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1 Introduction 2 Problem Description

The context of this paper mutomatic differentiation COnsider a topological ordering of the vertices

of numerical programs [2]. We consider vector func-

tions top : {vpt1,..., v — {n+1,....q},

with top(v;) = k is the topological index ob;. We
F:R"D2D—-R", y=Fx) , (1) gim to find such _atopological ordering of the non-
B independent vertices aF such that the number of
edges(i, j) with top(j) = top(i) + 1 is maximal. In
that map a vectox = (z;);=1,.., of independent this case, the fill-out generated by elimination of row
variables onto a vectoy = (yj)jzl,...,m of depen- i can be reused to store fill-in of rojv On CRS such
dentvariables. We assume that has been imple- fill-out exploitation can destroy the order efentries
mented as a Computer program. We refertoas which makes a linear search for column indices un-
the extended Jacobiaand G as thelinearized com- avoidable.
putational graphof F', respectively [2]. Rows and
columns ofC’ are enumerated gsi = 1,...,n +
p,...,n + p+ m. Rowj of C’ corresponds to ver-
tex j of G, and contams_ the partial derivatives; As an example we consider the following implemen-
of vertex j V\_/.r.t. all of its predecessors ¢ PJ tation of a functionf.
In the following we refer to a row [vertex] asin-

3 Example

dependenfor i € {1,...,n}, asintermediatefor ¥;f([0r11t 1t ien: e0) y = yexil:
i € {n+1,...,n+ p}, and asdependenif i € b= tsn yo= yextth
{n+p+1,...,n+p+m}. Ouraim is to compute For n = 4 the corresponding computational graph

Jacobian efficiently on thEompressed Row Storagés and extended Jacobian pfare shown in Figure 1
CRS ¢, k, p) representation of” [1] by tradingfill-  (a) and (b), respectively. The following illustrates the
outfor fill-in during elimination [3]. accumulation of Jacobian gfby reverse elimination
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Figure 1: Linearized computational gragh(a) and
extended Jac0b|an (b) ¢f 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Figure 2: Runtime comparison of different Jacobian

on CRS. accumulation methods.
Q0 =[C4,0,C4,1,C5,2,C54,C6,3, C - Lo
_[ 4’i 242 5’; 545 €63, 6.3 teredFinite) and reverse elimination on the compu-
k=[0,1,2,4,3,5] tational graph (REIIimOnDAG). Ongoing work is fo-
p =[0,0,0,0,0,2,4,6] cused on finding an elimination ordering that maxi-

mizes the number of immediate successors dynami-
cally during the elimination process. Thus we expect
to make even better use of fill-out eventually leading

to even faster Jacobian codes.

Elimination of 5 yields :

=[c1,0,¢4,1,¢6,5-C5,2, C6,5-C5,4, C6,3, 0]
[07 17 27 47 37 5]
[0,0,0,0,0,2,2,6]
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