
TEL AVIV UNIVERSITY
THE RAYMOND AND BEVERLY SACKLER FACULTY OF

EXACT SCIENCES

SCHOOL OF MATHEMATICAL SCIENCES

THE DEPARTMENT OF APPLIED MATHEMATICS

FAST AND ROBUST ALGORITHMS FOR
LARGE SCALE STREAMING PCA

A thesis submitted toward a degree of

Master of Science in Applied Mathematics

by

Tal Halpern

May 2017



TEL AVIV UNIVERSITY
THE RAYMOND AND BEVERLY SACKLER

FACULTY OF EXACT SCIENCES

SCHOOL OF MATHEMATICAL SCIENCES

THE DEPARTMENT OF APPLIED MATHEMATICS

FAST AND ROBUST ALGORITHMS FOR
LARGE SCALE STREAMING PCA

A thesis submitted toward a degree of

Master of Science in Applied Mathematics

by

Tal Halpern

This research was carried out in The

School of Mathematical Sciences

This work was carried out under the supervision of

Prof. Sivan Toledo and Prof. Yoel Shkolnisky

May 2017



Abstract

We present a range of new incremental (single-pass streaming) algorithms for
principal components analysis (IPCA). IPCA algorithms process the columns of a
matrix A one at a time and attempt to build a basis for a low-dimensional subspace
that spans the dominant subspace of A. We present a unified framework for IPCA
algorithms, show that many existing ones are parameterizations of it, propose new
sophisticated algorithms and show that both the new algorithms and many existing
ones can be implemented more efficiently than was previously known. There are
several ways to measure the quality of an approximate PCA. We focus on the
reconstruction of the dominant left subspace of the matrix. We discuss existing
ways to measure the quality of PCA algorithms, as well as a new metric that we
believe is better suited for high dimensional settings. Unfortunately, we show that
existing IPCA algorithms do not satisfy some useful error bounds and that many
existing algorithms can fail even in easy cases. We show experimentally that our
new algorithms outperform existing ones.

One of the algorithms developed under this thesis was published at SAC ’17:
Proceedings of the Symposium on Applied Computing. The article is titled “En-
hanced situation space mining for data streams” [17] and is the outcome of a
collaboration with a group from the Ben Gurion University.

A second paper, that is a summery of this thesis, was recently accepted to
PPAM 2017. The article is titled: “Advances in Incremental PCA Algorithms”
and is authored by Tal Halpern and Sivan Toledo.
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1 Introduction

We explore algorithms that approximate the dominant left singular vectors and the
associated singular values of a m-by-n matrix A that is close to a rank-k̄ for some
k̄�m� n. That is, we seek a m-by-k matrix U with orthogonal columns and an k-
by-k diagonal matrix S such that USV T ≈A for some V , where k≥ k̄ but also k≈ k̄.
That is, the degree of the approximation can be a little higher than k but not much
higher. We assume that a bound k on k̄ is known. These approximate singular
vectors and values are commonly known as a principle components analysis or
PCA. If V is also computed, the problem is essentially finding an approximate
singular-value decomposition (SVD). In many applications, PCA suffices; this is
helpful, since V is huge.

We are interested in algorithms that construct U and S using data structures
with O(mk) words of memory that read every column of A only once. Algorithms
that obey the first constraint are called streaming, to indicate that the large input
data updates a small data structure; there is not enough memory to hold in mem-
ory a data structure as large as the input. The single-pass constraint makes the
problem even more difficult. We refer to algorithms that meet these requirements
as Incremental Principle Component Analysis (IPCA).

We start by providing a deep review of the related work. Over the years many
different papers suggested many different algorithms (some very similar to each
over) and we believe putting all of this work under a single scope is very insightful.

We continue by suggesting a general, high level framework, for IPCA. Using
the framework we are able to cluster different algorithms together, according to
what they do rather then by how they do it. The clustering enables us to perform
accuracy analysis for each cluster and not per algorithm. This type of analysis is
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also beneficial as it is also relevant for algorithms that will be developed in the
future. We use a new error criterion which we believe is better suited for high
dimensional settings then previously used ones. Using this new error criterion we
show that all covered methods are heuristic, in the sense that all can fail even in
very simple cases.

Next we present four new algorithms. The first will be an alternative implan-
tation to a known algorithm called FrequentDirections [15] which has the best
accuracy guaranties (under a different error criterion then the one used here). The
new implantation, QR-FD will have the same guaranties but will also have the best
known arithmetic complexity. The second is a hybrid of a basic IPCA algorithm
and FrequentDirections called TunableShrinkage that has a control parameter, al-
lowing per-problem tuning. The last two are new type of algorithms using pre-
processing and randomization, engineered specifically to meet the failure modes
other algorithms had. Both algorithms are without a tuning parameter and with an
arithmetic cost bounded by the best known.

We conclude the work with tests on synthetic and real-world data sets.

1.1 Contributions

• We conduct deep literature review of past research, placing work from fields
like Latent Semantic Indexing (LSI), Image analysis, Numerical Linear Al-
gebra and Matrix Sketching under a single scope.

• We present a unified framework for IPCA. This novel framework cluster
different implementations solely by what they do, not how they do it.

• We propose a new type of error criterion, especially suited for high dimen-
sional data

• We conduct accuracy analysis for each cluster which will also apply to any
future algorithm that falls into one of the clusters.

• We show that, under the new error criterion, all of the algorithms that fits
the framework and covered in this thesis can fail completely and as such, all
should be consider heuristic.

5



• We propose 4 new algorithms: an alternative implantation to an algorithm
called FrequentDirections, yielding better complexity / memory usage then
originally suggested. A new algorithm called TunableShrinkage, equipped
with a control parameter, allowing per-problem tuning (scaling between
different failure modes of known algorithms) . Two heuristic randomized
algorithms called BIPCA and JIT-PCA. Both were specifically developed
in order to achieve a “one fit all” method and with arithmetic complexity
bounded by the best known.
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2 Related Work

The literature on Incremental PCA (IPCA) is quite rich and spanned over more
then two decades. The suggested algorithms are often closely related to one an-
other but the precise relationships are often left implicit and vague. It seems like
the researchers, coming from different areas, were not aware of the related work.
We believe that the fact that the same algorithms were independently developed in
different areas, demonstrate the importance and practical requirement for IPCA.
While the general idea is fairly simple, the actual implantation of the algorithms
can be very complicated. As example, the most efficient algorithm achieves a
linear time update (with regards to the approximation rank) using a very sophis-
ticated method. We will show that this specific implantation was probably not
known to researchers working on similar problems, leading to much more com-
plected ways to reach the same linear cost.

There are many different approaches for IPCA. The approximation rank can
be fixed during the calculation or can change dynamically. The algorithm may
process at each iteration only one column or a block of columns. While our work
focuses on a fixed rank, 1-by-1 update, we provide a wider scope in this review.
We divide the review into four parts. The first will review SVD based methods.
Those methods maintain Ut ∈ Rm×kt , an orthogonal rank-kt approximation to the
left singular basis of At =

[
a1 a2 · · · at

]
and St ∈ Rkt×kt an approximation to

the singular values matrix. They also share the fact that the update process in-
cludes performing SVD on a small square matrix of size O(kt). The second part
present an IPCA method based on a QR representation, with Qt ∈ Rm×kt orthog-
onal and Rt ∈ Rkt×kt a upper triangular matrix. We continue in the third part with
unification of the SVD and QR methods. The forth and final part discusses a
relatively new algorithm called FrequentDirections and its extensions. Frequent-
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Directions is similar to SVD based methods with the addition of a function that
shrinks the estimation of the singular values after each update.

2.1 SVD Based Methods

First we present a simple method for an exact, rank increasing SVD update to
the currant approximation. Let us start with the the 1-by-1 case. at t = 1 we set
U1 = a1/‖a1‖, S1 = ‖a1‖ and V = 1. At iteration t = 2,3... we are looking for
Ũt+1S̃t+1Ṽ T

t+1 =
[
UtStV T

t at+1

]
which can be found by:

1. Set aorth
t+1 =

(
I−UtUT

t
)

at+1 ρ = ‖aorth
t+1‖ p = aorth

t+1/ρ

2. Expend
[
UtStV T

t at+1

]
=
[
Ut p

][St UT
t at+1

0̄ ρ

][
Vt 0̄
0̄ 1

]T

3. Calculate the svd of Z =

[
St UT

t at+1

0̄ ρ

]
=UZSZV T

Z

4. Conclude the update with:

Ũt+1 =
[
Ut p

]
UZ S̃t+1 = SZ Ṽt+1 =

[
Vt 0̄
0̄ 1

]
VZ

In order to turn this exact, rank increasing SVD update, into a low rank IPCA
we need to include two changes. By not maintaining or updating V we turn the
SVD into PCA. In order to turn this exact full rank PCA into low rank IPCA we
need to perform some sort of rank control. The final step of the IPCA algorithm
generates Ut+1 and St+1 via a truncation decision. If we perform a fixed rank
update then we simply drop the last singular pair from Ũt+1 and S̃t+1 . If we
allow rank increase then the smallest singular value is compared to a threshold
value and the singular pair is dropped only if the smallest singular value is smaller
then the threshold. We call a 1-by-1 update with fixed rank the Basic IPCA. The
rotation Ũt+1 =

[
Ut p

]
UZ is the most expensive part of the Basic IPCA with

cost of O(mk2) arithmetic operations. One way to reduce the total cost of the
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algorithm is to batch updates (going from 1-by-1 update to block wise). With a
batch-size parameter `, each iteration now costs Θ(m(k+ `)2). If we set ` such
that `= Θ(k), the per-iteration cost is still Θ(mk2), but the number of iterations is
` times smaller, only n/`. Therefore, the amortized per-iteration cost reduces to
Θ(mk).

