Using Perturbed QR Factorizations to Solve Linear Least-Squares Problems

Haim Avron, Esmond Ng, and Sivan Toledo

February 2007

Abstract

We propose and analyze a new tool to help solve sparse linear least-squares problems $\min_x \|Ax-b\|_2$. Our method is based on a sparse QR factorization of a low-rank perturbation \tilde{A} of A. More precisely, we show that the R factor of \tilde{A} is an effective preconditioner for the least-squares problem $\min_x \|Ax-b\|_2$, when solved using LSQR. We purpose applications for the new technique. When A is rank deficient we can add rows to ensure that the preconditioner is well-conditioned without column pivoting. When A is sparse except for a few dense rows we can drop the dense rows in \tilde{A}. Another application is solving an updated or downdated problem. If R is a good preconditioner for the original problem A, it is a good preconditioner for the updated/downdated problem \tilde{A}. We can also solve what-if scenarios, where we want to find the solution if a column of the original matrix is changed/removed. We present a spectral theory that analyzes the generalized spectrum of the pencil (A^*A, R^*R) and analyze the applications.

*Tel-Aviv University
†Lawrence Berkeley National Lab
‡Tel-Aviv University; Some of this work was conducted while Toledo was visiting the Lawrence Berkeley National Lab.