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Abstract

We use support theory, in particular the fretsaw extensions of Shklarski and Toledo [ST06a],
to design preconditioners for the stiffness matrices of 2-dimensional truss structures that are
stiffly connected. Provided that all the lengths of the trusses are within constant factors
of each other, that the angles at the corners of the triangles are bounded away from 0 and
π, and that the elastic moduli and cross-sectional areas of all the truss elements are within
constant factors of each other, our preconditioners allow us to solve linear equations in the
stiffness matrices to accuracy ε in time O(n5/4(log2 n log log n)3/4 log(1/ε)).

1 Truss Structures

Definition 1.1. A 2-dimensional truss is an undirected weighted planar graph T = 〈V,E, γ〉
with vertices V = {v 1, ..., vn} ⊂ IR2, such that every edge belongs to a triangular face. An edge
e = (v i, v j), called a truss element, represents an idealized bar, with weight γ(e) denoting the
product of the bar’s cross-sectional area and the elastic modulus of its material.

For each truss element e = (v i, v j), we define a length 2n column vector u e = [u1
e ... u2n

e ]T

with 4 nonzero entries satisfying [u2i−1
e u2i

e ]T = −[u2j−1
e u2j

e ]T =
v i−vj

|v i−vj |

We then define the 2n × 2n stiffness matrix

AT =
∑

e=(v i,v j)∈E

γ(e)

|v i − v j|
ueu

T
e

The rigidity graph QT of a truss T is the graph with vertex set given by the set of triangular
faces of the truss, and with edges connecting triangles that share an edge.

We say that a truss T is stiffly connected if (1) QT is connected, and (2) for every v ∈ V ,
Qv

T is connected, where Qv

T is the graph induced by QT on the set of triangles containing v .

Theorem 1.2. Let T = 〈V, T, γ〉 be an n-vertex stiffly connected truss such that

• All triangle edges have lengths in the range [lmin, lmax]

• All triangle angles are in the range [θmin, π − θmin].

• All triangle weights are in the range [γmin, γmax].
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for positive constants lmin, lmax, θmin, γmin, γmax.
Then linear systems in matrix AT can be solved in time O

(

n5/4(log2 n log log n)3/4 log(1/ε)
)

within relative error ε.

We prove Theorem 1.2 by constructing a preconditioner for the stiffness matrix, and then
solving the linear system by applying the preconditioned conjugate gradient method. The pre-
conditioner is in the family of fretsaw preconditioners, introduced by [ST06a]. A fretsaw precon-
ditioner, a picture of which appears below, can be interpreted as arising by duplicating some of
the vertices and truss elements of the truss structure, so that the rigidity graph of the fretsaw
extension is a connected subgraph of the original. By extending techniques used in [ST06b] to
add edges to the low-stretch spanning trees of [EEST06], we design a fretsaw extension whose
rigidity graph looks like a spanning tree plus k edges, and such that the relative condition
number between the stiffness matrix and its preconditioner is at most ( n

k log2 n log log n)3.
To bound the condition number, we extend combinatorial techniques used in [ST06b], and

apply the path lemma, which provides a bound on how well a stiffly connected truss whose
rigidity graph is a path supports another truss element between two of its vertices.

Lemma 1.3. Let T = 〈V, T, γ〉 be an t-triangle stiffly connected truss with constant-bounded
edge, angle, and weight ranges, as in Theorem 1.2. For any v i, v j ∈ V , define a truss element
e = (v i, v j) and let Ai,j = ueu

T
e . Then we have

λmax(Aij , AT ) = O(t3)

Figure 1: From left-to-right: a stiffly connected truss, a truss that is not stiffly connected,
another truss, and a fretsaw extension of that truss. The rigidity graph is drawn inside each
truss structure.
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