The block wise update is very similar to the 1-by-1, the difference is that we
don’t have only one new direction but lt+1 (size of a block at step t +1, assuming
the additional part has full rank). Denote the block of new columns by W ∈ℜm×l

1. Set W orth = (I−UtUT
t )W

2. Find an orthogonal decomposition QR =W orth

3. Expend
[
UtStV T

t W
]
=
[
Ut Q

][St UTW

0̄ R

][
Vt 0̄
0̄ I

]T

4. Calculate the SVD of Z =

[
St UTW

0̄ R

]
=UZSZV T

Z

5. Conclude the update with: Ũt+1 =
[
Ut Q

]
UZ S̃t+1 = SZ

Similar to the 1-by-1 version, the last step is truncation decision. If the approxi-
mation is using fixed rank then all of the singular pairs with index (k+1) : (k+ l)

are dropped. If we allow rank increase then we use a truncation rule (there are
many options) to decide which pairs to include and which, if any, to drop. We call
a block-wise update with a fixed rank Block Basic IPCA.

For each new column / block of columns, the two Basic versions finds the k

dominant singular pairs of the matrix
[
US W

]
and they are equivalent to an even

a simpler method we call the Straightforward IPCA:

1. Calculate the SVD of
[
US W

]
= Ũ S̃Ṽ T

2. Drop Ṽ and truncate Ũ and S̃ back to rank-k
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Asymptotically, the cost of the Basic IPCA and the cost of the 1-by-1 Straightfor-

ward IPCA is the same but the first has a better constant.

O’Brien [19] and Berry et el [4], both interested in Latent Semantic Indexing
(LSI), suggested the Block Basic IPCA, without including R, (providing no expla-
nation for it). As a result, their approximation is automatically kept at a fix rank
and no truncation is needed. (for them Ut+1 = Ũt+1 etc). O’Brien, Berry et el also
suggested other types of matrix / PCA updates which are not relevant to us.

Zha and Simon [20], also dealing with LSI applications, published a similar
article to O’Brien, Berry et el. They claimed that not including R was an error.
Their update is exactly the Block Basic IPCA. Zha and Simon proved the following
theorem: let B =

[
A D

]
and B̄ =

[
Ak D

]
, if BT B = X +σ I with σ > 0 and X

symmetric positive semi definite with rank k then Bk = B̄k.

Chandrasekaran et el [16, 9], interested in image analysis, suggested a 1-by-1
update with dynamic rank, using a threshold value δi. At each step, the singular
values which are bigger then the threshold are kept (along with their matching
singular vectors). The matrix

Z =

[
St UT

t at+1

0̄ ρ

]

is a broken arrowhead matrix. In order to reduce complexity they suggest using the
method of Gu and Eisenstat [13] allowing the SVD of Z to be calculated in O(k2)

instead of O(k3) and reducing the cost of the final rotation Ũt+1 =
[
Ut p

]
UZ to

O(mk). The technique of Gu and Eisenstat is mentioned in many papers, usually
with the same comment, that the overhead is too high to be practical and that it
is complicated to use. In their first paper, Chandrasekaran et al. tried to define a
value for δ such that ‖ai−UnSnV T

n ei‖2 < ε for i= 1 : n meaning the approximation
will approximate up to ε all of the column vectors. They proved that δ = ε/n

guaranties this bound. In a second paper, they tried to find a value δ such that
‖A1:n−UnSnV T

n ‖2 < ε and again using some assumptions they proved that δ =

ε/n guaranties this bound. They also mentioned that this rule for δ might cause
the approximation rank to be overly high so alternatively (and heuristically) they
suggested using ε/

√
n. This thesis is aiming toward applications on which n is

huge. Any bound achieved by using δ = ε/n or δ = ε/
√

n will lead to a very
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high rank, possibly even a full rank. It appears that Zha, and Simon [20] were
not aware of the two articles by Chandrasekaran et al. even though they were
published earlier.

Levy and Lindenbaum [14], also interested in image processing, suggested a
block based update that was expressed a bit differently than what we wrote but is
basically the same. They added several novelties: addition of a fixed decay rate
0 < λ ≤ 1 for the singular values from update to update. They suggested setting
a threshold value ε . The rank of the update is first reduced to a fixed k . Then
they calculate

√
ε ∑

k
i=1 σ2

i and remove all singular values which are smaller (ε
determines the ratio between the singular value and the total, till-k-sum). Perhaps
their greatest contribution was finding the block size which optimize the amortized
per-column operation count. They proved that using k/

√
2 minimizes it to 12mk

Brand suggested an exact full rank incremental SVD [6, 5]. For simplicity we
will demonstrate his method for a 1-by-1 update but he also suggested a block-
wise version. Brand maintains two separate orthogonal matrices representing the
singular basis, U (as usual) and a small rotation matrix Usmall. Brand starts with
U1 = a1/‖a1‖, Usmall = 1 and t = 1. Then, for each additional column

Ut+1 =
[
Ut p

]
and Usmall =

[
Usmall 0

0 1

]
UZ

U grows by column additions only, avoiding the costly rotations
[
Ut p

]
UZ (which

are cached in Usmall by only performing small matrix multiplication). To re-
iterate, this is an exact full rank SVD (in his paper Brand includes V, here, for
simplicity and relevance, we describe his method without it). The problem is that
his trick only save cost if Z is small, otherwise the calculation of[

Usmall 0
0 1

]
UZ

is no longer cheap. For that reason he targets low rank matrices. If the matrix
rank is exactly k� m (meaning σi = 0 for i = k+1 : m) then most of the updates
will have ρ = 0, Ut+1 =Ut (we add no new direction) and Usmall =Usmall UZ,(1:k).
In real world data, the rank in never exactly k and you have a long tail of small
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singular values. Without some sort of rank control his method will not save cost.
He offers several heuristic rank control rules. One is the regular one, if the singular
value is smaller then a certain threshold, throw it away. Another method, for the
block version, is to calculate

√
det(RT R) and if it’s under a threshold value throw

away all new directions. For the 1-by-1 update (his recommended version), he
suggests deciding on a rank and when we reach that rank to set ρ = 0 for all
future updates. We call this procedure, when dropping V , Brand IPCA. Brand
defends this heuristic truncation by two reasons: if the rank is higher then k then
anyway you need to perform some sort of truncation. Also, because the update is
so cheap one can easily use a higher rank then needed (as long as it is still low).
Again, it appears that Brand was not aware to the work by Chahlaoui, K. Gallivan,
and P. Van Dooren [8, 7] and Baker’s thesis (both are discussed shortly)[2].

2.2 A QR Based Method

The per-update cost of the SVD based methods is O(m(k+ l)2) with l the block
size (we do not include Brand IPCA that ignores new directions). Chahlaoui,
Gallivan, and Van Dooren [8, 7] discovered that using a QR representation can re-
duce this cost to O(mk). Interestingly, many authors were not aware of this idea,
even in papers that were written more then a decade later. Part of the contribu-
tions of this thesis is its incorporation into a recently developed algorithm called
FrequentDirections. Because this idea is so important we give its details here:

2.2.1 QR-IPCA Specifics

Start with Q ∈Rm×k, R ∈Rk×k QR = A1:k
1. For each additional vector w, update

the representation, generating Qnew and Rnew as follows

1. Set ρ = ‖w−QQT w‖ and p = ‖w−QQT w‖/ρ

2. Expend:
[
QR w

]
=
[
Q p

][R QT w

0̄ ρ

]
.

1 They assume full rank always otherwise their method does not work
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3. Find (Uk+1,σk+1), the smallest singular pair of[
R QT w

0̄ ρ

]

4. Find Gu such that GT
u Uk+1 = ek+1

5. Find orthogonal transformation Gv such that

Rup = GT
U

[
R QT w

0̄ ρ

]
GV

is upper triangular (using RQ decomposition2)

Denote the right singular basis of Rup by Ṽ and its left basis by Ũ . Rup has the
same singular values matrix S as [

R QT w

0̄ ρ

]

Let us explore the structure of Rup:

RT
upek+1 = RT

upũk+1 = Ṽ SŨT ũk+1 = Ṽ Sek+1 = σk+1ṽk+1

Rup is upper triangle so

RT
upek+1 =


∗ 0 0 0
∗ ∗ 0 0
∗ ∗ ∗ 0
∗ ∗ ∗ Rup,(k+1,k+1)

ek+1 = Rup,(k+1,k+1)ek+1 = σk+1ṽk+1

2 RQ decomposition is done by combining the regular QR with some algebraic manipulations

13



implies that ṽk+1 is also ek+1 and that Rup,(k+1,k+1) = σk+1. In addition, we have

Rupṽk+1 =

=
[
Ũ1:k ek+1

][S1:k

σk+1

]
Ṽ T ṽk+1

=
[
Ũ1:k ek+1

][S1:k

σk+1

]
ek+1

= σk+1

[
Ũ1:k ek+1

]
ek+1

= σk+1ek+1

So Rupṽk+1=Rupek+1 = σk+1ek+1 and again because Rup is upper triangular


∗ ∗ ∗ ∗
0 ∗ ∗ ∗
0 0 ∗ ∗
0 0 0 σk+1

ek+1=σk+1ek+1

implies that elements 1 : k in the last column of Rup are all equal zero. We conclude
that the structure of Rup is [

Rnew 0̄
0̄ σk+1

]
With Rnew ∈ Rk×k, an upper triangular matrix. We now continue with the incre-
mental update:

(6) Deflate:

[
Q p

][R QT w

0̄ ρ

]
=

=
[
Q p

]
Gu ·GT

u

[
R QT w

0̄ ρ

]
Gv ·GT

v

=
[
Q p

]
Gu

[
Rnew 0̄

0̄ σk+1

]
GT

v

7. Set: Q̃ =
[
Q p

]
Gu and finish the update by truncating its last column:
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Qnew = Q̃(:,1 : k) ∈ Rm×k

2.2.2 Equivalence Between QR-IPCA and the SVD Based Methods3

At initialization, Ainit =QinitRinit . Setting URSRV T
R = SV D(Rinit) we get that (QinitUR)SRV T

R

is the exact SVD of Ainit . At the first step, the matrix R is comprised of three ma-
trices: an orthogonal matrix UR that rotates Q into the left singular basis of Ainit ,
S, the singular values matrix of Ainit and another orthogonal matrix relevant to the
right singular basis which we don’t use. Let us denote

Z̃ =

[
R QT w

0̄ ρ

]

For each other column,we showed that

GT
U Z̃GV =

[
Rnew 0̄

0̄ σk+1

]

The operation GT
U Z̃GV does not change the singular values of Z̃ (as both GU and

GV are orthogonal), so the singular values of Rnew are the same as the top k singu-
lar values of Z̃. Before truncating Q̃ =

[
Q p

]
Gu and dropping GT

V the update is
still exact. We have:

3 This equivalence was first suggested by Baker [2]
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[
QR w

]
= Q̃RupGT

v

=
[
Q̃1:k q̃k+1

][Rnew 0̄
0̄ σk+1

]
GT

v

=
[
Q̃1:k q̃k+1

][URnewSRnewV T
Rnew

0̄
0̄ σk+1

]
GT

v

=
[
Q̃1:k q̃k+1

][URnew 0̄
0̄ 1

][
SRnew 0̄

0̄ σk+1

][
VRnew 0̄

0̄ 1

]T

GT
v

=
[
Q̃1:kURnew q̃k+1

][SRnew 0̄
0̄ σk+1

][
VRnew 0̄

0̄ 1

]T

GT
v

which is the SVD of
[
QR w

]
with Q̃1:kURnew , the left, rank-k, singular basis of[

QR w
]
. We conclude that for each new vector, QR-IPCA finds in-explicitly

the left singular basis and the associated singular values matrix of the expended
matrix

[
QR w

]
=
[
USV T w

]
with U the left singular basis of the previous step.

