represented as a sum of the original matrix A =
A(0), and a sum of rank-1 matrices, which are called contribution blocks or
update matrices.

Using the above expansion one easily reformulates the dense algorithm
given in Figure 2.1. The unsymmetric-pattern multifrontal algorithm is
given in Figure 3.1. This pseudo-code, while mathematically correct, leaves
out the details on how to utilize the sparsity. This utilization, which is
essential for an efficient implementation, is given in the next section.

3.2. Exploiting Sparsity. As we explained, the reduced matrix A(j) is
represented by a sum of the matrices

{
A

(0)
p̄(1 : j),j+1: n, F (1), F (2), ..., F (j−1)

}
.

These matrices are sparse and the algorithm must exploit that. Multifrontal
algorithms use two kinds of representations for sparse matrices. The matri-
ces A, L, and U , which are accessed by column and/or by row, are stored
in compressed-column or compressed-row format. In a compressed-column
format, the matrix is essentially stored as an array of compressed sparse
columns. For each column in the array, the representation consists of an
array of � row indices and an array of � nonzero values. Compressed-row
format is similar, but row oriented.

Contribution blocks are kept in a more efficient data structure. A contri-
bution block is a sparse matrix, but because it has rank 1, all of its nonzero
columns have the same structure, and all of its nonzero rows have the same
structure. This uniformity can be exploited in the data structure. A con-
tribution block is represented by a two-dimensional array containing the
nonzero values, an array of nonzero row indices, and an array of nonzero
column indices. For example, in the factorization of a 5-by-5 matrix, the
contribution block 



0 0 0 0 0
2 3 0 0 0
0 0 0 0 0
0 0 0 0 0
4 6 0 0 0




PARALLEL UNSYMMETRIC-PATTERN MULTIFRONTAL SPARSE LU 9

[L, U, p] = umf lu(A) � ignores sparsity
A(0) ←− A

for j ←− 1: n

� assemble column j of A(j−1)

� recall that F (k) = Lp̄(1 : k),kUk,k+1: n

A
(j−1)
p̄(1 : j−1),j ←− A

(0)
p̄(1 : j−1),j −

∑j−1
k=1 F

(k)
p̄(1 : j−1),j

� now that column j is assembled, find the pivot

p(j) ←− arg maxp̄(1 : j−1)

∣∣∣A(j−1)
p̄(1 : j−1),j

∣∣∣
� having determined p(j), we assemble row p(j)

A
(j−1)
p(j),j : n

←− A
(0)
p(j),j : n

− ∑j−1
k=1 F

(k)
p(j),j:n

� now factor column j and row p(j)

Lp̄(1 : j−1),j ←− A
(j−1)
p̄(1 : j−1),j/A

(j−1)
p(j),j

Uj,j : n ←− A
(j−1)
p(j),j : n

� compute the contribution block
F (j) ←− Lp̄(1 : j),jUj,j+1: n

end

Figure 3.1. An unsymmetric-pattern multifrontal algo-
rithm. This pseudo-code, while mathematically correct,
leaves out many details that are essential for an efficient im-
plementation.

is represented by 


1 2
2
5

(
2 3
4 6

)

 .

We will denote the nonzero structure of F (j)’s columns by the ordered set
Ξj. The nonzero structure of F (j)’s rows will be denoted by the ordered set
Ψj. In the example above, Ξj = {2, 5} and Ψj = {1, 2}. During the fac-
torization, a column/row of an contribution block may be used to assemble
the current pivotal column/row. In that case this column/row is no longer
really a member of the contribution block since it has already been used, so
we trim it out of the contribution block. In the above example if we use the
contribution block to assemble column 2 then after doing so we will have to
trim Ψj to {1}.

Efficient assembly of rows and columns poses two main challenges. First,
most of the terms in the summation contribute nothing. It is essential to
efficiently identify the contribution blocks that do contribute to a particular

10 HAIM AVRON, GIL SHKLARSKI, AND SIVAN TOLEDO

assembly. Second, assembly operations sum multiple sparse vectors from
rectangular contribution blocks into a single vector. These operations must
be carried out efficiently.

Let us first determine the nonzero terms in the summation
j−1∑
k=1

F
(k)
p̄(1 : j−1),j =

j−1∑
k=1

Lp̄(1 : k),kUk,j .

The kth term is nonzero if and only if Uk,j �= 0. We ignore numerical
cancellation, which means here that we will explicitly add a zero term if
A

(k−1)
p(k),j is a structural nonzero. Therefore, to determine the set of terms that

must be explicitly summed, we search for k ∈ 1: j − 1 such that A
(k−1)
p(k),j is

a structural nonzero. We denote this set of contribution blocks by lcj =
{k : j ∈ Ψk}. Similarly, the set of contribution blocks that contribute to
the assembly of row p(j) is denoted by ucj = {k : p(j) ∈ Ξk}. Multifrontal
algorithms differ in how they identify these sets; we will explain how our
algorithm performs this task in Section 4.

Once these sets are determined, the algorithm knows the sparse structure
(in the reduced matrix A(j−1)) of a column and of its pivot row. The element
A

(j−1)
i,j is nonzero if either Ai,j �= 0 or if i is in the row set of one the

contribution blocks that contribute to column j, that is, i ∈ Ξk for some
k ∈ lcj. This means that the nonzero structure of column j, denoted by Γj,
is given by

Γj =


struct(A : ,j) ∪

⋃
k∈lcj

Ξk


 ∩ p(1 : j − 1) .

By the same logic, the nonzero structure of row p(j), denoted by ∆j, is
given by

∆j =


struct(Ap(j), :) ∪

⋃
k∈ucj

Ψk


 ∩ j : n .

Once these non-zero structures are determined, it is easy to create a static
data structure that will allow the assemblies to be performed efficiently.
The assembly operations are carried out in a series of so-called extend-add
operations, that each add one column/row from a contribution block to the
currently assembled row or column. Again, multifrontal algorithms differ in
the data structures that they use, so we defer the details until later in the
paper.

Figure 3.2 presents the detailed management of the sparse nonzero struc-
tures in the form of pseudo-code. This essentially concludes the description
of the basic unsymmetric-pattern multifrontal method, with one exception.
This exception is the merging of contribution blocks. This is an optimization
that prevents a storage explosion, and we describe it next.

PARALLEL UNSYMMETRIC-PATTERN MULTIFRONTAL SPARSE LU 11

[L, U, p] = sparse umf lu(A) � sparse
A(0) ←− A

for j ←− 1: n

� assemble column j of A(j−1)

lcj ←− {k : j ∈ Ψk}
Γj ←− (struct(A(0)

:,j) ∪ ⋃
k∈lcj

Ξk) ∩ p(1 : j − 1)

A
(j−1)
Γj ,j ←− A

(0)
Γj ,j

foreach k ∈ lcj

extend-add A
(j−1)
Γj ,j ←− A

(j−1)
Γj ,j − F

(k)
Ξk ,j

remove column j from F (k): Ψk ←− Ψk \ {j}
end
� now that column j is assembled, find the pivot

p(j) ←− arg maxΓj

∣∣∣A(j−1)
Γj ,j

∣∣∣
� having determined p(j), we assemble row p(j) except
� for the pivot element Ap(j),j, which is already assembled
ucj ←− {k : p(j) ∈ Ξk}
∆j ←− (struct(A(0)

p(j),:) ∪
⋃

k∈ucj
Ψk) ∩ j : n

A
(j−1)
p(j),∆j\{j} ←− A

(0)
p(j),∆j\{j}

foreach k ∈ ucj

extend-add A
(j−1)
p(j),∆j\{j} ←− A

(j−1)
p(j),∆j\{j} − F

(k)
p(j),Ψk

remove pivotal row from F (k): Ξk ←− Ξk \ {p(j)}
end
� now factor column j and row p(j)

LΓj ,j ←− A
(j−1)
Γj ,j /A

(j−1)
p(j),j

Uj,∆j ←− A
(j−1)
p(j),∆j

� compute the contribution block
Ξj ←− Γj \ {p(j)}
Ψj ←− ∆j \ {j}
F

(j)
Ξj ,Ψj

←− LΞj ,jUj,Ψj

end

Figure 3.2. An unsymmetric-pattern multifrontal algo-
rithm. This pseudo-code is more detailed than the code in
Figure 3.1, but still leaves out details.

12 HAIM AVRON, GIL SHKLARSKI, AND SIVAN TOLEDO

3.3. Merging Contribution Blocks. Each factorization step consumes a
row and/or a column from some of the existing contribution blocks, and
produces a new contribution block. When all the rows and columns of a
contribution block have been consumed, it no longer exists, and memory is
no longer allocated to it. However, this natural consumption of contribution
blocks is often not fast enough, and space allocated to contribution blocks
may cause the algorithm to run out of space. Fortunately, space can often
be conserved by merging contribution blocks.

