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Classical Tikhonov Regularization Method
The most commonly used method for the solution of ill-posed problems is

Tikhonov regularization method. The major concept of the Tikhonov regular-
ization scheme is replacement of the original ill-posed system of,

min
x
‖Kx− d‖22 (1)

with a well-posed problem of;

min
x

(‖Kx− d‖22 + λ2‖Lx‖22) (2)

The solution of this regularization method depends on the choice of the
priori, L, and the regularization parameter, λ.

we show that rewriting the Tikhonov eq of (2) in a mutilevel-regularization
approach would result in:

min
x

(||Kx− d||22 +
q∑

i=1

λ2
i ||Lix||22) (3)

Where q is the number of subdomains of the solution and Li is the local
regularization matrix and the regularization vector Λ is a diagonal matrix with
q diagonal elements as;

Λ =




λi

. . .
λq


 (4)
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The major difficulty in the solution of(3) is the determination of the reg-
ularization parameter, λ. For the case of 1-D regularization parameter[1],
there are two popular methods of L-curve[3] and Generalized Cross Valida-
tion(GCV)[1,2,4]. In this work, we use multiple GCV algorithm, as the method
of determination of the regularization parameters.

Indeed, the evaluation of the GCV function(in order to determine the regu-
larization parameters) of,

GCV (Λ) =
‖ (

I −K(KT K + Λ2I)−1KT
)
d‖22

1
m (trace((I −K(KT K + Λ2I)−1KT )))2

(5)

, where

xΛ = K 6=d = (KT K + Λ2I)−1KT d (6)

, is numerically an arduous work. Here we explore the idea of decoupling of
GCV function(5), so (5) would be dependent on only one regularization vector
components λi at a time. Thus we could apply the standard regularization
algorithm( for the case that the regularization parameter is a scalar (1-D) case).

The following table is the results of the application of multiple GCV method
for an image reconstruction example. The results shows improvement over the
case of simple GCV (1-D GCV) method.

Table 1: solution errors for both cases of regularization methods
std of the added noise 1-D GCV :(×10−2) Multiple GCV:(×10−2)

.01 1.91062 1.38063

.05 1.62866 2.27616
.1 2.47110 1.93282
1 5.81025 4.35003
3 7.67133 5.28412
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