The presence of V has no effect on the approximation of the left basis. QR-IPCA

and the Basic IPCA are equivalents.

The big advantage of QR-IPCA over the Basic IPCA is its complexity: 8mk+O(k3).
Recall that the most expensive part in the Basic IPCA was the rotation Ũt+1 =[
Ut p

]
UZ with cost of O(mk2). QR-IPCA has a similar rotation Q̃ =

[
Q p

]
Gu.

As noted before, QR-IPCA update cost is linear, O(mk) and not quadratic. The
key to the reduced cost is the fact that Gu is a single Householder reflection,
which implies that we can apply it to a m-by-(k+1) matrix at a total cost of only
Θ(mk). To summarize the operation count, we have 4mk for the Gram Schmidt,
the rotation

[
Q q

]
Gu costs another 4mk when using Householder transforma-

tions (or modified Givens rotations) and the rest of the work: finding Gv (via
RQ decomposition), calculation of smallest singular pair and forming Gu[·]Gv,
all costs O(k3) . Chahlaoui, Gallivan, and Van Dooren also suggested a 2-sided
approximation with a cost of 10mk. They also suggested a way, by using some as-
sumptions, to conduct post-run estimation of the approximation accuracy. Baker
(addressed next) showed that the assumptions and accuracy bound do not neces-
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sarily hold .

2.3 Unification of SVD Based and QR Based Methods and Extension to
Blocks

Baker [2] suggested a unified model for 2-sided update showing that the work
done from the SVD type updates and the QR based update belong to the same
family, specifically addressing the 1-by-1 version of Chandrasekaran, Manjunath
et el [9, 16] and the block version of Levy and Lindenbaum [14]. His work mainly
continues the work of Chahlaoui, K. Gallivan, and P. Van Dooren [8, 7] and ex-
tends it into blocks. He is able to present several different updates with cost of
10mk per step (same as the two sided version of Chahlaoui, K. Gallivan, and
P. Van Dooren but with variable block size, potentially allowing other type of
block wise optimizations). He also showed that the assumptions made by Chan-
drasekaran, Manjunath et el. regarding the correct value for setting the cutoff
threshold is ε/

√
n (the value they heuristically recommended) as oppose to ε/n

(the value they were able to prove). He also improved the ability to estimate the
quality of the approximation after its conclusion. Later, Baker joins Gallivan and
P. Van Dooren [3] and together they extended the work to multi-pass algorithms.

2.4 FrequentDirections: Error Control by Eigenvalue Annihilation

Liberty, under the scope of matrix sketching, suggested an algorithm called Fre-

quentDirections. This initial paper was followed with another one by Ghashami
and Liberty et el. [15, 12]. The algorithm first calculate, in an incremental manner,
a sketch B. Performing SVD on B provides the approximated rank-k PCA.

FrequentDirections4 maintains and outputs a matrix B ∈ℜm×k+1 with bk+1 =

0̄, an all zeros column. FrequentDirections process each column 1-by-1, accord-
ing to the following

1. Initialize B← 0m×k

4 original FrequentDirections works row wise and generates a sketch with l > k rows, from which
the rank k approximation is generated. Here we will work column wise and the sketch will have
k+1 rows

17



2. Btemp =
[
B(:,1:k) w

]
3. USV T = SV D(Btemp)

4. δ = S2
k+1,k+1

5. Sshrunk =
√

S2−δ Ik+1

6. B =USshrunk =
[
B(:,1:k) 0̄

]
Note that FrequentDirections is exactly the Straightforward IPCA suggested ear-
lier, with the addition of a shrinkage step to the approximate singular values. Re-
call that Levy and Lindenbaum [14] suggested a similar approach. They suggested
applying a fixed decay rate 0< λ ≤ 1 on the singular values from update to update
(for them S̃shrunk = λS). While Levy and Lindenbaum suggestion was heuristic
(and was mainly intended to provide more emphasis on recent vectors), Liberty’s
was not. FrequentDirections is the only fixed rank IPCA method that has approx-
imation guarantees. Liberty proved the following bounds

‖AT A−BT B‖2 6 ‖A−Ak̄‖
2
F/
(
k− k̄

)
‖A−UUT A‖2

F 6

(
1+

k̄
k− k̄

)
‖A−Ak̄‖

2
F

With U the rank k basis found by FrequentDirections andAk, A’s best rank-k ap-
proximation.

Regarding FrequentDirections complexity, we quote from Ghashami and Lib-
erty et el [12](with some minor adaptations to match the notation and column wise
operation vs row wise in this thesis): ”Each iteration of the Basic FrequentDirec-

tions is dominated by the computation of SVD(Btemp). The standard running time
of this operation is O(mk2). Since this loop is executed once per column in A
the total running time would naively be O(mnk2). However, note that the sketch
matrix B actually has a very special form. The first k columns of B are always
orthogonal to one another. This is a result of the sketch having been computed by
an SVD in the previous iteration. Computing the SVD of this matrix is possible
in O(mk) time using the Gu Eisenstat procedure [13]. This requires using the Fast
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Multiple Method (FMM) and efficient multiplication of Cauchy matrices by vec-
tors which is, unfortunately, far from being straight forward. It would have been
convenient to use a standard SVD implementation and still avoid the quadratic
term in k in the running time. We show below that this is indeed possible at the
expense of doubling the space used by the algorithm”.

In order to reduce the cost, Liberty suggests another algorithm, going from 1-
by-1 update to block based. Instead of inserting one column he now inserts a block
of size k, he then performs the SVD on the enlarged matrix. δ is still set the same
but now Sshrunk =

√
max(S2−δ I2k+2,0). This alternative algorithm uses double

the space and still has a quadratic cost per update but the amortized per-update
cost is now linear. In order to avoid the periodic O

(
mk2) cost, Liberty suggested

doubling the memory once again, maintaining two separate sketches that will be
merged at end of run: “The total running time of the Algorithm is O(mnk) and
the amortized running time per row update is O(mk). However, the worst case
update time is still Ω(mk2) in those cases where the SVD is computed. Using
the fact that FrequentDirections sketches are mergeable, we can actually use a
simple trick to guarantee a worst case O(mk) update time. The idea is to double
the space usage (once again) and hold two sketches, one in ‘active’ mode and one
in SVD ‘maintenance’ mode. For any column in the input, we first add it to the
active sketch and then spend O(mk) floating point operations in completing the
SVD of the sketch in maintenance mode. After k+ 1 updates, the active sketch
runs out of space and must go into maintenance mode. But, in the same time,
a total of O(mk2) floating point operations were invested in the inactive sketch
which completed its SVD computation. At this point, we switch the sketch roles
and continue. Once the entire matrix was processed, we combine the two sketches
using their mergeable property”. To summarize, in order to guarantee a worst case
O(mk) update time, Liberty suggests doubling the required memory twice.

Ghashami et el [10] conducted comparative accuracy tests for a large num-
ber of matrix sketching algorithms (existing and new variants). They mentioned
that while FrequentDirections is the only algorithm that has bounds, in practice,
SVD based methods typically works better. They suggested several variants to
FrequentDirections with the goal of achieving better accuracy while maintain-
ing FrequentDirections bounds. They also suggested an algorithm called Generic
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FrequentDirections, unifying SVD based methods with FrequentDirections. In-
terestingly, They to did not included the work by Chahlaoui, K. Gallivan, and P.
Van Dooren [8, 7] and later by Baker [2].
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3 A General Framework for Incre-
mental Low-Rank PCA

We have seen that many of the suggested fixed rank IPCA algorithms are very sim-
ilar. We also saw that while some may look very different, they are conceptually
the same (QR-IPCA, Basic IPCA and the straightforward IPCA). Baker suggested
a framework that unified QR based methods with SVD based methods. Ghashami
et el [12] unified FrequentDirections with SVD based methods. Non included the
work by Brand and no connection between FrequentDirections and QR-IPCA was
made. We suggest a more general framework for Incremental PCA methods with
focus on what is done and not how. This high level abstraction allows wider range
of unification and an easier performance analysis .

3.1 The Basic Framework1

The framework that we propose is a parameterized family of algorithms that take
as input a matrix (data set) A ∈ Rm×n and a target approximation rank k. The
algorithms all output an approximate basis B ∈ Rm×k for the dominant subspace
of A (the subspace spanned by the left singular vectors associated with the largest
singular values). We denote the jth column of A by a j and similarly for other
matrices.

Instantiation of an algorithm from the framework requires the specification of
two functions (subroutines), a function f : (Rm×k,Rm) −→ Rm that we refer to

1 While our framework is for a 1-by-1, fixed rank updates, it can be extended to block wise and
dynamically changing rank

21



as the filter and a function g : Rk+1 −→ Rk that we refer to as the reweighter.
Informally, the role of f is to transform at+1 before it is concatenated to Bt and
the role of g is to transform the approximate singular values. In some cases, f and
g use a set of parameters. Algorithms in the framework operate as follows.

