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Extended Abstract

Interior-point methods for solving nonlinear optimization problems require
second-order derivatives of the Lagrangian function, and exact Hessians are
needed in parametric sensitivity analysis. A Hessian can be computed accurately
using automatic differentiation (AD), and when the sparsity structure of the
Hessian is known, the computation can be made efficient using the following
three-steps procedure.

1. Obtain a seed matrix S, which defines a column partition of a Hessian
matrix H, via a specialized graph coloring.

2. Compute the numerical values of the entries of the compressed Hessian
B ≡ HS using AD.

3. Recover the numerical values of the entries of the original matrix H from
the compressed representation B.

The coloring variant used in Step 1 depends on whether the recovery in Step 3 is
direct (requires no further arithmetic) or substitution-based (relies on solving a
set of simple triangular systems of equations): A direct method uses star coloring
whereas a substitution method uses acyclic coloring. In both star and acyclic
coloring, adjacent vertices are required to receive distinct colors. In addition,
in a star coloring, every path on four vertices is required to use at least three
colors; in an acyclic coloring, every cycle should use at least three colors. The
objectives here are to use as few colors as possible, since the computational effort
involved in employing AD in Step 2 is directly proportional to the number of
colors used.

In a recent work we have designed and implemented novel and highly ef-
fective heuristic algorithms for these two NP-hard coloring problems [2]. The
common key idea in these algorithms is the utilization of the structure of two-
colored induced subgraphs, a collection of stars in the case of star coloring and a
collection of trees in the case of acyclic coloring. With a careful choice of data
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structures, the time complexity of these algorithms for a graph G = (V,E) is
within O(|V |d2 ·α), where d2 is the average degree-2 in G, the number of edges
that are incident either on a vertex v or vertices adjacent to v, and α is the
inverse of Ackermann’s function. The acyclic coloring algorithm in particular
makes use of the union-find (also known as disjoint-set) data structure. In an
even more recent work, we have integrated our implementations of these color-
ing algorithms and the associated recovery routines with the AD software tool
ADOL-C developed at the Technical University of Dresden, Germany [1]. The
runtime of our recovery routines is linear in the number of edges in a graph (the
number of nonzeros in the corresponding Hessian matrix).

In this talk we will discuss the algorithmic aspects of the three computa-
tional steps outlined earlier. We will also present experimental results that
demonstrate the efficacy of the coloring techniques in the overall process of
computing the Hessian of a given function using ADOL-C as an example of
an AD tool. The results we obtained show that the coloring techniques render
enormous savings in runtime and make the computation of Hessians of very
large size feasible (see the tables in the appendix). The results also show that a
substitution-based evaluation that uses acyclic coloring leads to faster compu-
tation of Hessians than a direct method that relies on star coloring, considering
the overall process. Remarkably, this speedup is achieved without compromising
numerical accuracy, an advantage attributed to our careful use of two-colored
trees in the recovery step.
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Appendix: Computational Results

dir sub dense
n

1000 S1 S2 S3 tot S1 S2 S3 tot

bd:
1 0.01 2.1 0.001 2.1 0.01 1.1 0.01 1.2 80.0
5 0.03 5.2 0.006 5.2 0.06 2.9 0.06 3.1 1891.1

10 0.07 9.2 0.013 9.3 0.17 4.9 0.11 5.2 6725.5
20 0.13 17.4 0.026 17.6 0.56 9.5 0.23 10.2 ***
40 0.27 33.4 0.051 33.7 2.02 18.2 0.48 20.7 ***
60 0.39 49.0 0.077 49.5 4.26 26.4 0.72 31.4 ***
80 0.53 65.8 0.103 66.4 7.43 35.5 0.97 43.9 ***

100 0.66 81.4 0.128 82.2 11.44 44.3 1.22 57.0 ***
rd:
1 0.01 3.7 0.001 3.7 0.01 1.7 0.01 1.7 77.6
5 0.06 9.5 0.008 9.6 0.10 4.3 0.14 4.5 1740.2

10 0.19 18.2 0.016 18.4 0.28 7.8 0.41 8.5 6631.4
20 0.47 28.9 0.034 29.4 0.56 12.2 1.29 14.4 ***
40 1.40 57.8 0.070 59.3 3.06 24.1 4.20 31.4 ***
60 2.63 85.8 0.112 88.5 6.41 36.3 8.62 51.3 ***
80 4.15 117.4 0.156 121.7 11.43 48.2 14.38 74.0 ***

100 5.70 151.6 0.212 157.5 16.90 60.4 21.97 99.2 ***

Table 1: Runtimes in seconds of the steps S1, S2, and S3. Results shown for two
sparsity structures: a banded (bd) matrix of bandwidth ρ = 11, and a random
(rd) matrix with average number of nonzeros per row ρ = 10.98. The number
of columns (n) in the Hessians considered range from 1000 to 100,000. The
last column shows runtimes for computation without exploiting sparsity; the
asterisks *** indicate that memory could not be allocated for the full Hessian.

ρ, ρ 11, 10.98 21, 20.99
star acyclic star acyclic

bd 11 6 21 11
rd 21 – 24 9 – 11 50 – 56 18 – 19

Table 2: Number of colors used by the star and acyclic coloring algorithms for
all the problem dimensions n listed in Table 1. For the banded structure, both
the star and the acyclic coloring algorithm we used find optimal solutions.
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