
IMPLEMENTATION AND EVALUATION OF
VAIDYA’S PRECONDITIONERS

DORON CHEN AND SIVAN TOLEDO

1. Introduction

A decade ago Pravin Vaidya proposed an intriguing
family of preconditioners for M-matrices [4]. He pre-
sented his ideas in a scientific meeting but never pub-
lished a paper on the topic. His preconditioners were
never implemented or tested experimentally. We have im-
plemented Vaidya’s preconditioners. We experimentally
compare the effectiveness of Vaidya’s preconditioners to
that of incomplete-factorization preconditioners, includ-
ing no-fill and drop-tolerance preconditioners, both mod-
ified and unmodified.

Our results indicate that Vaidya’s preconditioners are
often superior to drop-tolerance incomplete-factorization
preconditioners, including modified and unmodified, and
with various matrix orderings. Vaidya’s preconditioners
are particularly effective on difficult 2D problems (e.g.
isotropic elliptic problems with Neumann boundary con-
ditions). Vaidya’s preconditioners are also more robust.
They are not as effective on 3D problems.

Vaidya proposed constructing a preconditioner M for a
symmetric M-matrix A by dropping off-diagonal nonzeros
from A and factoring M (completely). An input param-
eter t controls how many edges are dropped, and hence,
the effectiveness and cost of the resulting preconditioner.
John Gilbert coined the term complete factorization of
incomplete matrices to describe such preconditioners, as
opposed to conventional incomplete factorizations of the
complete matrix. Vaidya proposed a sophisticated drop-
ping algorithm that balances the amount of fill in M
with the condition number of the preconditioned matrix
M−1/2AM−1/2. Perhaps the most remarkable aspect of
Vaidya’s preconditioners is that for many classes of M-
matrices, the condition number of the preconditioned ma-
trix depends only on the size of A and is independent of
the condition number κ(A) of A.

Vaidya stated (without proofs; for proofs, see [1]) sev-
eral theoretical condition-number bounds for his precon-
ditioners. We omit them from this abstract due to lack
of space.

We have evaluated Vaidya’s preconditioners by exper-
imentally comparing their performance to that of drop-
tolerance incomplete-Cholesky preconditioners (ICC), in
the context of a conjugate gradients iterative solver. Both

This research was supported by Israel Science Foundation
founded by the Israel Academy of Sciences and Humanities (grant
number 572/00 and grant number 9060/99) and by the University
Research Fund of Tel-Aviv University.

families of preconditioners accept a parameter that indi-
rectly influences the sparsity of the preconditioner: t in
the case of Vaidya and the drop tolerance in the case of
ICC. We always compare preconditioners with the same
amount of fill.

The rest of this paper is organized as follows. Section 2
describes the setup, methodology, and results of our ex-
periments. We summarize our conclusions in Section 3.
The details of the construction of Vaidya’s precondition-
ers are omitted from this conference abstract due to lack
of space. The full paper includes them.

2. Experimental Results

2.1. Methodology. Both Vaidya’s preconditioners and
drop-tolerance incomplete-Cholesky preconditioners ac-
cept a parameter that indirectly affects the sparsity of
the preconditioner. We always compare preconditioners
with similar levels of fill (i.e., preconditioners that take
up similar amounts of memory and similar amounts of
work to construct and to apply).

We measure the amount of fill in the factors of precon-
ditioners in terms of fill ratios. We define the fill ratio of
a preconditioner M = LLT to be the ratio between the
number of nonzeros in L and 2n−1, which is the minimal
number of nonzeros in Vaidya’s preconditioners.

2.2. Experimental Setup. The experiments were con-
ducted on a dual-processor 600Mhz Pentium III computer
with 2GBytes of main memory. We only use one proces-
sor.

We use METIS version 4.0 [2, 3] to find fill-reducing or-
derings. Since our experiments use matrices whose graphs
are regular meshes in 2 and 3 dimensions, we also run in-
complete Cholesky with the natural ordering of the mesh.
On modified ICC preconditioners, we use only the natu-
ral ordering; METIS ordering breaks down the modified
incomplete factorization.

We implemented a sparse Cholesky factorization algo-
rithm specifically for this project. The code is roughly 6
times slower than a state-of-the-art code. The full paper
explains why we used this code and estimates the running
times with a state-of-the-art factorization code. We omit
the analysis from this abstract.

The iterative solver that we use is preconditioned con-
jugate gradients.

