
Combinatorial structure in evaluating finite
element operators

Robert C. Kirby∗

Combinatorial issues related to finite element computation include sparse
matrices (representation, factorization, bandwidth, probing and structure
for preconditioning) and meshing (generation, partitioning, parallelization).
These techniques are not specific to finite elements and widely applicable
to many different numerical methods. Beyond these fairly standard applica-
tions, however, it turns out that combinatorial structure can also be exploited
to dramatically reduce the arithmetic cost of evaluting the algebraic opera-
tors associated with finite element methods.

What is the inherent arithmetic cost of constructing the local stiffness
matrix? For a large class of PDE, the computation of a local element ma-
trix can be viewed as a fixed linear transformation acting on a vector that
encodes the element’s geometry and material properties. For affine finite el-
ements, this linear transformation is fixed for all elements in the mesh once
the variational form and finite element basis are fixed. Moreover, the matrix
is rich in structure that allows it to be applied to any vector in fewer than
n2 operations. For example, some rows of the matrix may be zero or only
contain a few nonzero entries each. Sometimes two more rows will share
certain properties, such as sharing many nonzero entries or being colinear in
Euclidean space. Each of these cases allows the inner product of one row of
the matrix with a target vector to be computed efficiently using the result
of the other one. In some cases, three or more rows of the matrix may lie in
some low-dimensional Euclidean plane. This linear dependence also can be
used to apply the linear transformation more efficiently.

These various situations are modeled by appropriate combinatorial struc-
tures. Dependencies between rows i and j of the matrix, called complexity-

∗Department of Mathematics and Statistics, Texas Tech University; MS 1042; Lubbock,
TX 79410

1



reducing relations are encoded by a graph in which the edge weights d(i, j)
indicate the cost of computing the inner product of row i with an arbitrary
vector once the inner product of j with that vector is known. A minimum
spanning tree of this graph provides a low-arithmetic algorithm for applying
the matrix to an arbitrary vector.

Geometric dependencies between three or more vectors are not naturally
modeled by a graph. In fact, the incidence relation between the rows of the
matrix and Eucliden subspaces can be viewed as a finite linear space. When
many of the rows lie in such linear dependences, it is desirable to locate some
small set of rows that can be used to generate the remaining rows. Both
detection of linear dependence among the rows of the matrix and constructing
such a generator are interesting algorithmic problems. While searching for
d-dimensional linear dependence among n vectors by performing Gaussian
elimination on (d+1)-tuples requires O(nd+1) work, it is possible to do this for
most data sets in O(nd) by a randomized algorithm. While the complexity of
determining a geometric generator for a finite linear space is yet unknown, an
algorithm that seems at least to provide suitable approximations is presented.

All of the effort in locating and finding an algorithm for applying the ma-
trix to a vector is naturally considered as a compile-time process, performed
once per combination of variational form and finite element basis. In fact, it
is possible to set up an offline process that searches for an efficient algorithm
based on this combinatorial information and generates relatively low-level
code. For example, these algorithms have been implemented in a code called
FErari, which serves an optimizing backend to the FEniCS Form Compiler.
This toolchain will be described at the end of the talk.

2