1. Initialize B = Bt to be Bt =UtSt where Ut and St = diag(st) are the k dom-
inant left singular vectors and diagonal matrix of the k dominant singular
values of At , where At consists of the first t columns of A for some t ≥ k.
This is equivalent to defining Ut and St as the singular factors of the best
rank-k approximation of At .

2. For columns t +1 to n of A, perform the following steps:

(a) Compute w = f (Bt ,at+1).

(b) Generate Bt+1 with the following properties

i. Bt+1 ∈ Rm×k.

ii. The left singular vectors of Bt+1 are the first k left singular vectors
of
[
Bt w

]
iii. The singular values of Bt+1 are the first k singular values of

[
Bt w

]
after going threw the reweighter.

We will denote Ut and St to be the left singular vectors and values of Bt and
Ũt+1S̃t+1Ṽ T

t+1 the SVD of
[
Bt w

]
. Some of the algorithms in the framework

represent Bt+1 implicitly as the product of certain matrices.

3.2 Examples of Filters and Reweighers

We now define a few filter functions and reweighing functions that are used by
existing incremental PCA methods.

• The filter used in the Basic IPCA [20, 5] and in QR-IPCA [7, 8] is the
identity filter

fID(Bt ,at+1) = at+1 .
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• The filter in Brand’s method [6]

fBrand(Bt ,at+1) =

UtUT
t at+1 rank(Ut) = k

at+1 otherwise .

• The truncation filter takes a threshold τ and projects at+1 if the projection is
a good approximation of it; Brand uses this filter but with a fixed parameter
that is close to some application-dependent noise floor. We define it more
generally here,

ftruncate(Bt ,at+1) =

UtUT
t at+1 ‖at+1−UtUT

t at+1‖< τ

at+1 otherwise .

• The reweighter used in the Basic IPCA and in QR-PCA is the identity

reweighter

gID(S̃) = diag(s̃1:k)

(note that this is not exactly an identity function; it is an identity on the
dominant singular values and it drops the smallest).

• Liberty defines the eigenvalue-anihilation reweighter [15] to be

geva(S̃) = diag
(√

s̃2
1:k− s̃2

k+1

)
.

This function shifts the eigenvalues of S̃S̃T so that the smallest is annihilated
and then drops the smallest, which is now zero. Liberty did not name this
function.

• The tracking reweighers was suggested by Levey and Lindenbaum [14] It
takes a parameter 0 < λ ≤ 1, shrinks the singular values by factor of λ , and
drops the smallest,

gtrack(S̃) = λ ·diag(s̃1:k) .

We denote an algorithm that uses fx and gy as IPCAx,y.
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4 Impossibility Results

We are interested in bounds which measure the quality of the approximation of
the dominant subspace. We start this chapter with the presentation of a common
error measure and explain its limitation in high dimensional settings. We then
introduce a new error criterion we call the subspace reconstruction bound (or just
reconstruction bound) that we believe is better suited for datasets with k�m. We
then show that under this error criterion all of the algorithms presented here that
belongs to the suggested framework are heuristic, in the sense that all can fail even
in very simple cases.

4.1 A New Error Criterion

A common error measure is the projection norm:

Eproj (A,U) =
||A−UUT A‖F

||A‖F

The focus of this work is high dimensional data. The following claim explain
(why in our eyes) the projection norm is not suited for those scenarios

Claim 1. Denote the singular values of A by σi. Assume that σk+1 = σk+2 = · · ·=
σm = σnoise 6= 0. In addition let Ak be A’s best rank-k approximation. For any
fixed k, the error Eproj→ 1 As m→ ∞.

Proof. From properties of SVD we know that ‖A−Ak‖F = ∑
m
i=k+1 σ2

i . We have

Epro j =

√
(m− k)σ2

noise

(m− k)σ2
noise +∑

k
i=1 σ2

i
>

√
(m− k)σ2

noise

(m− k)σ2
noise +C

m→∞−−−→ 1
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Eproj does not provide useful bounds in high-dimensional noisy problems. The
reason is simple: ‖A−Ak‖2

F = ∑
m
k+1 σ2

i , so if m is large and if the singular values
do not decay quickly to insignificant values, ‖A−Ak‖2

F may be large even for
good approximations, say span(U)= span(Ak). This means that this bound cannot
distinguish between good approximations and bad ones.

Another common error criterion is the 2-norm

E2,proj (A,U) =
||A−UUT A‖2

||A‖2

E2,proj does not suffer from the problem of Eproj as E2,proj = σk+1/σ1. E2,proj does
not accumulate the errors due to the tail of the small, noise related singular values.
No bounds that uses E2,proj with a fixed rank update are available. One interest-
ing but not particularly useful bound that uses E2 is the work of Chandrasekaran
et el., [9, 16]. They show how to keep track of the error and they propose to
increment k whenever necessary to preserve the bound. However, their method
results in very high a-priori bounds for k; in many interesting cases, their bound
is equivalent to maintaining the full rank.

We use an error criterion we call Reconstruction Error. We define it as:

Erecon (Ak̄,U) =
||Ak̄−UUT Ak̄‖F

||Ak̄‖F

This criterion measures how well U spans the dominant subspace of A. Note that
U has rank k and that Ak̄ has rank k̄ ≤ k. We note that if the gap between σk̄ and
σk is small, the problem of finding a U with a small reconstruction error is highly
ill conditioned, because small perturbations in A can cause dramatic changes in
Ak̄; we feel that this is acceptable when the sought-after object is the dominant
subspace. Unfortunately, it turns out that guaranteeing a small reconstruction error
is impossible for all of the existing algorithms, including FrequentDirections, even
in easy cases.
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4.2 Impossibility Results

We present two groups of theorems, the first will revolve around a matrix with
a given size. We will show that for many algorithms, given a matrix with a
known size, the user can not be certain that the approximation error will not be
Erecon (Ak̄,U) = 1. The second group will provide similar results but here the focal
point is the gap between the singular values and the effects that high dimension
has on the approximation. The first group is answering the quotation: “ I have a
specific matrix at hand, can I be certain to get a proper approximation using an
IPCA?” The second type answers a different question: “I know I have a big gap
between the dominant subspace and the rest of the noise related singular values,
can I be certain to get a proper approximation using an IPCA”. Unfortunately, the
answer to both, is no.

4.2.1 Building Blocks For Counter Examples

Let us define the following matrices, to be used later:

A1(m,n,x) =


x · · · x

0 0 0
...

...
...

0 0 0


m×n

A2(m,k,x) =



0 · · · 0

x
...

. . . 0
0 x

0 · · · 0


m×k

A3 =


0 · · · 0

0
...

. . . 0
0 0


m×n

and their extensions: A1,i same as A1 with the difference that the row of the
nonzero elements is in the i’th location (so A1 = A1,1) and A2,i, which is the
same as A2 but with the difference that the first non zero value starts at row i

(so A2,2 = A2). In addition let us define

A4(m1,x1,m2,x2) =

[
x1 · Im1

x2 · Im2

]
(m1+m2)×(m1+m2)

a diagonal matrix with two groups of values on its diagonal.

We use three very simple properties of SVD. The first is that the SVD decom-
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position of A1,i(m,n,x) is

U = ēi S =
[
x
√

n
]

1×1
V T =

[
1√
n

1√
n · · · 1√

]
1×n

The second property is the extension of the first, where we look at the SVD of the
composed matrix

A =
[
A1,1(m,n1,x1) A1,2(m,n2,x2) · · · A1,i(m,ni,xi)

]
which is (up to permutations making sure the diagonal elements of S are non
decreasing)

U =
[
ē1 ē2 · · · ēi

]
m×i

S =


x1
√

n1

x2
√

n2
. . .

xi
√

ni



=


S1

S2

Si


i×i

V T =


1√
n1
· · · 1√

n1
0 · · · 0

0 · · · 0 1√
n2
· · · 1√

n2
0 · · · 0

...
...

0 · · · · · · 0 1√
ni
· · · 1√

ni



=


V T

1 0 · · · 0
0 V T

2 0 0
. . .

0 · · · 0 V T
i


i×(n1+n2+···+ni)

The last property addresses fixed rank incremental update. If we have a basis U

and singular values matrix S and if the vector w is orthogonal to U then the exact
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SVD of
[
US w

]
is (up to permutation)

[
US w

]
=
[
U w

‖w‖

][S

‖w‖

][
Ik

1

]

The size of ‖w‖ determine the structure of the new basis. If ‖w‖ > Sk,k then
the unit vector w/‖w‖ is included in the updated U and U’s last column will be
dropped. If ‖w‖< Sk,k then U will stay without change.

4.2.2 Impossibility Results for a Given Matrix

Theorem 1. Denote by U the rank-k basis found by IPCAID,ID after processing

A ∈ Rm×ñ. For any given m , k̄ ≤ k ≤ m− k̄ and ñ ≥ k+ 2k̄, there exist a matrix

for which Erecon (Ak̄,U) = 1.

Proof: Let us start with the case k̄ = 1. A =
[
A2(m,k,x2) A1(m,n,x1)

]
and

k ≤ m− 1. Let x2
−→
√

2 and x1 = 1. Using the first property above, it is easy to
see that if n≥ 2 then σ1 = σk̄ =

√
n . After the first k columns, the approximated

base matrix and the singular value matrix will be:

Uk =
[
ē2 ē3 · · · ēk+1

]
m×k

Sk =


x2 · · · 0

0 . . . ...
0 · · · x2


k×k

For each column i = (k+1) : ñ , the left rank-(k+1) SVD basis and the singular
values matrix of

[
Bi−1 fID(Bi−1,ai)

]
will be

[
Uk ē1

]
and

[
Sk

1

]

The identity reweighter simply drops the smallest singular value - basis vector pair
so Bi = UiSi = UkSk. IPCAID,ID will not be able to find the only dominant base
vector ē1 and regardless of the approximation rank used (as long as its smaller
them m) Erecon (Ak̄,U) = 1.
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Let us continue the proof for k̄ > 1. Let A =
[
A2,k̄+1 A1,1 A1,2 · · · A1,k̄

]
.

