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Abstract

Minimal elimination orderings were introduced by Rose, Tarjan, and Lueker in 1976,
and during the last decade they have received increasing attention. Such orderings have
important applications in several different fields, and they were first studied in connection
to minimizing fill in sparse matrix computations. Rather than computing any minimal or-
dering, which might result in fill that is far from minimum, it is more desirable for practical
applications to start from an ordering produced by a fill-reducing heuristic, and then com-
pute a minimal fill that is a subset of the fill produced by the given heuristic. This problem
has been addressed previously, and there are several algorithms for solving it. The draw-
back of these algorithms is that either there is no theoretical bound given on their running
time although they might run fast in practice, or they have a good theoretical running time
but they have never been implemented, or they require a large machinery of complicated
data structures to achieve the good theoretical time bound [2]. In this paper, we present
an algorithm called MCS-ETree for solving the mentioned problem in O(nm A(m, n)) time,
where m and n are respectively the number of edges and vertices of the graph corresponding
to the input sparse matrix, and A(m, n) is the very slowly growing inverse of Ackerman’s
function.

A primary strength of our algorithm is its simplicity and its straightforward implementa-
tion details. MCS-ETree numbers the vertices from n down to 1. The unnumbered vertices
are stored in elimination subtrees, one elimination subtree for each connected component
remaining to be numbered. These elimination subtrees serve to preserve the qualities of the
initial fill-reducing ordering, and to record the necessary changes to that ordering. Let T [v]
be an elimination subtree for one of these unnumbered connected components, where v is
the root.

At each step, the algorithm selects an unnumbered elimination subtree T [v]. The key
feature is the selection at each step of an unnumbered vertex u in T [v] of “maximum cardi-
nality” to give the next number to. Not any vertex of maximum cardinality can be selected;
it has to be a vertex of maximum cardinality in T [v] that has no descendants of maximum
cardinality. This is the feature of the algorithm that causes it to produce a minimal ordering.
To implement the selection of maximum cardinality vertices in O(nm A(m, n)) total time,
we adapt for our purposes the algorithm in [1] for computing counts of column nonzeros in
a Cholesky factor.

After selection of maximum cardinality vertex u, the algorithm must compute an reorder-
ing of T [v] that produces equivalent fill but numbers u last. Reordering in this way preserves
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the fill-reducing quality of the initial ordering. To implement computation of the equivalent
reorderings in O(mn) total time, we use a trivial modification of Composite Rotations in [3].

After this equivalent reordering, the new elimination subtree T ′[u] rooted at maximum
cardinality vertex u must be computed. Total time for computation of elimination subtrees
is O(nm A(m, n)) [4]. At this point, the algorithm gives maximum cardinality vertex u its
number in the final ordering, and stores each elimination subtree T ′[c], where c is a child of
u, for subsequent processing.

We coded a basic implementation of MCS-ETree, where we use the most straighforward
implementation of the tools cited above. This implementation traverses the adjacency lists
three times for every vertex in each elimination subtree T [v] that is processed. But it is
straighforward to enhance the implementation so that it avoids much of the processing of
adjacency lists for vertices that are not among the ancestors of the maximum cardinality
vertex u chosen in T [v]. We coded an enhanced version based on these improvements. On
top of these enhancements, we incorporated a straightforward technique based on indistin-
guishable vertices that enables MCS-ETree to number a block of vertices during a step. We
coded a blocked version of MCS-ETree based on this additional improvement.

For our run time tests, initial orderings were obtained from Approximate Minimum
Degree (AMD); we also tested some with random initial orderings. Our run time tests
show that the basic implementation runs quite slowly, as expected. The tests show that
the enhanced implementation runs much faster than the basic implementation, but it
is still too slow for practical sparse matrix computations. The blocked implementation
runs much faster than the enhanced implementation. Using AMD initial orderings, the
blocked implementation of our algorithm is fast enough to be considered for sparse matrix
computations.

To summarize, our algorithm for this problem is the first that both has a provably good
running time with straightforward implementation details, and is fast in practice.
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