To appreciate the magnitude of the problem, consider the factorization of
a dense matrix. After exactly n/2 rows and columns have been eliminated,
n/2 contribution blocks have been produced, and each of them still contains
n/2 unconsumed rows and n/2 unconsumed columns. Therefore, at this
point the algorithm requires Θ(n3) storage, far greater than the Θ(n2) re-
quired to store the factors. A simple left-looking or right-looking algorithm
can factor a dense matrix in place, so clearly the space that is used to store
contribution blocks is not required, at least in this case.

In the symmetric-positive-definite case, it is possible to show that a multi-
frontal algorithm requires a Θ(|L| log n) memory for contribution blocks [38].
It is likely that in the unsymmetric case the situation is similar, in that the
algorithm might need much more memory for contribution blocks than the
size of the factors. Still, techniques that reduce the storage requirements in
practice are crucial for preventing storage explosion.

The key to reducing the storage requirements is to merge existing con-
tribution blocks, or parts thereof, into the new contribution block. This
process, which is called merging or absorption is illustrated in Figure 3.3.
If an existing block F (k) contributes to the assembly of column j, then any
column in F (k) which is also in F (j) can be added to F (j) and trimmed from
F (k). Similarly, if F (k) contributes to the assembly of row p(j), then any
row in F (k) which is also in F (j) can be trimmed and added to F (j). The
best case occurs when F (k) contributes to both column j and row p(j). In
this case, all the rows and columns of F (k) can be absorbed into F (j).

We must prove formally that these merging rules are correct, in the sense
that merging does not expand the nonzero structure of F (j). To prove that
the merging rules are correct, we need a notation for the nonzero structure
of an existing contribution block that contributes to a new one. Suppose
that F (k) contributes to the assembly of column j or to the assembly of row
p(j). We denote by Ξ(j)

k the row structure of F (k) just prior to the assembly
of column j, and by Ψ(j)

k the column structure of F (k) just prior to the
assembly of row p(j). After the factoring of column j and row p(j), and just
before factoring column j + 1, the structure of F (k) is Ξ(j+1)

k and Ψ(j+1)
k .

We need these notations because these nonzero structures evolve over time
as rows and columns are trimmed from F (k).

Figure 3.4 shows the algorithm with these merging rules, and using the
new notation. To prove that the merging rules are true we have to show

PARALLEL UNSYMMETRIC-PATTERN MULTIFRONTAL SPARSE LU 13

Figure 3.3. Merging an existing contribution block into a
new contribution block. The figure shows the nonzeros in the
current row and column, number 7. The contribution block
F (7) is shown in gray. Three existing contribution blocks
contribute to row and/or column 7. One of them contributes
to both the row and the column, so it is completely absorbed.
Another contribute only to the row, so some of its rows are
absorbed but others do not, and similarly for the block that
contributes to column 7 but not to row 7.

that the structures of the matrices that we use in the extend-add operation
of the merging are indeed consumed inside the new frontal matrices. For
example, in the case that k ∈ lcj we have to show that Ξ(j)

k \{p(j)} ⊆ Ξ(j+1)
j .

This is shown in the next lemma.

Lemma 3.1. For every k < j such that k ∈ lcj (k ∈ ucj) we have Ξ(j+1)
k \

{p(j}} ⊆ Ξ(j+1)
j (Ψ(j+1)

k \ {j} ⊆ Ψ(j+1)
j)

Proof. We will show the k ∈ lcj case. The other case is symmetric. Notice
that in the algorithm we have

Γj = (struct(A(0)
:,j) ∪

⋃
k∈lcj

Ξk) ∩ p(1 : j − 1)

= (struct(A(0)
:,j ∩ p(1 : j − 1)) ∪

⋃
k∈lcj

(Ξ(j)
k ∩ p(1 : j − 1)) .

14 HAIM AVRON, GIL SHKLARSKI, AND SIVAN TOLEDO

[L, U, p] = sparse umf lu(A)
A(0) ←− A

for j ←− 1: n

� assemble column j of A(j−1)

lcj ←− {k : j ∈ Ψ(j)
k }

Γj ←− (struct(A(0)
:,j) ∪ ⋃

k∈lcj
Ξ(j)

k) ∩ p(1 : j − 1)

A
(j−1)
Γj ,j ←− A

(0)
Γj ,j

foreach k ∈ lcj extend-add A
(j−1)
Γj ,j ←− A

(j−1)
Γj ,j − F

(k)

Ξ
(j)
k ,j

� now that column j is assembled, find the pivot

p(j) ←− arg maxΓj

∣∣∣A(j−1)
Γj ,j

∣∣∣
� having determined p(j), we assemble row p(j) except
� for the pivot element Ap(j),j, which is already assembled

ucj ←− {k : p(j) ∈ Ξ(j)
k }

∆j ←− (struct(A(0)
p(j),:) ∪

⋃
k∈ucj

Ψ(j)
k) ∩ j : n

A
(j−1)
p(j),∆j\{j} ←− A

(0)
p(j),∆j\{j}

foreach k ∈ ucj extend-add A
(j−1)
p(j),∆j\{j} ←− A

(j−1)
p(j),∆j\{j} − F

(k)

p(j),Ψ
(j)
k \{j}

� now eliminate column j and row p(j)

LΓj ,j ←− A
(j−1)
Γj ,j /A

(j−1)
p(j),j

Uj,∆j ←− A
(j−1)
p(j),∆j

� compute the contribution block

Ξ(j+1)
j ←− Γj \ {p(j)}

Ψ(j+1)
j ←− ∆j \ {j}

F
(j)

Ξ
(j+1)
j ,Ψ

(j+1)
j

←− L
Ξ

(j+1)
j ,j

U
j,Ψ

(j+1)
j

� continued in Figure 3.5 . . .

Figure 3.4. The unsymmetric-pattern multifrontal method
with the contribution-merging rules. Merging follows the
elimination of every column. The elimination itself is nearly
identical to the one showed in 3.2, except that superscript is
added to every Ξ and Ψ. The pseudo code uses the notation
that we need for the proof. Since Ξ(j)

k is never needed once
Ξ(j+1)

k is constructed, there is no need to keep Ξ(j)
k ; in an

actual code, Ξ(j+1)
k simply overwrites Ξ(j)

k . Therefore, all the
rules that keep Ξ(j+1)

k identical to Ξ(j)
k simply translate into

no-ops, and similarly for Ψ(j+1)
k . The code continues in Fig-

ure 3.5.

PARALLEL UNSYMMETRIC-PATTERN MULTIFRONTAL SPARSE LU 15

� . . . contribution unification (continued from Figure 3.4)
for each k ∈ lcj ∩ ucj

extend-add F
(j)

Ξ
(j+1)
j ,Ψ

(j+1)
j

←− F
(j)

Ξ
(j+1)
j ,Ψ

(j+1)
j

+ F
(k)

Ξ
(j)
k \{p(j)},Ψ(j)

k \{j}

discard F (k): Ξ(j+1)
k ←− ∅, Ψ(j+1)

k ←− ∅
end
for each k ∈ lcj \ ucj

extend-add F
(j)

Ξ
(j+1)
j ,Ψ

(j+1)
j

←− F
(j)

Ξ
(j+1)
j ,Ψ

(j+1)
j

+ F
(k)

Ξ
(j)
k \{p(j)},Ψ(j)

k ∩Ψ
(j+1)
j

Ψ(j+1)
k ←− Ψ(j)

k \ ∆j

Ξ(j+1)
k ←− Ξ(j)

k \ {p(j)}
end
for each k ∈ ucj \ lcj

extend-add F
(j)

Ξ
(j+1)
j ,Ψ

(j+1)
j

←− F
(j)

Ξ
(j+1)
j ,Ψ

(j+1)
j

+ F
(k)

Ξ
(j)
k ∩Ξ

(j+1)
j ,Ψ

(j)
k \{j}

Ξ(j+1)
k ←− Ξ(j)

k \ Γj

Ψ(j+1)
k ←− Ψ(j)

k \ {j}
end
for all other k < j

Ξ(j+1)
k ←− Ξ(j)

k

Ψ(j+1)
k ←− Ψ(j)

k

end
end

Figure 3.5. Continuation of the code from Figure 3.4
.

Hence Ξ(j)
k ∩ p(1 : j − 1) ⊆ Γj . We claim that Ξ(j)

k ⊆ p(1 : j − 1), so in
fact Ξ(j)

k = Ξ(j)
k ∩ p(1 : j − 1) ⊆ Γj .