If each A1,i has n≥ 2 columns then similar to before (using the second property),
the first k̄ singular values are all equal

√
n >
√

2. After the first k columns are
processed we will have the same Uk and Sk as in the previous case. As long as
k ≤ m− k̄, Erecon (Ak̄,U) = 1.

This Theorem implies that the difference between m and k can be the number
of missed dominant directions.

Theorem 2. Denote by U the rank-k basis found by IPCAID,eva after processing

A ∈m× ñ. For every m, n̄≥m and k̄≤ k≤m− (3k−2k̄+3) there exist a matrix

for which Erecon (Ak̄,U) = 1.

Proof. Let Ã = A4(k̄,1,m− k̄,0.6) and note that 0.6 >
√

1−2×0.62. After the
first k columns we have:

Uk =
[
ē1 ē2 · · · ēk̄ ēk̄+1 · · · ēk

]
Sk =



1
. . .

1
0.6

. . .

0.6


The first k̄ basis vectors are the correct ones. After the next column, we have

Sk+1 =



√
1−0.62

. . .
√

1−0.62

0
. . .

0


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The next k− k̄ columns will fill with 0.6 the zeros on the diagonal

S2k−k̄+1 =



√
1−0.62

. . .
√

1−0.62

0.6
. . .

0.6


The next column will reduce again the size of the first k̄ elements and place zeros
in all the remaining elements

S2k−k̄+2 =



√
1−2×0.62

. . .
√

1−2×0.62

0
. . .

0


The next k− k̄ columns will again fill the zeros but now with 0.6 >

√
1−2×0.62

S3k−2k̄+2 =



0.6
. . .

0.6 √
1−2×0.62

. . .
√

1−2×0.62


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And the next column will drop the k̄ first direction from the representation

S3k−2k̄+3 =



0.6
. . .

0.6
0.6

. . .

0


If ñ > m then using A =

[
Ã A3

]
(filling the remaining columns with all zeros

matrix) completes the proof

Theorem 3. Denote by U the rank-k basis found by IPCABrand,ID after processing

A ∈ m× ñ. For any given k, k̄, ñ and m such that ñ ≥ m ≥ k + k̄, there exist a

matrix for which Erecon (Ak̄,U) = 1.

Proof: use A4(k,x1, k̄,x2) with extra m− (k + k̄) all zeros rows. As long as
x2 > x1 we have Erecon (Ak̄,U) = 1.

All of the above theorems shows that almost in any matrix setting there are
infinite number of matrices for which Erecon (Ak̄,U) = 1 however they do not take
notice of the gap σk̄/σk̄+1 which indicates if a dominant subspace even exist. The
next group of theorems will address this issue specifically.

4.2.3 Impossibility Results for a Given σk̄/σk̄+1 Ratio

Theorem 4. For any positive real number M, and k̄ ≤ k there exist a matrix A ∈
Rm×ñ with σk̄/σk̄+1 > M such that if U is the rank-k basis found by IPCAID,ID

after processing A, Erecon (Ak̄,U) = 1.

Proof: use A=
[
A2,k̄+1(m,k,x2) A1,1(m,n,x1) · · · A1,k̄(m,n,x1)

]
with m≥

k̄ + k. Choose x2 to be any real number bigger then zero. Chose x1 to be any
positive real number smaller then x2. Choose n such that x1

√
n/x2 > M.

Theorem 5. For any positive real number M, and k̄ ≤ k there exist a matrix A ∈
Rm×ñ with σk̄/σk̄+1 > M such that if U is the rank-k basis found by IPCAID,eva

after processing A, Erecon (Ak̄,U) = 1.
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Proof: Let A = A4(k̄,1,m− k̄,1/M)1 . We have seen at theorem 2 that the
operation of IPCAID,eva in this case is periodic. First, all the elements in Sk are
filled by two groups of values (and the initial basis matrix is generated). The first
part with the k̄ dominant elements (all equal one) and the remaining k− k̄ with
value 1/M. The next column will reduce the first k̄ to

√
1−1/M2 and will zero

out all the last k− k̄ elements. Next k− k̄ columns will fill the zeros and the next
column will again reduce the value of the top k̄ and zero out the lower k− k̄ and
so on. For any given ratio σk̄/σk̄+1 there exist m̃, the number of columns / rows
(each with the singular value 1/M) needed for reducing the dominant singular
values below 1/M. After another k− k̄ + 1 columns they will be thrown away,
along with their matching base vectors yielding Erecon (Ak̄,U) = 1.

Theorem 6. For any positive real number M, and k̄ ≤ k there exist a matrix A ∈
Rm×ñ with σk̄/σk̄+1 > M such that if U is the rank-k basis found by IPCAtruncate,ID

after processing A, Erecon (Ak̄,U) = 1.

Proof: use A=
[
A2,k̄+1(m,k,x2) A1,1(m,n,x1) · · · A1,k̄(m,n,x1)

]
with m≥

k̄+ k. Choose x2 = 1, x1 < τ and n such that x1
√

n > M.

Theorem 7. For any positive real number M, and k̄ ≤ k there exist a matrix A ∈
Rm×ñ with σk̄/σk̄+1 > M such that if U is the rank-k basis found by IPCABrand,ID

after processing A, Erecon (Ak̄,U) = 1.

Proof: fBrand does not allow new direction to enter after the first k were found.
As such the result is immediate. Use A = A4(k,1, k̄,M).

Theorem 8. For any positive real number M, and k̄ ≤ k there exist a matrix A ∈
Rm×ñ with σk̄/σk̄+1 > M such that if U is the rank-k basis found by IPCAID,Track

after processing A, Erecon (Ak̄,U) = 1.

Proof: Use A =
[
A4(k̄,1,m− k̄,0) A3(m, i) A2,k̄+1(m,k,1/M)

]
with m ≥

k̄+k and i such that λ i < 1/M (in fact i can be smaller due to the second block of
A4) .

1 For simplicity we use 1/M rather then (1− ε)/M needed for σk̄/σk̄+1 > M
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4.2.4 Discussion

Let us now try to understand why the task before IPCA is so hard. SVD is a
global algorithm. As been seen in the counter examples, dominant directions can
be comprised of many repetitions, each with locally low norm. For example, the
base - singular value pair

U =

1
0
0

 S = 1

can be the exact rank-1 PCA of any of the following:

A =

1
0
0


3×1

B =


1√
2

1√
2

0 0
0 0


3×2

C =


1√
n

1√
n · · · 1√

n

0 0 · · · 0
0 0 · · · 0


3×n

As the number of columns n grows, the LOCAL contribution of a meaningful
directions can be very low. We call this phenomenon Mass Spreading. For batch
SVD, mass spreading has no effect. Due to its global view, it is able to accumulate
all the contributions together. For incremental methods, at each step having to act
based on knowledge regarding only the next vector (or small block of vectors), it
potentially has huge effect. The goal of both IPCABrand,ID and IPCAtruncate,ID is to
save operation count costs. It is obvious from its definition that IPCABrand,ID does
not allow new directions after the initial basis was established. Mass spreading

explains why it is not possible to use any deterministic value of τ in IPCAtruncate,ID

without knowing it might fail completely. We have not seen any reference to mass

spreading in any previous work.

In addition to Mass Spreading, IPCA faces another problem. It is a known
fact that when we update an SVD approximation by adding a vector, the singular
values of S are non decreasing. When our dataset includes very large number
of columns, even the smallest singular value might get big enough to potentially
prevent the incorporation of new dominant directions into the approximation. This
is a known phenomenon, sometimes referred to as Weight of Experience. A simple
illustration to the problem posed by weight of experience is as follows. Imagine
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a situation where the real singular value of a noise related direction is σk+1. The
dataset may have a very good low rank approximation with a big σk/σk+1 ratio
but with an average column norm lower then σk+1. If the noise direction was fully
incorporated into Ut , meaning we will have σk+1 in our approximated singular
values matrix, it may be very difficult for the IPCA algorithm to replace it with a
dominant direction as their local contribution is smaller then σk+1.

Mass spreading & weight of experience works hand in hand making the task
of IPCA that much difficult and they drive the impossibility result for IPCAID,ID.

Weight of experience is countered in IPCAID,track by the decay factor. (as it
reduces the magnitude of our approximated singular values) however it is not fit
as a method to obtain an approximation for A entirely. It’s built-in forget factor
will do exactly what it meant too. Dominant directions seen early in the dataset
will be phased out, potentially clearing the room for noise related directions. For
that reason IPCAID,track is mainly mentioned in applications of subspace tracking
where recent instances are more important then old ones, but not as a solution to
a global approximation problem.

