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The excellent research in the area of sparse derivative matrix determination over the last three decades culmi-
nated into some highly innovative and efficient determination techniques. Graph theory has been employed as
an important tool to study the complexity of the problems and to design “good” heuristics for solving them.
Consequently, different graph models that have been proposed are rather dependent on specific properties
e.g., symmetry, that the methods try to exploit. We introduce a new graph model that is a natural represen-
tation of the zero-nonzero structure of a sparse matrix [5]. This new representation is also economical with
respect to the storage space compared with the “Element Isolation (EI)” graph [6]. Furthermore, the unidi-
rectional (see [2]) and the bidirectional determination problems (see [1, 4]) can now be stated using a single
graph in a natural way and the connection between the two problems can be clearly stated as compared with
the bipartite graph [3].

Let A∈Rm×n be a given matrix with known sparsity pattern. Thenai′ j ′ 6= 0 is alateral neighborof ai j 6= 0
if i = i′ and, j ′ > j minimizes j ′− j or j ′ < j minimizes j− j ′. Similarly, ai′ j ′ 6= 0 is avertical neighborof
ai j 6= 0 if j = j ′ and,i′ > i minimizesi′− i or i′ < i minimizesi− i′.

Informally, a lateral neighbor ofai j 6= 0 is a nonzeroai j ′ 6= 0 in row i of A such thatj ′− j is the smallest
if j ′ > j or such thatj− j ′ is the smallest ifj > j ′ among all such indicesj ′ in row i. Vertical neighbors can
be interpreted in an analogous way with the roles ofi and j interchanged.

Given A ∈ Rm×n we define thesparsity-pattern graph(or simply the pattern graph) associated withA,
GP (A) = (V,E), where

V = {vi j : ai j 6= 0, i = 1,2, . . . ,m, j = 1,2, . . . ,n}

and
{vi j ,vi′ j ′} ∈ E if ai j andai′ j ′ are lateral or vertical neighbors.

Figure 1 displays the sparsity structure of the Eisenstat example matrix on 6 columns on the left and its
associated sparsity graph on the right.

We have apath connecting verticesvi j 6= vi′ j ′ denotedvi j
=`∼ vi′ j ′ if vi j ≡ vi0 j0,vi1 j1, . . . ,vi` j` ≡ vi′ j ′ is a

sequence of vertices such that
{

vik−1 jk−1,vik jk

}
∈ E,k = 1,2, . . . , `. We also use the notationvi j

≥`∼ vi′ j ′ to
denote that the path in question is of length at least`.

Let Φ : V 7→ {1,2, . . . , p} be a mapping such that forvi j ∈V, vi j
≥1∼ vi j ′ , j 6= j ′ impliesΦ(vi j ) 6= Φ(vi j ′)

andvi j
≥1∼ vi j ′

≥1∼ vi′ j ′ , i 6= i′, j 6= j ′ impliesΦ(vi j ) 6= Φ(vi′ j ′) Then the mappingΦ is said to yield acolumn
induced direct coverfor the vertices ofGP (A) . The first of the above conditions implies that the vertices in
the same row (i.e. reachable by a path) are differently covered so that the corresponding columns belong to
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Figure 1: The Eisenstat (6×7) matrix and its associated sparsity-pattern graph

different groups. The second condition requires that for each nonzeroai j to be directly determined, columns
j and j ′ of A must belong to different groups wheneverai j ′ 6= 0. It can be shown that a column induced direct
cover ofGP (A) is equivalent to a coloring of the vertices of EI graphGI (A). The novelty of the pattern graph
lies in its ability to express a host of coloring problems associated with the determination of sparse derivative
matrices (unidirectional, bidirectional, symmetric etc.) with the same graph [5].
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