We will show that Ξ(j)
k ⊆ p(1 : j − 1) using induction on j. First we

note that Ξ(k+1)
k = Γk \ {p(k)}. By definition Γk ⊆ p(1 : k − 1) we have

Ξ(k+1)
k ⊆ p(1 : k − 1) \ {p(k)} and we have Ξ(k+1)

k ⊆ p(1 : k). Suppose that
Ξ(j)

k ⊆ p(1 : j − 1) we now have to prove Ξ(j+1)
k ⊆ p(1 : j). Since Ξ(j+1)

k ⊆
Ξ(j)

k ⊆ p(1 : j − 1) we have only to prove for the case that p(j) ∈ Ξ(j)
k .

If indeed p(j) ∈ Ξ(j)
k we have k ∈ ucj. We now have two options: either

k ∈ lcj or k /∈ lcj. If k ∈ lcj we have the assignment Ξ(j+1)
k ←− ∅ and we

16 HAIM AVRON, GIL SHKLARSKI, AND SIVAN TOLEDO

have Ξ(j+1)
k ⊆ p(1 : j). If k /∈ lcj we have the assignment Ξ(j+1)

k ←− Ξ(j)
k \Γj .

Since the pivot at column j is chosen only from Γj we must have p(j) ∈ Γj

and therefore p(j) /∈ Ξ(j)
k . We now have Ξ(j+1)

k ⊆ p(1 : j), and we have
finished to prove that Ξ(j)

k ⊆ p(1 : j − 1).
From Ξ(j)

k ⊆ Γj we conclude that Ξ(j)
k \ {p(j)} ⊆ Γj \ {p(j)}. We now

have two options: either k ∈ ucj or k /∈ ucj. If k ∈ ucj we have Ξ(j+1)
k = ∅

we are done. If k /∈ ucj then Ξ(j+1)
k = Ξ(j)

k \ {p(j)} and by definition
Ξ(j+1)

j = Γj \ {p(j)} so we also have Ξ(j+1)
k ⊆ Ξ(j+1)

j . �

These merging rules do not reduce the number of contribution blocks to
a minimum, and there are also cases where the minimum number of contri-
bution blocks is high. Even when a contribution block F (k) is completely
covered by a new one F (j), our absorption rules may fail to absorb it if it
does not contribute to column j or to row p(j). There are also more complex
cases where no absorption rules can reduce overlaps without increasing the
number of contribution blocks.

4. The New Algorithm

4.1. Finding Contributing Blocks. The first task during the elimina-
tion of column j is the assembly of the column, which requires identifying
the set lcj = {k : j ∈ Ψ(j)

k }. Without absorption, lcj is exactly the struc-
ture of column j of U , except for the diagonal element Up(j),j. Because of
absorption, lcj may be a proper subset of the column structure. To show
this, we first note that contribution blocks only shrinks during the factor-
ization, that is Ψ(j)

k ⊆ Ψ(k+1)
k , so lcj ⊆ {k : j ∈ Ψ(k+1)

k }. In the algorithm,
Ψ(k+1)

k ←− ∆k \ {k}, where ∆k is the structure of the kth row of U . There-
fore, j > k is in Ψ(k+1)

k if and only if Ukj �= 0.
The simplest way to determine lcj is to determine the column structure

in U , and to examine each candidate contribution block, to check whether
j is still in Ψ(j)

k . There are at least three ways to determine the structure
of a column in U . The Gilbert-Peierls approach [27], which is also used in
SuperLU [14], determines the column structure using a depth-first search
(DFS) in the graph of L. Gilbert and Peierls proved that the total amount
of work that all of these searches require is O(flops(LU) + m), where m
is the number of non-zeros in A and flops(LU) is the number of non-zero
multiplications required when doing the multiplication LU . A heuristic
called symmetric pruning can often accelerate the searches by pruning edges
from the graph of L [19].

A second approach is to maintain linked lists for the structure of each
column of U . Pointers to the linked lists are stored in an array of size
n. After forming row p(k) of U , we insert the index k to the linked lists
representing columns Ψ(k+1)

k . This can be done in time proportional to

PARALLEL UNSYMMETRIC-PATTERN MULTIFRONTAL SPARSE LU 17

∣∣∣Ψ(k+1)
k

∣∣∣. The total time it takes to build the linked lists is proportional to
the number of non-zeros in U . When we get to the elimination of column j,
the structure of column j in U is explicitly represented by the corresponding
linked list. Umfpack used the linked-list approach, and it appears that it
actually removes elements from these lists during absorption, to make the
search more precise. There is no running-time analysis of that technique.

Although the linked-lists approach is simple and more efficient than the
DFS approach, it is inappropriate for a parallel algorithm, due to the need
to lock the lists.

We use a third approach, which computes a superset of the structure of
column j of U using the column elimination tree. If Ukj �= 0, then k must be
a descendant of j in the column elimination tree. Therefore, the descendants
of j in the column elimination tree form a superset of the actual non-zero
structure of column j of U . We enumerate this superset and check each
contribution block, to determine whether it contributes to lcj.

We acknowledge that our approach may be less efficient than the DFS
and linked-list approaches, but it is simple and require no locking. Our
numerical experiments indicate that on real-world matrices, our approach is
efficient. It may be the case that a more sophisticated approach, such as the
DFS approach, will yield an algorithm with better theoretical running-time
bounds, and perhaps even somewhat faster in practice.

Due to contribution-block merging, all the approaches only find a superset
of lcj. The algorithm still needs to find the actual contributors. We do this
together with finding the actual location of column j inside the contributing
contribution block, and is discussed in the next section.

Constructing ucj is completely analogous and we perform that task in
exactly the same way.

4.2. Performing Extend-Add Operations. Recall that the contribution
blocks are kept in a dense format, where each column/row corresponds to
column/row of the sparse matrix. The algorithm has to find out whether a
column is a member of the contribution block, and if so where it is located
inside the dense matrix.

There are several ways which this can be done. The first method, used
by umfpack, is suitable when linked lists represent the sets lcj and ucj

(or supersets thereof). The elements of the list store not only the row or
column index, but also its location in the contribution block. This data
structure requires careful management when row/column locations within
contribution blocks change due to merging.

Another method is to keep the column and row indices of the contribution
block in a dictionary data structure, such as a sorted array, a balanced tree,
or a hash table. Again, due to merging, the structure must support deletions.

18 HAIM AVRON, GIL SHKLARSKI, AND SIVAN TOLEDO

Our code uses a simpler solution that simply stores the indices in an
unsorted array. Our numerical experiments indicate that on real-world ma-
trices, this simple approach is efficient and does not represent a bottleneck
in the overall algorithm.

Once the contributing columns and rows are identified, we need to sum
them up. The terms in these summations are sparse, so an appropriate data
structure is required. The data structure that is used is called a sparse ac-
cumulator (spa). There are several ways to implement a spa. We describe
here an implementation that is particularly effective in supernodal algo-
rithms. Our spa consists of an integer array map of size n, whose elements
are initialized to in invalid value (−1 in our code), an integer initialized to
1, an array of numerical values (real or complex), and an array of integer
indices. The size of the last two arrays must be large enough to store all the
nonzeros in the sum their indices. The integer and these two arrays form
a stack of value-index pairs, which is initially empty. The spa maintains a
vector, which is initially zero. To add a nonzero value to position i of the
vector stored in the spa, the algorithm first checks map[i]. If map[i]=-1,
the algorithm pushes the nonzero and the index i onto the stack, and records
their position in the stack in map[i]. If map[i] is valid, the nonzero value is
simply added to the numerical value stored in position map[i] of the stack.

This sparse accumulator structure can be adapted easily to summing su-
pernodal contributions, which we describe next.

4.3. Supernodes in the New Algorithm. When the contribution blocks
of several columns have similar nonzero structures, it is best to merge them.
Consider columns i and j > i, such that Γj = Γi \ {p(i)} and ∆j = ∆i \ {i}.
The contribution blocks of the two columns are almost identical in structure.
In fact, the contribution block of i will be merged into that of j. We can
reorder the factorization process so that the two columns are first factored
using a partial-pivoting dense LU factorization kernel, then the two rows of
U are computed using a dense triangular solver, and then the two columns
and the two rows are multiplied to produce a single contribution block.
When this is done, we say that the two columns form a supernode.

Supernodes have been quickly recognized as a key element in efficient mul-
tifrontal algorithms [18, 3], as well as in other factorization algorithms [37,
36, 14, 30]. Supernodes reduce memory usage, cache misses, indexing over-
head, and they help exploit fine-grained parallelism. The last issue is par-
ticularly important for our algorithm.

Amalgamating columns with similar but not identical nonzero structure
often improves performance even though the amalgamation introduces ex-
plicit zeros into the sparse factors. In our example, if Γj �= Γi \ {p(i)}
and/or ∆j �= ∆i \ {i}, then column i (and/or row p(i)) in the supernodal
data structure will include explicit zeros. These explicit zeros increase mem-
ory usage, data movement in the memory system, and instruction counts.