IPCAID,eva uses a similar approach to IPCAID,track , also shrinking the singular
values from update to update, but in a much more clever way. In fact, IPCAID,eva

is so clever it enables Liberty to bound its error (using Eproj), an achievement
shared by non other fixed rank IPCA algorithm and with a proof much simpler
then those arising from matrix sketching work [11]. Clever as it is, the shrinkage
mechanism used by IPCAID,eva comes with a cost, which is not evident if the error
criterion is Eproj (the one used for its error bound). The cost of the shrinkage
mechanism is that it makes it sensitive to high dimensional noise. Non-shrinking
methods belonging to IPCAID,ID suffer from the increase on columns (instances /
observations) but IPCAID,eva suffer from the increase of attributes of each column.
While the counter example used in the impossibility results is very non-realistic,
we will also demonstrate this drawback in the testing chapter, using much more
realistic datasets and on a real world dataset.
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5 New Algorithms

5.1 QR-FD: A New QR Based Implementation of FrequentDirections

IPCAID,eva is an abstraction of FrequentDirections [15, 12]. We have demon-
strated that when using Erecon it is not possible to bound its error. Liberty did
manage to bound the error using Eproj, making FrequentDirections the only fixed
rank IPCA with error guaranties. The Basic FrequentDirections cost is O

(
mk2)

per column. Liberty suggested doubling the memory used, going from a 1-by-1
update to block wise updates. This approach still has a quadratic cost per up-
date but the amortized per-update cost is linear. In order to avoid the periodic
O
(
mk2) cost, Liberty suggested doubling the memory once again, maintaining

two separate sketches, merging them at end of run. We will now show a very
simple trick that allows a 1-by-1 update with FrequentDirections guaranties and
O(mk) cost without the need to work with blocks and maintaining two differ-
ent sketches. Recall that when we reviewed work related to IPCAID,ID we men-
tioned that Chahlaoui et al [8] developed an 1-by-1 update algorithm with the best
known complexity, only 8mk per update. They maintain Bt in-explicitly with a
basis Qt and an upper diagonal matrix Rt . The difference between IPCAID,ID and
IPCAID,FD is the reweighter function. Our key observation is that it is possible to
add geva(·) to the QR based IPCAID,ID as follows:

1. Generate Qnew and Rnew according to the QR based IPCAID,ID but keep the
discarded singular value σ = σk+1. Denote R = Rnew

2. Compute the SVD of R =URSRV T
R

3. Expend S̃R = diag(SR,σ)
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4. Sshrunk = geva
(
S̃R
)

5. Perform RQ decomposition on the reconstructed matrix: R̃=URSshrunkV T
R =

RnewQthrow_away

6. Continue with next column

We call this new implantation QR−FD. Note that we drop the matrix Qthrow_away

as it is related to the right singular base. The extra cost is O
(
k3) which is negligi-

ble in the setting this thesis is aiming at with k� m� n.

5.2 New Instantiations

We now suggest three new instantiations (abstract algorithms). The first, Tun-

ableShrinkage, tries to balance between the advantages and drawbacks of IPCAID,ID

and IPCAID,eva while still enjoining the same guarantees of IPCAID,eva (under
Eproj). The other two, Boosted-IPCA (BIPCA) and Just-In-Time-PCA (JIT-PCA)
are heuristic algorithms that were specifically engineered, via extensive testing, to
be more robust then previously presented algorithms. We justify the use of heuris-
tic algorithms by the fact that we have demonstrated that under Erecon, all methods
are basically heuristic. For k� m� n they are both faster then QR− IPCA. In
low noise setting JIT-PCA operation count→ 2mk, the cost of projecting a vector
into a subspace.

5.2.1 TunableShrinkage

We have seen that Mass spreading & weight of experience poses a problem for
algorithms of type IPCAID,ID while it is not apparent that high dimensional noise
has any affect on it. On the over side, the reweighter of IPCAID,eva enables it
to handle Mass spreading & weight of experience but makes it sensitive to high
dimensional noise. Let us define the following reweighter

gr_eva (S,r) =
√

S2− Ik · (σ2/r)
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The above reweighter is exactly as in IPCAID,eva with one exception, the elements
on the diagonal of S2 are reduced by σ2/r and not σ2. We call r the Shrinkage
ratio. If we choose r = 1 we get geva and If we choose r→∞ we get gID How does
the increase of the Shrinkage ratio changes the behavior of the update method?
The next theorem will address this explicitly:

Theorem 9. Let B ∈ Rm×k be the sketch produced by TunableShrinkage, for any

k̄ < k/r and r ≥ 1 it holds that

‖A−U1:k̄U
T
1:k̄A‖2

F ≤
(

1+
k̄r

k− k̄r

)
‖A−Ak̄‖

2
F

Proof. See Appendix A

TunableShrinkage come with the same guaranty of FrequentDirections except
the fact that as the Shrinkage ratio increases, the sketch need to be bigger in order
to get the same bound. Obviously from a certain value the sketch size will be too
big for any practical use, however, we reiterate on the fact that for k� m those
bounds tell us very little about the performances anyway. As the Shrinkage ratio
increases, the update scheme will be less sensitive to increase in dimension but
will take longer to incorporate new directions requiring much more repetitions.
As m increases, we need to use a bigger value for r which require us to increase
n, the number of columns / instances in our dataset. This relation is of no surprise
and seen in many different aspect when dealing with high dimensional data. We
have no way to pre-define the proper value for the Shrinkage ratio and currently it
should be defined by the user based on test on the specific dataset. The arithmetic
cost of TunableShrinkage, if using the QR version, is 8mk per step.

5.2.2 Randomized Boosting

We now present two alternative algorithms that were specifically engineered, via
extensive testing, to be more robust then previously presented algorithms. The
First is called Boosted IPCA (BIPCA) and the second Just In Time PCA (JIT-PCA).
Both are without a tuning parameter and with a specific implantation, complexity
cost varying between 2mk to 8mk pending on the problem structure (for k� m).
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The new algorithms are using a randomized procedure and instead of manipulat-
ing S after each update (via the Reweigher function), manipulates the incoming
vector prior to processing it (by the filter function). Denote r =

(
I−UtUT

t
)

at+1

and ρ = ‖r‖. r can be zeroed out (similar to ftruncate), left untouched (using fID) or
boosted (new operation). The low complexity is achieved via alternating between
the methods of Chahlaoui et al and of Brand.

5.2.2.1 Boosted Incremental PCA (BIPCA)

This method uses the identity reweighter but with a sophisticated statefull ran-
domized filter. The state that the filter maintains is the average mass of columns
αt = ‖A : ,1: t‖2

F/t, the smallest singular value of Bt , denoted σt and a counter c.
We initialize c = 2. The filter starts by tossing a biased coin with success proba-
bility 1/c. If the coin toss is successful, the filter simply sets w to the projection
p =UtUT

t at+1 and it increments c. Otherwise, the filter sets c = 2 and computes
the projection-residual r = at+1−UtUT

t at+1 and its 2-norm ρ . If ρ > σt , we
set w = at+1 and continue. If the residual is small ρ ≤ σt , we toss another coin
with success probability 1−min(1,ρ2/αt). If the toss is successful, we again set
w= at+1. If the coin toss is unsuccessful, we boost the residual and set w= p+β r

where

β =

σt/ρ + ε p = 0

min(σt/ρ,
√
(‖at+1‖2 +σ2

t )/‖at+1‖2) otherwise,

where ε is infinitesimal (not a significant numeric value). The test p = 0 is done
in a numerically-robust way (small p’s are admitted). The ε term forces w to be
retained in Bt+1 when p = 0.

5.2.2.2 JIT-PCA

We have seen that the cost of IPCABrand,ID can be 2mk but does not allow new
directions once the initial rank-k base is found. JIT-PCA tries to narrow down the
gap from 8mk to 2mk but still be able to incorporate new directions as needed.
JIT-PCA, is closely related to BIPCA and uses the same notation. It is a little
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simpler, often more efficient, but sometimes a little less accurate. It also uses an
identity reweighter and a sophisticated filter. The filter tosses only one coin with
probability (1/c)(1−min(1,ρ2/αt)) (the product of the probabilities in BIPCA).
If the coin toss is successful, we set w = p and increment c, otherwise we set
w = p+ γr and set c = 2, with γ defined as

γ =

1 ρ > σt

β otherwise .

5.2.2.3 Complexity of BIPCA and JIT-PCA

The per step cost of the Basic IPCA is dominated by the O
(
mk2) required for

updating Ut+1 =
[
Ut p

]
UZ . We have seen two ways to overcome it (when

limiting the update to be 1-by-1). Brand maintains two matrices, Ut ∈ Rm×k,
the basis found after the conclusion of step t, which does not change from time
i = t + 1 till end of run. The second is Usmall,i ∈ Rk×k which is being updated
by Usmall,i+1 = Usmall,i[UZ]1:k,1:k. At end of run the output basis is then UtUsmall,n

[6]. Brand’s algorithm weakens lie in the fact that it completely ignores new
directions that might appear late in the stream. His strength is its cost, merely
2mk (for k� m). We will call this method a span-only update.

The second method to reduce the cost was suggested by Chahlaoui et al, us-
ing a QR updating structure with Ui ∈ Rm×k orthonormal and Ri ∈ Rm×k upper
triangle [8]. Their algorithm takes advantage of efficient multiplication using
Householder reflections, achieving the best known arithmetic cost for determinis-
tic IPCA algorithms (besides Brand’s, but they do not drop the orthogonal part) -
only 8mk operations per update. Similarly to Brand’s, Ui is not the final base. The
SVD of Ri contains both the singular values and a rotation matrix UR such that
UtUR is the approximate SVD base. We call this method full-update.

Both BIPCA and JIT-PCA uses coin tosses to decide whether or not to use the
orthogonal part of the incoming vector. A small procedure, we call the complex-

ity trick, permit BIPCA and JIT-PCA complexity to vary between 2mk− 8mk by
alternating between the methods proposed by Brand and Chahlaoui et al.

Table 5.1 provides the details for the conversion needed for all possible [previ-
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ous - currant] update pairs. Two cases are straight forward, if the previous vector
update type and the current update type are the same, then one directly perform
the update operation as originally suggested by Brand or Chahlaoui et al. For
the two remaining cases BIPCA and JIT-PCA switches between the two types of
representations either using a RQ decomposition (when the previous update type
was span-only and the currant type is full-update ) or a small SVD (in the reverse
situation). Both of the operations are O(k3), negligible in our settings.

The average per-step complexity of BIPCA and JIT-PCA is determined by
the ratio between span-only and full-update. BIPCA complexity is not dependent
on the accuracy of the approximation or noise levels as the decision to use the
orthogonal part is based on the ratio 1/c. Its expected per-column cost is ∼ 5mk.
JIT-PCA probability to use the orthogonal part is chained to (1−min(1,ρ2/αt).
On average, it will perform full-update less times then BIPCA. In cases where
the basis found during the run by JIT-PCA is close to the real underlying basis,
especially in low noise setting (where ρ2/αt is low), the per-step cost can get very
close to 2mk. In the testing chapter we will demonstrate that unlike Brand’s, the
accuracy cost is very small.

