
Practical Effects of Local Jacobian Preaccumulation1

I. Karlin2 and J. Utke3

Computing derivatives of numerical models f(x) 7→ y : IRn 7→ Rm given as a
computer program P is an important but also compute-intensive task. Auto-
matic differentiation (AD)4 provides the means to obtain such derivatives. AD
can be implemented as a source transformation applied to P . Considering cer-
tain sets of semantically valid transformations we can impose efficiency criteria
on the transformed program. The efficient preaccumulation of local Jacobians
Ji is a crucial combinatorial problem within this context. Usually the objec-
tive is to minimize the number of fused multiply-add operations implied by a
sequence of elimination steps that transforms a given computational graph into
a bipartite graph representing Ji. The longstanding conjecture that this prob-
lem is NP-complete was proven recently.5 Because of the complexity, practical
solutions have centered on heuristics for the general case and constructing an op-
timal solution for the special case of single-expression-use graphs. The latter is
of practical importance because it provides a means to optimally preaccumulate
any right-hand-side expression in numerical programs.

However, the locally preaccumulated information (i.e., the Ji) only becomes
useful in the context of the entire program P . To gauge the overall efficiency
of a given approach we therefore need to take into account the effort needed to
obtain the global from the local information. In theory, this could be modeled
as a chained sparse matrix product of the preaccumulated local Jacobians along
control flow path through P taken for a given argument x0. This yields the
global Jacobian J |x=x0

but is often prohibitively expensive and not actually
required by the application context. Instead, the desired information is most
often a set of Jacobian-vector products Jẋ or ȳT J . Given an argument x0,
the sequence of k locally preaccumulated Ji|x=x0

at this argument the Jacobian
vector products are the computed as (Jk · . . . · (J1ẋ) . . .) (propagation in forward
mode) or (. . . (ȳT Jk)·. . . ·J1) (propagation reverse mode) respectively. However,
the formulae do not readily expose the following two major concerns.

(I): Neither the exact scope of the program section represented by any of
the individual Ji, nor their number is fixed. A natural choice for the scope of a
single Ji is a consecutive sequence of l assignment statements, that is, typically
the body of a basic block. Baring the presence of aliasing one can construct
the computational graph6 and approximate the optimal elimination order using
various heuristics. A different but equally natural choice is the scope of a single
assignment in which case the computational graph is a single expression use

1Abstract for Combinatorial Scientific Computing (CSC) 2007
2University of Colorado, ian.karlin@colorado.edu
3Argonne National Laboratory, utke@mcs.anl.gov
4see A. Griewank, Evaluating Derivatives: Principles and Techniques of Algorithmic Dif-

ferentiation. Number 19 in Frontiers in Appl. Math. SIAM, Philadelphia, PA, 2000.
5see U. Naumann, Optimal Jacobian accumulation is NP-complete. to appear in Math.

Prog.
6see J. Utke, Flattening Basic Blocks. in Automatic Differentiation: Applications, Theory,

and Implementations; M. Bücker et al Eds., LNCS, vol 50, pp 121–133, Springer, 2006.

1



graph for which one can construct an optimal elimination sequence. In other

words, the Ji with basic block scope is replaced by a sequence of (J
(1)
i , . . . , J

(l)
i ).

This implies a shift of computations from preaccumulation to propagation. At
the same time we cannot make any general statement comparing the effort for

Jiv̇ or v̄T Ji versus (J
(l)
i · . . . · (J

(1)
i v̇) . . .) or (. . . (v̄T J

(l)
i ) · . . . · J

(1)
i ) respectively.

(II): The reverse mode preaccumulates the Ji in index order but performs the
vector-matrix propagation operations in reverse order. For large computations,
the elements of Ji, i = 1 . . . k cannot all be stored in memory. Instead, a check-
pointing and re-computation scheme is employed to compute p subsequences
(Jst

), s = p . . . 1, t = 1 . . . ts with Jptp
= Jk and J11

= J1. The principal goal is
to compute as many Ji as fit into the available memory immediately followed by
the reverse propagation (. . . (v̄T Jsts

) · . . . · Js1
) for s = p . . . 1. Not only are the

storage and retrieval operations for the Ji elements a bottleneck themselves but
reducing the storage requirements for preaccumulated information also implies
fewer checkpoints and re-computations.

Because we are considering heuristics applied during the source transfor-
mation, the numbers of operations or data items mentioned above are static,
without considering loop iterations and branching. Using the software pack-
age OpenAD, we examined some test examples taken from practically relevant
programs. Concerning (I) we observe the quite plausible effect that switching
from basic block level to statement level preaccumulation causes a decrease in
preaccumulation operations which can for forward mode be accompanied by an
increase accumulation operations. In some cases the total number of operations
does not change significantly. In other test cases, however, the switch to state-
ment level preaccumulation does also incur a decrease in propagation operations
to a total reduction of as much as 90% which directly translates into sizeable
runtime savings. Among the choices for graph scope, basic block and statements
are only two of many options. On the other hand, considering the optimal preac-
cumulation problem nested in varying graph scopes appears somewhat artificial
as the underlying dependency information does not change. There is evidence
that a similar reduction in total operations should be obtainable by modified
heuristics that determine the elimination order while considering scarcity 7 ap-
plied to the basic block level graphs.

Concerning (II) the main objective is the data reduction. A slightly differ-
ent heuristic that also preserves scarcity should achieve this goal. There are
fundamentally different approaches to reverse mode that do not include any
preaccumulation. Consequently there is no simple heuristic to mix and match
these approaches other than a runtime comparison.

The preaccumulation approach as described here restricts the possible trans-
formations but allows applying a heuristic to a combinatorial problem in order
to approximate an efficient solution within the considered transformation sub-
set. We will discuss our approach in the context of our findings and present
results.

7see A.Griewank, A Mathematical View of Automatic Differentiation, in Acta Numerica,
vol 12, pp 321–398, Cambridge University Press, 2003.

2