PARALLEL UNSYMMETRIC-PATTERN MULTIFRONTAL SPARSE LU 19

When the nonzero structures are similar enough or when the separate su-
pernodes would otherwise be thin, these costs, however, are often smaller
than the performance benefits that amalgamation brings. Like exact su-
pernodes, amalgamated supernodes (sometimes called relaxed supernodes)
were also identified useful early [18, 3].

Supernodes are easiest to exploit during the numerical factorization if they
can be identified ahead of the numerical factorization phase. Supernodes are
relatively easy to detect in symmetric factorizations and when pivoting is
not necessary [35]. In our case, the situation is more complex because of the
unsymmetry and because of pivoting. Our algorithm partitions the columns
into supernodes prior to the numerical factorization. Due to pivoting, the
partitioning is not exact: it may miss cases where the actual choice of piv-
oting leads to identical or almost identical row and column structures, if
under another choice the structures differ considerably. It may also coalesce
columns with different structures into supernodes. We describe our parti-
tioning strategy later; for now, it suffices to say that a supernode in our
algorithm always consists of a chain of vertices in the column elimination
tree or of a leaf subtree (a subtree whose leaves are all leaves of the entire
tree).

We now describe the supernodal numerical factorization. A supernode is
ready to be factored when all the supernodes below it in the column elimi-
nation tree have been factored. When a supernode is ready to be factored,
the algorithm determines the column structure of the supernode, which is
the union of the column structures of the constituent columns. Next, the al-
gorithm assembles all the columns together, using a rectangular compressed
sparse matrix. This sparse matrix might have explicit zeros. The assembly
operation consumes columns in the supernode from any existing contribu-
tion block that contributes to Ai,j, even if the (i, j) element in the supernode
is an explicit zero (because it might fill due to the factorization of a column
j′ < j in the supernode). Once the columns have been assembled, a partial-
pivoting dense LU factorization kernel is applied to the supernode. This
determines all the pivot rows, which are now assembled and factored. Next,
the subdiagonal block column is multiplied by the block row to form the new
contribution block. Finally, rows and columns from existing contribution
blocks are merged into the new contribution block, and the factorization
continues with the next supernode. The pseudocode for the algorithm is
given in Figures 4.1 and 4.2.

We coalesce columns into supernodes using the following strategy. The
algorithm traverses the column elimination tree bottom up. Near the leaves,
we merge entire leaf subtrees into supernodes. The amalgamation criterion
here is simple: a leaf supernode must have more than a certain number
of columns, 20 in our implementation. If a leaf subtree is too small, the
tree rooted at the subtree’s root is examined, and so on. This criterion
completely ignores the nonzero structure of columns.

20 HAIM AVRON, GIL SHKLARSKI, AND SIVAN TOLEDO

[L, U, p] = sparse umf lu(A) � contribution unification and supernodal
split A into a set of s supercolumns {Ω1,Ω2, ...,Ωs}
A(0) ←− A

for j ←− 1: s

� assemble supercolumn j of A(j−1)

lcj ←− {k : Ωj ∩ Ψ(j)
k �= ∅}

Γj ←− (struct(A(0)
:,Ωj

) ∪ ⋃
k∈lcj

Ξ(j)
k) ∩ p(

⋃
k∈lcj

Ωk)

A
(j−1)
Γj ,Ωj

←− A
(0)
Γj ,Ωj

foreach k ∈ lcj extend-add A
(j−1)
Γj ,Ωj

←− A
(j−1)
Γj ,Ωj

− F
(k)

Ξ
(j)
k ,Ωj∩Ψ

(j)
k

� factor the supercolumn itself

solve LΓj ,ΩjUΩj ,Ωj = A
(j−1)
Γj ,Ωj

with pivots at p(Ωj)

� having determined p(Ωj), we can assemble the rows p(Ωj)

ucj ←− {k : p(Ωj) ∩ Ξ(j)
k �= ∅}

∆j ←− (struct(A(0)
p(Ωj),:

) ∪ ⋃
k∈ucj

Ψ(j)
k) ∩ (

⋃s
k=j+1 Ωk)

A
(j−1)
p(Ωj),∆j\Ωj

←− A
(0)
p(Ωj),∆j\Ωj

foreach k ∈ ucj

extend-add A
(j−1)
p(Ωj),∆j\Ωj

←− A
(j−1)
p(Ωj),∆j\Ωj

− F
(k)

p(Ωj)∩Ξ
(j)
k ,Ψ

(j)
k \Ωj

end
� now complete the factorization of the rest of the pivotal rows

solve Lp(Ωj),Ωj
UΩj ,∆j\Ωj

= A
(j−1)
p(Ωj),∆j\Ωj

� compute the contribution block

Ξ(j+1)
j ←− Γj \ p(Ωj)

Ψ(j+1)
j ←− ∆j \ Ωj

F
(j)

Ξ
(j+1)
j ,Ψ

(j+1)
j

←− L
Ξ

(j+1)
j ,Ωj

U
Ωj ,Ψ

(j+1)
j

� continued in Figure 4.2 . . .

Figure 4.1. The supernodal version of the unsymmetric
multifrontal algorithm. This pseudo-code leaves out the de-
tails on how to implement some of the operations. Continued
in Figure 4.2.

PARALLEL UNSYMMETRIC-PATTERN MULTIFRONTAL SPARSE LU 21

� . . . continued from Figure 4.1.
� contribution unification
for each k ∈ lcj ∩ ucj

extend-add F
(j)

Ξ
(j+1)
j ,Ψ

(j+1)
j

←− F
(j)

Ξ
(j+1)
j ,Ψ

(j+1)
j

+ F
(k)

Ξ
(j)
k \p(Ωj),Ψ

(j)
k \Ωj

discard F (k): Ξ(j+1)
k ←− ∅, Ψ(j+1)

k ←− ∅
end
for each k ∈ lcj \ ucj

extend-add F
(j)

Ξ
(j+1)
j ,Ψ

(j+1)
j

←− F
(j)

Ξ
(j+1)
j ,Ψ

(j+1)
j

+ F
(k)

Ξ
(j)
k \p(Ωj),Ψ

(j)
k ∩Ψ

(j)
j

Ψ(j+1)
k ←− Ψ(j)

k \ ∆j

Ξ(j+1)
k ←− Ξ(j)

k \ p(Ωj)
end
for each k ∈ ucj \ lcj

extend-add F
(j)

Ξ
(j+1)
j ,Ψ

(j+1)
j

←− F
(j)

Ξ
(j+1)
j ,Ψ

(j+1)
j

+ F
(k)

Ξ
(j)
k ∩Ξ

(j+1)
j ,Ψ

(j)
k \Ωj

Ξ(j+1)
k ←− Ξ(j)

k \ Γj

Ψ(j+1)
k ←− Ψ(j)

k \ Ωj

end
for all other k < j

Ξ(j+1)
k ←− Ξ(j)

k

Ψ(j+1)
k ←− Ψ(j)

k

end
end

Figure 4.2. Continuation of Figure 4.1.

Above the leaf subtrees, our algorithm is more conservative. The al-
gorithm uses a-priori nonzero-count bounds for the columns of the L and
on the rows of U . We compute these bounds by constructing a bi-partite
clique-cover representation of the row-merge graph [21]. We denote by µj

the upper bound on the nonzero count of L:,j and by νj the upper bound on
the nonzero count of Uj,:. If a vertex has more than one child, it will start a
new supernode. If a vertex has only one child, the algorithm may include it
in the supernode that contains the child. Consider a column j whose only
child in the col-etree is j − 1, whose only child is j − 2, and so on, down to
j− q, such that j−1, . . . j− q have already been coalesced into a supernode,
and such that the children of j − q are part of other supernodes. Should the

22 HAIM AVRON, GIL SHKLARSKI, AND SIVAN TOLEDO

algorithm add column j to the supernode starting at j− q? Adding j to the
supernode may add explicit zeros to Lj−q:j−1,: and to U:,j−q:j−1. If we add
column j to the supernode, the a-priori nonzero-count bound for columns
j − q through j − 1 in L will rise to µj (minus superdiagonal elements), and
the bound for the corresponding rows in U will rise to νj, again minus sub-
diagonal elements. The algorithm is designed not to disallow the addition of
too many explicit zeros in the predicted nonzero structure. More specifically,
we add column j to the supernode only if

(µj + (q − 1)) q ≤ α

j∑
k=j−q

µk and (νj + (q − 1)) q ≤ α

j∑
k=j−q

νk ,

where α is an implementation parameter (we use α = 2). Note that this
formula does count superdiagonal elements that will be represented in the
representation of L and subdiagonal elements in U . The actual increase in
the nonzero counts may be larger than α, because the expressions on the left
side of the two inequalities are a-priori upper bounds, not actual nonzero
counts.