5.2.2.4 Discussion

The Randomized Boosting algorithms suggested are design to be more robust
then previously suggested methods. They use a boost in order to overcome Mass

spreading & weight of experience. If a direction is repetitive with low norm it will
occasionally win the draw, get a boost and incorporated into the approximation.
IPCAID,eva and IPCAID,track both shrinks all of the singular values, the boost is
limited by the smallest singular value. This limitation should help preventing non
dominant directions to overflow the approximation. We note that classical SVD
is more oriented toward local norm then repetition. Both BIPCA and JIT-PCA

are more oriented toward repetition. For example, a matrix made of two mutually
orthogonal groups of columns. The first with many small norm columns and the
second with very few huge norm columns. If the norm of the small orthogonal
group is large enough, they can be the dominant directions for classical SVD.
From the design perspective of BIPCA and JIT-PCA, the huge norm columns are
considered as outliers. Neglecting them is a good thing. When we provided the

40



Previous
update

Currant
update

Maintained
data

structures

Needed
data

structures

Transformation

Span
only Span

only
U, Usmall, S no change no need

Full
update Full

update
Q, R no change no need

Span
only Full

update
U, Usmall, S Q, R RQ̃ =UsmallS

via RQ decomposition
Q̃ is not used and

Q =U
Full
update Span

only
Q, R U, Usmall, S UsmallSV T = R

via SVD
V is not used

Table 5.1: The Complexity Trick: best known full-update cost is 8mk and
uses a QR structure with Q ∈ Rm×k an orthogonal basis and R ∈ Rm×k

an upper triangular matrix. Best known span-only updates cost is 2mk
and uses 3 matrices: a basis matrix U ∈ Rm×k, a small rotation matrix
Usmall,i ∈ Rk×k and a diagonal matrix of estimated singular values S. In
order to minimize the cost, BIPCA and JIT-PCA switches between those
two types of representations. The transformation cost is O(k3) negligible
under the setting of this work
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impossibility results for IPCAID,eva we used exactly this type of matrix, several
large norm vectors and the rest with much smaller norm. This was just for sim-
plification. The same result could have been achieved by small repetitive vectors
building up the large singular values. Due to this nature and design of BIPCA and
JIT-PCA we do not believe it is possible to prove anything regarding its accuracy
under conventional framework.
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6 Experimental Results with Synthetic
Datasets

We compare accuracy of several competing algorithms: The Basic IPCA, Fre-

quentDirections, TunableShrinkage, BIPCA and JIT-PCA. When applicable, the
error criterion used is Erecon. We conduct different types of tests in order to
demonstrate the behavior addressed in the impossibility results. The datasets are
all variants of the following generation model: A = Bm×m ·Mm×n where B is a
square orthogonal matrix (basis). M act as a mixing matrix and potentially di-
vided into blocks

[
M1 M2 · · · M j

]
, each with optionally different number of

columns. The structure of each block is:

Mi =


rows with entries from∼ N(0,σn)

· · ·
rows with entries from∼ N(0,σd)

· · ·
rows with entries from∼N(0,σn)


with σd > σn. Basis column corresponding to rows of M j with elements from
standard deviations σn are noise related and those corresponding to the standard
deviations σd are data (dominant basis) columns. Several blocks can share the
same dominant basis (same rows contain elements from standard deviations σn

and σd) or each can have a different one (different rows). The resulting matrix
A will have two groups of singular values. A group of strong ones with more or
less equal values and a group of weak singular values, again more or less with the
same value
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Figure 6.1: The effects of increasing the dimension on the approximation
accuracy. Left: The Basic IPCA performs best with Erecon ≈ 0, BIPCA
and JIT-PCA performs equally with ≈ 0.1 and FrequentDirections er-
ror increase as the dimension (row) increases. Right: the row was fixed
at 600. Adjusting the shrinkage ratio allows TunableShrinkage to accu-
rately approximate the dominant subspace.

6.1 The Effects of Increasing the Dimension

We randomly generated a dataset A = Brow×rowMrow×3000 with row = 50...1000.
The first five rows of M contain entries drawn from ∼ N(0,1) and the remaining
rows have entries drawn from ∼ N(0,0.1) (so σd = 1, σn = 0.1 and k̄ = 5). We
used k = 9 as the approximation rank for all algorithms. The left side of Figure
6.1 demonstrates that on this type of dataset where the underlying basis does not
change, the Basic IPCA outperforms the rest with an almost exact approxima-
tion. BIPCA and JIT-PCA both have Erecon ≈ 0.1 and are generally unaffected
by dimension increase. FrequentDirections demonstrates its sensitivity to high
dimension, starting with a very good approximation when A only has 50 rows but
reaching 0.8 when A has 1000 rows. The right side of Figure 6.1 demonstrates the
ability of TunableShrinkage to handle the high dimension. We fixed the row value
at 600 and used increasing amount of regulation achieving very accurate results.

6.2 A Block of Outliers

Here A has the following structure

A =
[
Data block 1 Outlier block Data block 2

]
= B50×50

[
M1,(50×10000) M2,(50×200...800) M3,(50×10000)

]
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Figure 6.2: Block of Outliers: on the left, Erecon as the outlier block in-
crease in size. The dimension of data is 50 and the dominant rank is 6.
The Basic IPCA fail completely, BIPCA and JIT-PCA perform equally
well but FrequentDirections is order of magnitude better then the rest.
On the right, outlier block is fixed on 800 and data dimension is in-
creased to 350. Now FrequentDirections error is even bigger then the
Basic IPCA

Rows 1− 3 of M1 and rows 10− 12 of M3 have entries drawn from ∼ N(0,1).
Rows 4− 9 of M2 have entries drawn from ∼ N(0,3). The remaining entries
are drawn from ∼ N(0,0.1) . The average norm of vectors from the data blocks
is lower then the average norm of vectors from the outlier block but the size of
the outlier block (number of vectors) is much smaller. Each data block true rank
(k̄) is 3, the outlier block rank is 6 and the approximation rank (k) used was 10
(trying to approximate subspace spanned by the 6 dominant basis vectors). This
test demonstrates the effects of the weight of experience. In the left side of figure
6.2 the data dimension (number of rows) is 50 and the outlier block size changes
from 200 to 800. As the outlier block size increases so does its associated singular
values (but they remain smaller then those associated with the data blocks). Here
FrequentDirections performed best with Erecon ≈ 0.001, BIPCA error was around
0.01 and JIT-PCA error was around 0.04. The results of all of them is steady and
not effected by the outlier block size increase. As expected, the Basic IPCA failed
completely when the block size got larger. The right side uses only one block size,
800 but with a higher data dimension, 350. Now, due to the high dimension of the
noise, FrequentDirections results is even worse then the Basic IPCA. Both BIPCA

and JIT-PCA results remained roughly the same.
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6.3 BIPCA and JIT-PCA behavior

Here we take a closer look when and how BIPCA and JIT-PCA uses the orthogo-
nal part of the new vector. A has the following structure

A = B50×50

[
M1 M2 M3 M4 M5 M6

]
with each Mi ∈ R50×1000. Rows 1-5 of blocks (M1,M4), Rows 6-10 of blocks
(M2,M5) and Rows 11-15 of blocks (M3,M6) have entries drawn from ∼ N(0,1).
The approximation rank used is 20. We generated the dataset twice with differ-
ent noise value σn = 0.01 and σn = 0.1. The left side of figure 6.3 presents the
singular values when σn = 0.01 and the right side presents the singular values of
the test dataset with a higher noise level σn = 0.1 . In each we can see a group
of 15 dominant singular values (5 belonging to each basis that generated a pair of
blocks), a gap which is determined by the σd/σn ratio, and the rest of the singular
values. Figure 6.4 presents the boost probability for BIPCA. We can see two picks
right after column index 1000 and 2000, those are the locations where a new part
of the generation basis was first witnessed. Note also that the next basis switch
column indexes (3001, 4001,5001) no longer have this pick, the basis was already
incorporated and kept. Figure 6.5 presents the probability of using the orthogonal
part + boost for JIT-PCA. The boost probability with BIPCA provides feedback
regarding the approximation accuracy and the same goes for JIT-PCA for which
the probability is also indicative for its complexity (BIPCA complexity in not ef-
fected by the noise level). The lower the probability the less the algorithm uses
the orthogonal part and its operation count approaches an average cost of 2mk per
step. On the left side, σn = 0.01 and the O(mk) coefficient is 2.03, on the right
side, σn = 0.1 and the O(mk) coefficient is 2.45. Even in such high noise settings
JIT-PCA cost is only 25% more expensive then projecting a vector into a subspace
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Figure 6.3: Singular Values For BIPCA and JIT-PCA Analysis: on the
left σn = 0.01 and on the right, with a smaller gap between strong and
week singular values, σn = 0.1
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Figure 6.4: BIPCA Boost Probability: on the left σn = 0.01 and on the
right σn = 0.1 . The boost probability in low noise is very low as the basis
is captured accurately. The O(mk) coefficient for both is 5.45, indepen-
dent on the noise level
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Figure 6.5: JIT-PCA Full Update Probability: on the left σn = 0.01 and
the O(mk) coefficient is 2.03, on the right σn = 0.1 and the O(mk) coeffi-
cient is 2.45. Even in such high noise setting JIT-PCA cost is only 25%
more expensive then projecting a vector into a subspace
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7 Experimental Results with Real World
Datasets

7.1 BIRDS Dataset

Inspired by Liberty [12],we consider the real-world dataset BIRDS [1] in which
each column represents an image of a bird, and each row a feature, represented via
a binary parameter. This dataset has 11788 columns (each an image) of dimension
312. The left side of figure 7.1 shows the singular values of this dataset. There is
no real gap distinguishing between the dominant and noise subspace. In our tests
we chose the 20th singular value as the cutoff point. It is labeled on the figure
by a green circle. Figure 7.2 presents Erecon as a function of the approximation
rank with values of 25,30,35,40,45. We can see that the Basic IPCA performs best
(except for rank 25 where BIPCA and JIT-PCA were slightly better) with BIPCA

and JIT-PCA on the same level. FrequentDirections, (again due to high dimension
noise) error rate is much higher. The right side of figure 7.1 demonstrates the
approximation of TunableShrinkage. We can see that with a shrinkage ratio of
100 we get best results, twice as good as the Basic IPCA.

