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Applications that make heavy use of sparse data structures are difficult to parallelize and reschedule
for improved data locality. Examples of such applications include mesh-quality optimization, non-linear
equation solvers, linear equation solvers, finite element analysis, N-body problems, and molecular dynamics
simulations. Sparse data structures introduce irregular memory references (e.g., A[B[i]]), which inhibit
compile-time, performance-improving transformations. Run-time reordering transformations dynamically
reorder computation and data dynamically to improve data locality, which is a measure of how effectively
the computation is able to use the cache hierarchy in a machine. Such transformations use various models
to represent the relationships between computation and data, and then apply heuristics for reordering the
computation and data. Guiding the selection of reordering heuristics is an open problem.

A key component of run-time reordering is the modeling of relationships between computation and data.
The heuristics are then developed to solve an NP-Hard problem for the given model. The model affects
the overhead of the inspector in terms of the complexity for constructing the model and applying various
heuristics to the model. The model also affects which heuristics can be used for data and/or iteration
reordering. The three main models that have appeared in the literature are graphs, hypergraphs, and
bipartite graphs.

Figure 1 shows a loop that iterates over triangles in a mesh. Figure 2
for i = 1 to N
... A( p(i) ) ...
... A( q(i) ) ...
... A( r(i) ) ...

endfor

Figure 1: Example loop with
irregular memory references.
The loop visits N triangles
and performs some computa-
tion on the data associated
with the three nodes in each
triangle.

gives an example triangular mesh and presents the graph, hypergraph, and
bipartite graph models for the loop in Figure 1 assuming that its input is
the triangular mesh in Figure 2.

In the graph model, each node represents a data item. Each node in the
graph has an edge to other nodes that are accessed in the same iteration
(ie. part of the same triangle). Many runtime reordering heuristics oper-
ate on the graph model [3, 4, 15, 1, 5, 14, 13, 8, 6, 12]. Data reordering
occurs by placing the nodes in the graph in an order. Since nodes that are
adjacent in the graph are accessed in the same iteration of the loop, the com-
putation’s data locality is improved if such nodes are ordered close to each
other. Data reordering algorithms on the graph model heuristically solve
the graph layout problem minimal linear arrangement [9], or optimal linear
ordering [7]. Another approach involves heuristically partitioning the graph
and then ordering the nodes by partition.

In the graph model, iterations do not have a direct correspondence to the nodes or edges unless only
two items are accessed per iteration. Therefore iterations are typically reordered using variations of lexico-
graphical sort, with each iteration having the vector of data indices being accessed as its key. As mentioned
in [16], creating a dual graph where each node represents an iteration and its neighbors are other iterations
that access the same data location is problematic. For example, in Figure 2 all iterations but iteration 3
would be part of a fully connected subgraph due to the fact that they all access node 5. In general, such a
dual graph has worst-case size of O(N2), where N is the number of iterations in the loop. This means that
heuristics that operate on a graph representation can not be directly used to reorder iterations when the
graph model is used.

Figure 2 exhibits the spatial locality hypergraph and temporal locality hypergraph for the example loop
and triangular mesh. The spatial locality hypergraph has a node for all of the data associated with one node
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Figure 2: An example triangular mesh, its index and data arrays, hypergraph model, and bipartite model.

in the triangular mesh and a hyperedge for each iteration of the loop. Each hyperedge includes the data that
will be accessed in that particular iteration of the loop. The temporal locality hypergraph is the dual of the
spatial locality hypergraph. Each hyperedge now represents all of the data associated with one node in the
original triangular mesh and each node in the hypergraph represents an iteration of the loop. Building these
hypergraphs is not expensive, and it is possible to apply more heuristics to both data and iteration reordering
using the hypergraph model. In previous work [16, 17], we show results where reordering heuristics based
on hypergraphs result in better performance.

The bipartite graph model we present contains a set of nodes for the data items in the loop and a set of
nodes for the iterations in the loop. The bipartite graph in Figure 2 uses circular nodes for the iterations
and square nodes for data. If a data item is accessed by an iteration there is a bidirectional edge between
the two. The space and time needed to construct the bipartite graph is equivalent to constructing both the
spatial and temporal locality hypergraphs. The goal is to apply current heuristics based on the graph model
to the bipartite model for simultaneous data and iteration reordering.

Hypergraph and bipartite models have been proposed and used for reducing the parallel communication
volume [10, 2] and for improving data locality [11]. The most prevalent example for both models is determin-
ing separate partitionings and/or reorderings for the rows and columns in a sparse matrix used in the context
of a computation like sparse matrix-vector multiply. For sparse matrix-vector computation, we envision the
rows and columns still resulting in the same reordering, but we consider the possibility of reordering the
iterations or the order in which the nonzeros in the matrix are visited.

This talk covers the various models of computation to data mappings: graphs, hypergraphs, and bipartite
graphs in terms of the time and space cost for constructing them, the time and space cost for applying various
reordering heuristics to each of the models, and predications about the effectiveness of the heuristics. Such an
analysis indicates that graphs are more expensive to generate and likely to result in less effective reorderings.
Hypergraph and bipartite graph representations incur the same cost for construction, but more research is
needed to determine which model is more effective.
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