We have also experimented with detecting supernodes on the fly during
the factorization. Although in principle one can coalesce columns based
on the actual number of explicit zeros that must be represented, doing so
prevents the algorithm from utilizing a dense LU factorization kernel. The
dense kernel cannot be used because we can only decide whether to include
column j in the supernode after the elimination of column j − 1. To utilize
a dense kernel, we must decide which columns it will factor before we invoke
it. We used an on-the-fly strategy that does allow us to use a dense kernel.
We assemble columns one by one into a supernodal block column. When the
number of explicit zeros in this yet-unfactored block column of the trailing
submatrix exceeds a threshold, we stop adding columns to the supernode.
We then call a dense kernel to factor the supernode as in Figure 4.1. This
strategy is conservative relative to the fully dynamic one, because some of
the explicit zeros that we count in the yet-unfactored block may fill in L. In
preliminary experiments method did not prove significantly superior to the
static bounds-based decomposition, so we did not experiment with it any
further.

4.4. Exposing and Exploiting Parallelism. Our algorithm exposes and
exploits parallelism at several levels.

4.4.1. Parallel Factorization of Siblings. In factorization algorithms that
are based on an elimination-tree, columns that are not in an ancestor-
descendant relationship can be eliminated concurrently. In particular, this
is true for LU factorizations with partial pivoting [25]. Virtually all the
column-elimination-tree partial pivoting factorization codes today exploit
this form of parallelism.

PARALLEL UNSYMMETRIC-PATTERN MULTIFRONTAL SPARSE LU 23

In our algorithm, whenever a node in the supernodal column elimination
tree has more than one child, it spawns concurrent recursive factorizations
of all its children.

This source of parallelism is not the only one in sparse LU with partial
pivoting. Demmel, Gilbert, and Li found that LU factorization codes do not
scale well unless more parallelism is exploited [15].

4.4.2. Overlapping Factorizations with Column Assemblies. Before a supern-
ode can be factored, the contributions from its descendants must be assem-
bled into the supernode. The assembly of the contributions is a summation
operation, so it can be performed in any order. A contribution can only
be summed after it has been computed, but it can be summed before other
contributions have been computed.

Our algorithm partially exploits this source of parallelism. Once the fac-
torization of a child subtree is completed, the parent supernode assembles
the contributions from that subtree. This allows this summation to over-
lap the factorization of the other children. However, at any given time a
supernode sums contributions from only one of its children’s subtrees, to
avoid data races on the supernode itself (multiple children can contribute
to the same element of a supernode). The summation of the contributions
from a child’s subtree is also performed sequentially, contribution block by
contribution block, to avoid data races. The serialization of the children’s
contribution is achieved using the inlet mechanism of Cilk.

We note that the data-flow constraints allow for more parallelism than
we exploit. A contribution block from a distant descendant can be summed
as soon as the block is computed. Our algorithm waits until the child is
factored, and only then sums the contributions from that entire subtree.
However, exploiting this form of parallelism is difficult, for two reasons.
First, it is difficult to keep track of the exact data-flow constraints. More
importantly, if a contribution block is assembled early into supernode j, it
cannot be later merged into the contribution block of another descendant of
j, since that might lead to summing the same contribution twice.

4.4.3. Splitting the Computation of a Contribution Block. Different columns
of a contribution blocks are assembled into different supernodes. By splitting
the computation of a contribution block into groups of column, we can as-
semble an already-computed block column into a near ancestor concurrently
with the computation of another block column.

Our algorithm does exploit this source of parallelism, but in a limited
way. First, we only split the column set of a contribution block into two
sets, the set of columns that contribute to the parent of the supernode and
the set of all the other columns. Second, we only split a contribution block
if it is an only child.

24 HAIM AVRON, GIL SHKLARSKI, AND SIVAN TOLEDO

When a supernode has two or more children we do not exploit this form
of parallelism. This is because it is impossible to express this form of paral-
lelism in Cilk without sacrificing the parallelism gained by computing con-
tribution blocks in parallel. We note that in most cases, when a supernode
has two or more children, there is at least some elimination-tree parallelism,
so the loss of concurrency due to this restriction has a limited impact on
scalability.

4.4.4. Parallel Merging of Contribution Blocks. After the contribution block
of a supernode j has been computed, our algorithm attempts to merge
existing contribution blocks into the contribution block of j. Contribution
blocks of supernodes that are not an in an ancestor-descendant relation in
the elimination tree can be merged concurrently, because their row structure
is disjoint. Lemma 4.2 proves this claim. To prove the lemma we will need
a theorem which is not new; it is due to Gilbert and appears in [25], but we
prove it here because the technical report is difficult to obtain.

Theorem 4.1. Let A be a square, nonsingular, possibly unsymmetric ma-
trix, and let PA = LU be any factorization of A with pivoting by row inter-
changes. Let T be the column etree of A, and let M = L + U . If i and j do
not have an ancestor-descendant relation in T then columns i and j in M
are disjoint. That is struct(M:,i) ∩ struct(M:,j) = ∅.
Proof. Suppose, by contradiction, that there are such an i and j, and let us
assume that i < j. Let k ∈ struct(M:,i)∩struct(M:,j). Since k ∈ struct(M:,i)
then either Lki �= 0 or Uki �= 0, depending if k > i. Since i < j there are
three case: (a) Uki �= 0 and Ukj �= 0, (b) Lki �= 0 and Ukj �= 0, and (c)
Lki �= 0 and Lkj �= 0.

In case (a) the column etree theorem dictates that k is a descendant of
both i and j, which cannot be unless i is a descendant of j.

In case (b) the column etree dictates that k is a descendant of j, and i is
a descendant of k, so i is a descendant of j.

We now consider case (c). Let us look on Lki. Either it is a filled-in
element or it is a non-zero in PA. If it is a non-zero in PA then let us define
i′ = i. If it is a filled-in element then there must exist an i′ such that the
element at ki′ is a non-zero in PA. We will denote by i′ the minimum such
element. By the column etree theorem i′ is a descendant of i. We define
j′ in a symmetric way, and it too is a descendant of j. We will assume
that i′ ≤ j′, the other case is symmetric. Let us denote by k′ the row in A
that corresponds to row k in PA. Let P ′ be any permutation such that the
pivot in column i′ is k′, and there exists a factorization P ′A = L′U ′ (not
necessarily numerical stable). Such a permutation exists since Ak′i′ �= 0 and
A is nonsingular. Let us now look at Ui′j′ . Since Ak′i′ �= 0 we have that
index k′i′ is non-zero in P ′A, so we must have Ui′j′ �= 0. By the column etree
theorem we conclude that i′ is a descendant of j′. Since i′ is a descendant of
i and j′ is a descendant of j, then i′ is a descendant of both i and j, which
can only be true if i is a descendant of j �

PARALLEL UNSYMMETRIC-PATTERN MULTIFRONTAL SPARSE LU 25

Lemma 4.2. If supernodes i and j do not have an ancestor-descendant
relation in the supercolumn elimination tree of A then for every k we have

Ξ(k)
i ∩ Ξ(k)

j = ∅ .

Proof. Since Ξ(k)
i ⊆ Ξ(i+1)

i ⊆ Γi and Ξ(k)
j ⊆ Ξ(j+1)

j ⊆ Γj it is enough to prove
that Γi∩Γj = ∅. Recall that Γi (Γj) is the structure in L of the first column
in supernode i (j). Therefore Γi and Γj are the structure of two distinct
columns in L, columns that are members of supernodes that do not have
an ancestor-descendant relationship in the supercolumn elimination tree.
Recall that all supernodes are connected-subsets in the column elimination
tree. Therefore the columns that are the structure of Γi and Γj do not have
an ancestor-descendant relation in the column elimination tree of A. Using
theorem 4.1 we conclude that the structure of the columns are disjoint, and
therefore Γi ∩ Γj = ∅. �

We exploit this source of parallelism as follows. The algorithm spawns
concurrent procedures that merge contributions from all the children of a
supernode j. Each of these procedures recursively invokes parallel contribu-
tion merging from the child’s children, and so on. After the contributions
from a subtree rooted at supernode i have been merged, the merging proce-
dure tries to merge the contribution block of i; this is not done concurrently
with the merging of other descendants of j.

4.4.5. Parallel Dense Operations. Another source of parallelism comes from
operations on dense submatrices: factorization of supernodes, triangular
solves to compute a supernodal row block of U , and matrix-matrix multi-
plication to compute a contribution block.

We have parallelized all of these operations using recursion in Cilk. At the
bottom of the recursion, our code calls the level-3 sequential Basic Linear
Algebra Subroutines (blas) [17] or lapack [2].