7.2 pcStream

Mirsky et al. [18], interested in Context Mining from streams, suggested an algo-
rithm called pcStream. The algorithm maintains models that represents different
user states (one model per state), for example, the stream can be generated by the
user smartphone accelerometer and the states are running, walking or jumping.
Briefly, pcStream operates by modeling situation spaces as Gaussian distributions
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Figure 7.1: BIRDS Dataset: On the left, its singular values, with the
20th labeled in green circle. On the right, Erecon for TunableShrinkage
as a function of the the shrinkage ratio. the edges are FrequentDirections
and Basic IPCA, the best result for tested values is at the value 100
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Figure 7.2: BIRDS Dataset: Erecon for FrequentDirections, Basic IPCA,
BIPCA and JIT-PCA as a function of the approximation rank. Frequent-
Directions error is much higher then the rest due to high noise dimension
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while tracking the flow of the stream between known models. When an instance
arrives from the stream, it is assigned to the closest model using Mahalanobis dis-
tance. Should there be no model close enough then the instance is added to the a
buffer B. The purpose of buffer B is to capture the instances that potentially be-
long to a new situation space. pcStream assumes that the actor behind the stream
remains in each situation for at least tmin observations at a time. If an observation
is ever assigned to an existing model, B is immediately emptied and used to up-
date that model. However, should B ever reach capacity, a new situation space is
modeled after the contents of B, and B is reset. For each model / cluster, pcStream
maintains a buffer Ci with the last n observations that were assign to this cluster
and in addition a rank−k PCA representation for this buffer. Each time a new
instance is assigned to a cluster, the oldest instance in Ci is discarded, the new
instance is placed as the newest and a rank k PCA is performed of this updated Ci.

On a follow up paper [17], we teamed with Mirsky et al. suggesting several
improvements for pcStream. Our contribution included the incorporation of JIT-

PCA into pcStream, allowing a much faster run time, much better memory usage
(as there was no longer any need to maintain Ci) with results equally good. We
encourage interested readers to review this related paper.
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A TunableShrinkage Error Bounds

We now provide the proof to theorem 9. The provided proof is an adaptation to
the proofs provided by Liberty [12]. In order to make the comparison easier, we
will work row-wise, same as in the original article. First, let us review Frequent-

directions again. Bl indicates row l of B and ai is row i of A.

1. Inputs: l, A∈ Rn×d

2. B← 0l×d

3. For i = 1 : n

(a) Bl ← ai

(b)
[
U Σ V

]
← SVD(B)

(c) C← ΣV T

(d) δ ← σ2
l

(e) B←
√

Σ2−δ Il ·V T

4. Return B

TunableShrinkage works the same as Frequentdirections with three differences.
First we also get as input a number r ≥ 1. Second, we use δ ← σ2

l /r and third,
we calculate

√
Σ2−δ Il , we then zero out Σl,l and only then reconstruct B. In the

proofs ahead, we denote δi = σ2
l /r, Bi, Ci the values of δ , B, and C respectively

after the i’th row of A was processed, ∆ = ∑
n
i=1 δi, B0 an all zeros matrix and

Bn = B the final sketch. In addition let B̃i denote the first l− 1 rows of Bi. We
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denote by y j the right singular vectors (in descending order) of A and v j of B and
Bi (we drop the i notation from v for simplicity, it will be clear from the context to
which it refers) . Finally, we denote πk

B(A) = AVkV T
k the right projection of A on

the top k right singular vectors of B and Ak to be A’s best rank k approximation.

Claim 2. For any vector x we have 〈ai,x〉2 +‖Bi−1x‖2 = ‖Cix‖2

Proof. At each iteration we start by placing the new vector into the (all zeros) last
row of Bi−1 and we then perform SVD on the augmented matrix

UiΣiV T
i =

[
B̃i−1

ai

]
⇒‖UiΣiV T

i x‖2 =

∥∥∥∥∥
[

B̃i−1

ai

]
x

∥∥∥∥∥
2

The L.H.S is

‖UiΣiV T
i x‖2 = ‖ΣiV T

i x‖2 = ‖Cix‖2

And the R.H.S

∥∥∥∥∥
[

B̃i−1

ai

]
x

∥∥∥∥∥
2

= 〈ai,x〉2 +‖Bi−1x‖2

Claim 3. For any vector x we have ‖Cix‖2−‖Bix‖2 ≥ 0

Proof.

‖Cix‖2 = ‖ΣiV T
i x‖2 =

l

∑
j=1

σ
2
j
〈
v j,x

〉2 ≥

l

∑
j=1

[(
σ

2
j −δi

)〈
v j,x

〉2
]
≥

l−1

∑
j=1

[(
σ

2
j −δi

)〈
v j,x

〉2
]
= ‖Bix‖2
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Lemma 1. (Property 1) For any vector x, we have ‖Ax‖2−‖Bx‖2 ≥ 0

Proof.

‖Ax‖2−‖Bx‖2 =
n

∑
i=1

[
〈ai,x〉2 +‖Bi−1x‖2−‖Bix‖2

]
claim 2
=

n

∑
i=1

[
‖Cix‖2−‖Bix‖2] claim 3

≥ 0

Claim 4. For any unit vector x we have ‖Cix‖2−‖Bix‖2 ≤ rδi

Proof.

‖Cix‖2−‖Bix‖2 =
l

∑
j=1

σ
2
j
〈
v j,x

〉2−
l−1

∑
j=1

[(
σ

2
j −δi

)〈
v j,x

〉2
]
=σ

2
l 〈vl,x〉2+δi

l−1

∑
j=1

〈
v j,x

〉2

= rδi 〈vl,x〉2 +δi

l−1

∑
j=1

〈
v j,x

〉2
= (r−1)δi 〈vl,x〉2 +δi‖V T x‖2

≤ (r−1)δi 〈vl,x〉2 +δi‖V T‖2 ≤ (r−1)δi +δi = rδi

Lemma 2. (property 2) For any unit vector x we have ‖Ax‖2−‖Bx‖2 ≤ r∆

Proof.

‖Ax‖2 − ‖Bx‖2 =
n

∑
i=1

[
‖Cix‖2−‖Bix‖2] claim 4

≤
n

∑
i=1

rδi = r∆

Claim 5. ‖Ci‖2
F ≥ ‖Bi‖2

F + lδi

Proof.

‖Ci‖2
F −‖Bi‖2

F =
l

∑
j=1

σ
2
j −

l−1

∑
j=1

(σ2
j −δi) = σ

2
l +(l−1)δi = (l + r−1)δi ≥ lδi
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Claim 6. ‖Ci‖2
F = ‖Bi−1‖2

F +‖ai‖2

Proof.

‖Ci‖2
F =

∥∥∥∥∥
[

B̃i−1

ai

]∥∥∥∥∥
2

F

= ‖Bi−1‖2
F +‖ai‖2

Lemma 3. (property 3) ∆l ≤ ‖A‖2
F −‖B‖2

F

Proof.

‖A‖2
F =

n

∑
i=1
‖ai‖2 claim 6

=
n

∑
i=1
‖Ci‖2

F−‖Bi−1‖2
F

claim 5
≥

n

∑
i=1

[
‖Bi‖2

F + lδi−‖Bi−1‖2
F
]
= ‖B‖2

F +∆l

Lemma 4. ∆≤ ‖A−Ak‖2
F

l−kr

Proof.

∆l
lemma 3
≤ ‖A‖2

F −‖B‖2
F

=
k

∑
i=1
‖Ayi‖2

F +
d

∑
i=k+1

‖Ayi‖2
F −‖B‖2

F

=
k

∑
i=1
‖Ayi‖2 +‖A−Ak‖2

F −‖B‖2
F

with ‖B‖2
F ≥ ∑

k
i=1 ‖Byi‖2

≤ ‖A−Ak‖2
F +

k

∑
i=1

[
‖Ayi‖2−‖Byi‖2]

lemma 2
≤ ‖A−Ak‖2

F + kr∆

Now solving for ∆

∆l ≤ ‖A−Ak‖2
F + kr∆

∆(l− rk) ≤ ‖A−Ak‖2
F

∆ ≤ ‖A−Ak‖2
F

l− kr

57



Now we can prove the theorem provided in the text body: Let B ∈Rl×d be the
sketch produced by TunableShrinkage, for any k < l/r and r ≥ 1 it holds that

Theorem 10.
‖A−π

k
B (A)‖2

F ≤
(

1+
kr

l− kr

)
‖A−Ak‖2

F

Proof.

‖A−π
k
B (A)‖2

F
Pythgorean Th.

= ‖A‖2
F −‖πk

B (A)‖2
F = ‖A‖2

F −
k

∑
i=1
‖Avi‖2

lemma 1
≤ ‖A‖2

F −
k

∑
i=1
‖Bvi‖2

≤ ‖A‖2
F −

k

∑
i=1
‖Byi‖2

lemma 2
≤ ‖A‖2

F −
k

∑
i=1

[
‖Ayi‖2− r∆

]
= ‖A‖2

F −‖Ak‖2
F + kr∆

lemma 4
≤ ‖A−Ak‖2

F +
kr‖A−Ak‖2

F
l− kr

=

(
1+

kr
l− kr

)
‖A−Ak‖2

F
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 תקציר

 

מתארי הזרמת בעל מאגרי מידע גדולים ו  PCAפותחו אלגוריתמים חדשים לביצוע  במסגרת מחקר זה

מתעדכן ומראים כי חלק נרחב  PCAמסגרת אחודה לאלגוריתמים המבצעים מידע. אנו מציגים 

מתאים למידע ממימד קרטריון שגיאה חדש הזו. אנו מציגים  קיימים משתייך למסגרתהאלגוריתמים המ

אפילו עבור  ,להכשל עלוליםקובלים מאלגוריתמים מגוון רחב של תחת קריטריון זה,  גבוה ומראים כי

שיטה ומציגים  שפותחו על מנת להיות חסינים יותר לכשל אלגוריתמיםאנו מציגים מאגרי מידע פשוטים. 

  מים המוכרים.תמים החדשים והן של האלגוריתלגוריהא המאפשרת מימוש מהיר הן של
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