Exploiting Algebraic Dependences Between Local Partial Derivatives in Jacobian Accumulation

Andrew Lyons
lyonsam@gmail.com

We introduce a novel undirected graph model for the optimal Jacobian accumulation problem. This new graph addresses the need illustrated in [1] for accumulation techniques capable of exploiting algebraic dependences between the local partial derivatives.

Let \(G \) be a linearized computational graph (LCG). The corresponding path-clique graph (CPG) \(G^p \) has vertex set \(V^p = E \in G \); two vertices \(i, j \in V^p \) are adjacent iff their corresponding edges in \(G \) lie on a common path. We allow two vertices to be merged if their respective labels are identified as equivalent.

![Diagram of LCG and CPG with edge contractions](image)

Figure 1: An example LCG \(G \) (a), the corresponding CPG \(G^p \) (b), \(G^p \) after vertices \(d_1 \) and \(d_2 \) have been merged (c), \(G^p \) after the contraction of edges \(\{a, d\} \) (d), \(\{ad, b\} \) (e), and \(\{ad, c\} \) (f).

A sequence of edge contraction operations reduces a CPG to an edgeless graph whose vertices yield the values of Jacobian entries. Each edge contraction implies a single fused multiply-add operation in the generated derivative code.

References

*Abstract for poster presentation, CSC07