These parallel dense algorithms are standard, so we do not describe the
details. We only mention that the parallel dense LU factorization algorithm
that we implemented utilizes some of the techniques that the sparse algo-
rithm uses. For example, we split the computation of an update to the
trailing submatrix, to allow the factorization of the next block column to
start as quickly as possible.

4.4.6. Miscellaneous. Our algorithm exploits two more sources of paral-
lelism.

Once a supercolumn has been factored and the pivot rows have been
assembled, we know the row and column structure of its contribution block.
At this point, we cannot yet compute the contribution block, because we
first need to compute the pivot rows using a dense triangular solve. But
we can already merge contribution blocks from descendants. Therefore, our
algorithm concurrently computes the pivot rows and merges contribution

26 HAIM AVRON, GIL SHKLARSKI, AND SIVAN TOLEDO

blocks. When both operations terminate, we multiply the block column
with the block row and add the result to the contribution block.

The numerical operations during the merging of a contribution block i into
another j are independent additions that can all be performed in parallel.
Our algorithm partitions the merged contribution block i into blocks that
are merged into j concurrently.

5. Experimental results

We now describe experimental results that we have obtained with the
new solver, as well as comparisons to two other solvers, the sequential solver
umfpack 4.0 [5] and the multithreaded SuperLU MT [15]. We describe
the matrices that we used for the experiments, the hardware and software
environment, and the results of the experiments.

The comparisons to the two other codes are meant to achieve specific
goals. The comparison to umfpack is meant to show that on a single
processor, our algorithm achieve a level of performance similar to that of
a state-of-the-art unsymmetric code. We do not claim that our code is
preferable to umfpack on a uniprocessor, and certainly not to more recent
versions of umfpack. The comparison to SuperLU MT is meant to show
that our code scales well. Unsymmetric direct solvers are notoriously hard to
parallelize, so it is essential to evaluate the speedups of a new code relative
to the speedups that other codes achieve on the same matrices, not to the
theoretical hardware speedup limits.

In general, the results that we present are designed to substantiate our
claims regarding the performance and scalability of the algorithm. The
comparisons that we present here are not meant to assist prospective users
in selecting a code; The selection of a code should ideally be based on an
unbiased and carefully designed study, such as [29].

The results below include only the time for the symbolic analysis and for
the numerical factorization, but not the time for ordering and triangular
solves. However, in umfpack, the ordering and symbolic analysis phases
are integrated. Therefore, for umfpack we measured only the numerical
factorization time; we do not count umfpack’s symbolic analysis time. As
a consequence, comparisons of our code to umfpack have a bias that favors
umfpack. (It is possible to separate umfpack’s ordering and symbolic
analysis phases, but this causes noticeable performance deterioration; we
preferred to use the best scenario for umfpack.)

We used colamd [12, 13] to order all the matrices. As mentioned above,
umfpack comes with a built-in slightly modified version of colamd, which
it uses.

In the results below, our new code is labeled taucs, since it is now part
of the taucs suite of linear solver that our group has been developing and
distributing.2

2Available from http://www.tau.ac.il/~stoledo/taucs/.

PARALLEL UNSYMMETRIC-PATTERN MULTIFRONTAL SPARSE LU 27

5.1. The Hardware and Software Environment. We performed all the
experiments reported here on a SGI Origin 3000 series computer with 32
processors and 32 GB of memory running the IRIX 6.5 operating system.
The processors are 500 MHz MIPS R14000 with a 8 MB level-2 cache and
a 32 KB level-1 data cache. 3

We linked all the codes with the vendor’s Basic Linear Algebra Subrou-
tines (blas), scsl version 1.4. We used the sequential version of the library.

We used SuperLU MT version 1.0, the latest version. SuperLU MT can
utilize either OpenMP directives or POSIX threads. On the Origin, Su-
perLU defaults to using OpenMP, using the SGI compiler, and using a
relatively old sequential blas (complib.sgimath). We compiled SGI us-
ing these defaults, except that we switched to the newer and faster blas

library scsl 1.4. The documentation specifically requires sequential blas,
so we did not use the OpenMP version of scsl. The version of the SGI
compiler that we used is MIPSPro 7.3 with the optimization flags specified
by the SuperLU MT makefile, except that we changed the compiler target
to R14000.

We used umfpack version 4.0. This was the latest version when we
started this research, but it is no longer the most recent; we expect that
newer versions give better results, at least on some of the matrices. We
compiled umfpack with the default compiler (gcc) and optimization flags
specified by the umfpack makefile. We used version 2.95 of the gcc compiler.

By default, umfpack uses threshold pivoting with a threshold of 0.1.
We have implemented only partial pivoting (the pivot must be at least as
large in absolute value as the rest of the elements in its column). To fac-
tor out this issue from the comparisons, we also used partial pivoting in
umfpack, not the default threshold pivoting. Therefore, the comparisons
below reflect the same numerical strategy, but not necessarily the best-
performance/reliability tradeoff for umfpack.

We compiled our code using gcc, since Cilk only supports the gcc compiler.
We used version 2.95 of the compiler and the with the -O3 optimization flag.

All the codes were compiled using 32-bit mode, since the version of Cilk
that we used does not support 64-bit mode.

5.2. The Matrices. We used a suite of 77 matrices in the evaluation of
our code. The test suite includes most of the matrices that were used in
articles [1, 10, 6, 14, 8, 30], as well as 4 new matrices4. The only matrices
from this set that we did not use were matrices that we could not find5,

3A note to the editor and the referees: unfortunately, this machine has been recently
decommissioned, so we will be unable to run additional experiments on it.

4cage8, cage9, cage10, cage11.
5inaccura, comp2c, invextr1, mil053, mixtank, tib, wang3old, olaf1, av4408.

28 HAIM AVRON, GIL SHKLARSKI, AND SIVAN TOLEDO

Name Classification Order
1000’s of
nonzeros Symmetry

1 rim symmetric 22560 1015 0.64
2 twotone circuit 120750 1206 0.24
3 zhao2 symmetric 33861 167 0.92
4 psmigr 1 unsymmetric 3140 543 0.48
5 ex11 symmetric 16614 1097 1.00
6 raefsky3 symmetric 21200 1489 1.00
7 raefsky4 symmetric 19779 1317 1.00
8 fidap011 symmetric 16614 1091 1.00
9 fidapm11 symmetric 22294 61787 1.00

10 wang4 circuit 26068 177 1.00
11 cage10 symmetric 11397 151 1.00
12 bbmat symmetric 38744 1772 0.53
13 av41092 symmetric 41092 1684 0.00
14 mark3jac140 unsymmetric 64089 376 0.07
15 xenon1 symmetric 48600 1181 1.00
16 g7jac200 unsymmetric 59310 718 0.03
17 li symmetric 22695 1215 1.00
18 ecl32 circuit 51993 380 0.92
Table 1. The large matrices that we use to measure speedups.

matrices that our code could not read6, and a few matrices that we omitted
due to oversight7.

Some of the graphs that present the results of our experiments partition
the matrices into three sets: highly symmetric structure, highly unsymmet-
ric structure, and circuit-simulation matrices. Matrices were classified as
circuit-simulation matrices if they were clearly labeled as such. Matrices
were classified as highly symmetrically structured if more than 50% of the
entries are matched (aij �= 0 and aji �= 0), and as highly unsymmetric
otherwise.

We present speedup results only for the largest matrices that our code was
able to solve on a uniprocessor. The selection criterion for these matrices
was a factorization time of 20 seconds or more (by our code). These matrices
are listed in Table 1. We do not claim that our code scales well on matrices
that can be factored in several seconds on a uniprocessor.

Several of these matrices were not successfully factored by all codes. We
document these matrices and the reasons for the failures, where we could
determine the reason.

6This includes mostly symmetric and rectangular matrices that our matrix-import code
could not handle: nasarb, bcsstk08/28/16, plat1919, eris1176, bscpwr10, finan512.

7gemat11, wang3, west2021.

PARALLEL UNSYMMETRIC-PATTERN MULTIFRONTAL SPARSE LU 29

0.5 0.8 11.25 2 4

0.1

0.25

0.5

0.8
1

1.25

2

4

10

UMFPACK 4.0 Memory / TAUCS Memory

U
M

F
P

A
C

K
 4

.0
 T

im
e

/ T
A

U
C

S
 T

im
e

Unsymmetric
Symmetric
Circut

Figure 5.1. The performance of our new code relative to
that of umfpack 4.0 on a single processor. The solid lines
represent the medians of the data points. Each symbol on
the plot represents one matrix. Data points higher than 1
represent better performance of our code.

Four of the matrices were too large to solve within the 32-bit address-space
constraint: circuit 4, cage11, pre2, and xenon2. None of the codes was able
to factor these matrices. On two matrices, e40r0000 and e40r5000, umfpack

produces solution with a large residual; the two other codes exhibited no such
problem on these matrices. On three matrices, shyy161, shyy41, and rw5151
all three codes produced solutions with poor residuals. Our code crashed on
one matrix, mahindas (a small matrix, factored in less than 0.1 seconds by
both umfpack and SuperLU MT); we have not been able to determine the
reason for this failure. SuperLU MT always failed on two matrices, ecl32
and li, probably due to lack of memory.

5.3. The Results of the Experiments. Figures 5.1 and 5.2 show that on
a uniprocessor, our new code performs well compared to both SuperLU MT
and to umfpack. The design of the plots shown in these figures is taken
from [9]. The running-time-ratio median line for umfpack is very close to
1, which implies that our code is faster than umfpack on roughly the same

30 HAIM AVRON, GIL SHKLARSKI, AND SIVAN TOLEDO

0.5 0.8 11.25 2 4

0.1

0.25

0.5

0.8
1

1.25

2

4

10

SuperLU_MT Memory / TAUCS Memory

S
up

er
LU

_M
T

 T
im

e
/ T

A
U

C
S

 T
im

e
Unsymmetric
Symmetric
Circut

Figure 5.2. The performance of our new code relative to
that of SuperLU MT on a single processor.

number of matrices as those on which umfpack is faster. The running-
time-ratio median for SuperLU MT shows that our code is faster than Su-
perLU MT on more matrices than the other way around. The memory-ratio
median lines show that on many matrices our code uses more memory than
the two other codes.

Our code is never more than twice as fast as umfpack, but on a few
matrices, it is much slower. All of these are matrices that can be factored
very quickly by all codes. Our code is sometimes more than 4 times faster
than SuperLU MT; as we show later, this happens even on large matrices.

The plots also show that when our code is slow, it also uses much more
memory. There does not seem to be a correlation between they type of
matrix, as defined in [9] (symmetric, unsymmetric, and circuit simulation)
and the behavior of our code relative to other codes.

Figure 5.3 compares the uniprocessor performance of our code to that of
umfpack and SuperLU MT, but only on the 18 large matrices (factorization
times larger than 20 seconds). On most of these matrices, our code is slightly
faster than umfpack. Except for one of these matrices ecl32, our code is
never much slower. On ecl32 our code is significantly slower than umfpack.

PARALLEL UNSYMMETRIC-PATTERN MULTIFRONTAL SPARSE LU 31

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0.125

0.25

0.5

1

2

4

8

Matrix Index

T
im

e
/ T

A
U

C
S

 T
im

e

UMFPACK 4.0
SuperLU_MT

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0.125

0.25

0.5

1

2

4

8

Matrix Index

N
N

Z
 C

ou
nt

 /
T

A
U

C
S

 N
N

Z
 C

ou
nt

UMFPACK 4.0
SuperLU_MT

Figure 5.3. The uniprocessor performance of our new code
relative to that of umfpack 4.0 and SuperLU MT, on the
18 largest matrices in our test suite. The graph on top shows
factorization-time ratios, the one on the bottom ratios of
nonzero-counts in the computed factors.

The number-of-nonzeros ratios show that the poor performance of our code
on this matrix is correlated with a higher nonzero count: ecl32 is the only
matrix on which our code generates more than twice as many nonzeros as
the other codes. Our code does generate more nonzeros than the other codes
on many of the large matrices, but not by a large factor. The higher nonzero
counts probably reflect our aggressive supernode amalgamation strategy.

On the large matrices and a single processor, our code is always faster
than SuperLU MT, often by more than a factor of 2 and once by an even
larger factor.

Figure 5.4 presents the speedups that our code achieves on the large
matrices. On 2 processors, the behavior is fairly uniform: the code speeds
up by a factor of 1.5 to 1.8. On larger numbers of processors, the speedups
are less uniform, and tend to improve with the cost of the factorization. On
4 processors, speedups often approach 3 (and sometimes slightly higher).
Increasing the number of processors from 4 to 8 improves the running times
significantly, with speedups around 4 for the largest matrices. Increasing the

32 HAIM AVRON, GIL SHKLARSKI, AND SIVAN TOLEDO

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1

2

3

4

5

6

7

8

Matrix Index

S
pe

ed
up

 v
s.

 1
 C

P
U

 T
A

U
C

S
2 CPUs
4 CPUs
8 CPUs
16 CPUs
32 CPUs

Figure 5.4. Speedups of our code relative to the uniproces-
sor factorization times. This plot focuses on the 18 largest
matrices, except that our code failed to solve matrix 18 in
parallel.

number of processors to 16 and then 32 improves the absolute performance,
but not significantly. Performance never drops significantly with increasing
numbers of processors.

Figure 5.5 compares the running times of our codes to that of SuperLU MT
on 1–16 processors, on the large matrices. We were unable to run Su-
perLU MT on 32 processors, and it also sometimes failed on smaller numbers
of processors. The usual behavior in these cases seemed to be an infinite
loop. We are uncertain as to what exactly caused these failures. The data in
the figure shows that on up to 4 processors, our code is almost always faster
than SuperLU MT, and never significantly slower. On 8 and 16 processors,
SuperLU MT is sometimes faster; on a few matrices by a factor of about
1.5, and on one, by a factor of 2. On the 10 largest matrices in this group,
our code is almost always faster and never significantly slower. The data in
this graph demonstrates that the parallel performance of our code achieves
similar to that obtained by another state-of-the-art parallel factorization
code.

PARALLEL UNSYMMETRIC-PATTERN MULTIFRONTAL SPARSE LU 33

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0.125

0.25

0.5

1

2

4

8

Matrix Index

S
up

er
LU

_M
T

 T
im

e
/ T

A
U

C
S

 T
im

e
1 CPU
2 CPUs
4 CPUs
8 CPUs
16 CPUs

Figure 5.5. The performance of SuperLU MT relative to
that of our new code on 1, 2, 4, 8, and 16 processors, on the
18 largest matrices. Some of the data points for matrices 11,
14, and 17 are missing because SuperLU MT failed to factor
the matrices. Our code was able to factor matrix 18 on one
processor but not on more; SuperLU MT was not able to
factor it at all.

6. Conclusions

The main question that our research aimed to resolve was whether the
unsymmetric-pattern multifrontal partial-pivoting sparse LU factorization
can be effectively parallelized. We believe that our results demonstrate that
this class of algorithms can indeed be effectively parallelized.

Our methodology has been to produce a sequential code whose perfor-
mance is on par with that of a state-of-the-art unsymmetric-pattern mul-
tifrontal partial-pivoting sparse LU code, umfpack 4.0, and to parallelize
it. We then compared the parallel performance to that of another partial-
pivoting sparse LU code, SuperLU MT. In most cases, our code is faster
than SuperLU MT. These results establish our main conclusion, that the
unsymmetric-pattern multifrontal partial-pivoting sparse LU factorization
can be effectively parallelized.

34 HAIM AVRON, GIL SHKLARSKI, AND SIVAN TOLEDO

Partial pivoting algorithms, and more generally partial pivoting algo-
rithms using column preordering, have advantages over the two other forms
of numerical pivoting that are used in sparse LU codes. First, algorithms
that preorder the column and stick to that ordering (up to equivalent ex-
changes) guarantee an a-priori bound on fill and arithmetic operations. In
contrast, the other common form of dynamic numerical pivoting, called de-
layed pivoting, does not provide any a-priori guarantees. Second, algorithms
that incorporate dynamic numerical pivoting are more reliable than static-
pivoting algorithms, like SuperLU DIST [33], that preorder both the rows
and the columns. We do not claim that partial pivoting is an absolute
necessity: static-pivoting codes [33] and delayed-pivoting codes [30] have
been shown to be effective in practice. But partial pivoting does have the
advantages that we mentioned.

There are two algorithmic approaches to the sparse partial-pivoting LU
factorization: the left-looking approach [14, 23] and the unsymmetric-pattern
multifrontal approach [9]. The left-looking approach has a theoretical advan-
tage over the multifrontal approach, in that the total number of operations
performed by the algorithm is proportional to the number of arithmetic
operations [23]. No such bound is known for the multifrontal approach.
However, we have found that umfpack, the implementation of the multi-
frontal approach, is often faster than SuperLU, the best implementation of
the left-looking approach. It is hard to determine whether the difference is
inherent to the algorithms or due to the different implementations, but since
SuperLU has already been parallelized [15], we decided to try to parallelize
the multifrontal algorithm.

One interesting question remains open: can the unsymmetric-pattern
multifrontal algorithm be implemented in space proportional to that of the
resulting factors, and in total operation count proportional to the arith-
metic operations? The left-looking approach has these properties, but they
are not necessarily true for umfpack and not necessarily true for our code.
We believe that such an algorithm is highly desirable, even if it will be a
little slower in practice than delayed- and static-pivoting algorithms.

References

[1] Patrick R. Amestoy and Chiara Puglisi. An unsymmetrized multifrontal LU factor-
ization. SIAM Journal on Matrix Analysis and Applications, 24(2):553–569, 2002.

[2] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Green-
baum, S. Hammarling, A. McKenney, S. Ostrouchov, and D. Sorensen. LAPACK
User’s Guide. SIAM, Philadelphia, PA, 2nd edition, 1994. Also available online from
http://www.netlib.org.

[3] Cleve Ashcraft and Roger Grimes. The influence of relaxed supernode partitions on
the multifrontal method. ACM Transactions on Mathematical Software, 15(4):291–
309, 1989.

[4] Igor Brainman and Sivan Toledo. Nested-dissection orderings for sparse LU with
partial pivoting. SIAM Journal on Matrix Analysis and Applications, 23:998–112,
2002.

PARALLEL UNSYMMETRIC-PATTERN MULTIFRONTAL SPARSE LU 35

[5] T. A. Davis. A column pre-ordering strategy for the unsymmetric-pattern multifrontal
method. Technical Report TR-03-006, Department of Computer and Information
Science and Engineering, University of Florida, 2003.

[6] T. A. Davis and I. S. Duff. An unsymmetric-pattern multifrontal method for sparse
LU factorization. SIAM Journal on Matrix Analysis and Applications, 18:140–158,
1997.

[7] T. A. Davis and I. S. Duff. A combined unifrontal/multifrontal method for unsym-
metric sparse matrices. ACM Transactions on Mathematical Software, 25:1–19, 1999.

[8] Timothy A. Davis. A column pre-ordering strategy for the unsymmetric-pattern mul-
tifrontal method. Technical Report TR-03-006, Department of Computer and Infor-
mation Science and Engineering, University of Florida, May 2003.

[9] Timothy A. Davis. A column pre-ordering strategy for the unsymmetric-pattern mul-
tifrontal method. ACM Trans. Math. Softw., 30(2):165–195, 2004.

[10] Timothy A. Davis and Iain S. Duff. Unsymmetric-pattern multifrontal methods for
parallel sparse LU factorization. Technical Report TR-91-023, Department of Com-
puter and Information Science and Engineering, University of Florida, January 1991.

[11] Timothy A. Davis, John R. Gilbert, Stefan I. Larimore, and Esmond G. Ng. A col-
umn approximate minimum degree ordering algorithm. Technical Report TR-00-005,
Department of Computer and Information Science and Engineering, University of
Florida, 2000.

[12] Timothy A. Davis, John R. Gilbert, Stefan I. Larimore, and Esmond G. Ng. Algo-
rithm 836: COLAMD, a column approximate minimum degree ordering algorithm.
ACM Transactions on Mathematical Software, 30(3):377–380, September 2004.

[13] Timothy A. Davis, John R. Gilbert, Stefan I. Larimore, and Esmond G. Ng. A column
approximate minimum degree ordering algorithm. ACM Transactions on Mathemat-
ical Software, 30(3):353–376, September 2004.

[14] James W. Demmel, Stanley C. Eisenstat, John R. Gilbert, Xiaoye S. Li, and
Joseph W. H. Liu. A supernodal approach to sparse partial pivoting. SIAM Jour-
nal on Matrix Analysis and Applications, 20:720–755, 1999.

[15] James W. Demmel, John R. Gilbert, and Xiaoye S. Li. An asynchronous parallel su-
pernodal algorithm for sparse Gaussian elimination. SIAM Journal on Matrix Anal-
ysis and Applications, 20:915–952, 1999.

[16] James W. Demmel, John R. Gilbert, and Xiaoye S. Li. An asynchronous parallel su-
pernodal algorithm for sparse Gaussian elimination. SIAM Journal on Matrix Anal-
ysis and Applications, 20:915–952, 1999.

[17] Jack J. Dongarra, Jeremy Du Cruz, Sven Hammarling, and Ian Duff. A set of
level 3 basic linear algebra subprograms. ACM Transactions on Mathematical Soft-
ware, 16(1):1–17, 1990.

[18] I. Duff and J. Reid. The multifrontal solution of indefinite sparse symmetric linear
equations. ACM Transactions on Mathematical Software, 9:302–325, 1983.

[19] S .C. Eisenstat and J. W. H. Liu. Exploiting structural symmetry in a sparse partial
pivoting code. SIAM Journal on Scientific and Statistical Computing, 14:253–257,
1993.

[20] Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. The implementation of
the Cilk-5 multithreaded language. ACM SIGPLAN Notices, 33(5):212–223, 1998.

[21] Alan George and Esmond Ng. Symbolic factorization for sparse Gaussian elimination
with partial pivoting. SIAM Journal on Scientific and Statistical Computing, 8:877–
898, 1987.

[22] J. R. Gilbert, X. S. Li, E. G. Ng, and B. W. Peyton. Computing row and column
counts for sparse QR and LU factorization. BIT Numerical Mathematics, 41(4):693–
710, 2001.

[23] J. R. Gilbert and T. Peierls. Sparse partial pivoting in time proportional to arithmetic
operations. SIAM Journal on Scientific and Statistical Computing, 9:862–874, 1988.

36 HAIM AVRON, GIL SHKLARSKI, AND SIVAN TOLEDO

[24] John R. Gilbert. Graph Separator Theorems and Sparse Gaussian Elimination. PhD
thesis, Stanford University, 1980.

[25] John R. Gilbert. An efficinet parallel sparse partial pivoting algorithm. Technical
Report 88/45052-1, Christian Michelsen Institute, Bergen, Norway, 1988.

[26] John R. Gilbert and Esmond Ng. Predicting structure in nonsymmetric sparse matrix
factorizations. In Alan George, John R. Gilbert, and Joseph W. H. Liu, editors, Graph
Theory and Sparse Matrix Computation. Springer-Verlag, 1993.

[27] John R. Gilbert and Tim Peierls. Sparse partial pivoting in time proportional to
arithmetic operations. SIAM Journal on Scientific and Statistical Computing, 9:862–
874, 1988.

[28] John R. Gilbert and Robert Schreiber. Nested dissection with partial pivoting. In
Sparse Matrix Symposium 1982: Program and Abstracts, page 61, Fairfield Glade,
Tennessee, October 1982.

[29] Nicholas I. M. Gould and Jennifer A. Scott. A numerical evaluation of HSL packages
for the direct solution of large sparse, symmetric linear systems of equations. ACM
Transactions on Mathematical Software, 30(3):300–325, September 2004.

[30] Anshul Gupta. Improved symbolic and numerical factorization algorithms for unsym-
metric sparse matrices. SIAM Journal on Matrix Analysis and Applications, 24:529–
552, 2002.

[31] Anshul Gupta. Recent advances in direct methods for solving unsymmetric sparse
systems of linear equations. ACM Transactions on Mathematical Software, 28(3):301–
324, September 2002.

[32] Dror Irony, Gil Shklarski, and Sivan Toledo. Parallel and fully recursive multifrontal
supernodal sparse cholesky. Future Generation Computer Systems, 20(3):425–440,
April 2004.

[33] Xiaoye S. Li and James W. Demmel. SuperLU DIST: A scalable distributed memory
sparse direct solver for unsymmetric linear systems. ACM Transactions on Mathe-
matical Software, 29:110–140, 2003.

[34] J. W. H. Liu. The role of elimination trees in sparse factorization. SIAM Journal on
Matrix Analysis and Applications, 11:134–172, 1990.

[35] Joseph W. H. Liu, Esmond G. Ng, and Barry W. Peyton. On finding supernodes
for sparse matrix computations. SIAM Journal on Matrix Analysis and Applications,
14:242–252, 1993.

[36] Esmond G. Ng and Barry W. Peyton. Block sparse Cholesky algorithms on advanced
uniprocessor computers. SIAM Journal on Scientific Computing, 14(5):1034–1056,
1993.

[37] Edward Rothberg and Anoop Gupta. Efficient sparse matrix factorization on high-
performance workstations—exploiting the memory hierarchy. ACM Transactions on
Mathematical Software, 17(3):313–334, 1991.

[38] Elad Rozin and Sivan Toledo. Locality of reference in sparse Cholesky factorization
methods. Submitted to the Electronic Transactions on Numerical Analysis, 2004.

[39] Supercomputing Technologies Group, MIT Laboratory for Computer Science, Cam-
bridge, MA. Cilk-5.3.2 Reference Manual, November 2001. Available online at http:
//supertech.lcs.mit.edu/cilk.