The matrices that we use for our experimental analysis
are discretizations of elliptic PDEs on regular 2- and 3-
dimensional meshes. The matrices all arise from finite-
differences discretizations of the equation

cx
∂2u

∂x2
+ cy

∂2u

∂y2
= f in Ω =]0, 1[×]0, 1[

with either Dirichlet or Neuman boundary conditions.
We solve isotropic problems (cx = cy = 1) and unisotropic
problems in which either cx = 100 and cy = 1 or vice

1

IMPLEMENTATION AND EVALUATION OF VAIDYA’S PRECONDITIONERS 2

versa. We also solve similar problems in 3D. We use a five-
point discretization in 2D and a seven-point discretization
in 3D, which lead to a pentadiagonal matrix when a 2D
mesh is ordered row-by row (the so-called natural order)
or to a septadiagonal matrix in 3D.

2.3. Experimental Analysis. Both ICC and Vaidya
solve problems fastest when the preconditioner is allowed
to fill somewhat. If little or no fill is allowed, most of the
solution time is spent performing a large number of itera-
tions. If the preconditioner is allowed to fill considerably,
most of the solution time is spent factoring the precon-
ditioner. Figure 2.1 clearly shows that low and high fill
ratios lead to slower solution times than medium fill ra-
tios. The figure also shows that the solution time of the
faster preconditioners, Vaidya and MICC, is not sensitive
to the fill ratio within the range 3–6. Therefore, we used
fill ratio 5 in the rest of the experiments.

In particular, Vaidya’s maximum spanning tree pre-
conditioner (with no additional edges) is ineffective. It
requires a huge number of iterations, as demonstrated by
our experiments and shown in Figures 2.1 and 2.3.

Figure 2.2 shows that when both Vaidya and ICC pre-
conditioners are allowed to fill appropriately (that is, to
achieve near-optimal solution times), Vaidya’s precondi-
tioners converge in similar or smaller numbers of itera-
tions. The next best preconditioner in our experiments is
always modified ICC with the natural ordering. (We al-
ways use METIS to order Vaidya’s preconditioners unless
their graph is a tree.) Unmodified ICC preconditioners
are significantly worse than Vaidya’s and MICC.

Vaidya’s preconditioners are not sensitive to the bound-
ary conditions that we impose, but ICC preconditioners
are. Vaidya’s preconditioners converge in roughly the
same number of iterations on both Neumann and Dirich-
let boundary conditions, but ICC preconditioners are less
effective on Neumann boundary conditions. This is shown
both by Figure 2.2 and by Figure 2.3.

The scaling behavior of Vaidya’s preconditioner is re-
markable. Figure 2.2 shows that the number of iterations
grows very slowly with the size of the matrix. Note that
the size of the preconditioner (i.e., the number of nonzeros
in its factors) remains a constant fraction of the size of A.
Therefore, these preconditioners combine linear scaling of
the work per iteration with a slow growth in the number
of iterations, a highly desirable behavior.

Vaidya’s preconditioners are unaffected by the origi-
nal ordering of the matrix and are capable of automati-
cally exploiting numerical features. On unisotropic prob-
lems, Vaidya’s preconditioners are almost completely un-
affected by whether the direction of strong influence is
the x or the y direction, as shown in Figure 2.3. The con-
struction of Vaidya’s preconditioners starts with a max-
imum spanning tree, which always include all the edges
(nonzeros) along the direction of strong influence. They
are, therefore, capable of exploiting the fact that there
is a direction of strong influence and they lead to faster

convergence than on an isotropic problem. ICC precon-
ditioners, on the other hand, are sensitive to the interac-
tion between the elimination ordering and the direction
of strong influences. Figure 2.3 shows that naturally-
ordered MICC converges faster for one direction of strong
influence than for the other when the matrix ordering is
fixed. Therefore, to achieve fast convergence with MICC
the user would need to tailor the ordering to the numer-
ics, whereas in Vaidya’s preconditioners this adaptation
occurs automatically.

Vaidya’s preconditioners are not as effective as ICC
preconditioners on 3D problems; the full paper contains
experimental results, which we omit here.

3. Conclusions

Vaidya’s preconditioners are efficient and robust. More
specifically, we draw the following conclusions from this
research:

1. Vaidya’s preconditioners are robust when used to
solve linear systems arising from finite-differences
discretizations of 2D elliptic problems. Their con-
struction and convergence are not affected by the
boundary conditions. They effectively and auto-
matically exploit unisotropy. They are not affected
by the original ordering of the unknowns. In all of
these respects, they are better than all the drop-
tolerance preconditioners that we have tested.

2. On some of these 2D problems, Vaidya’s precondi-
tioners lead to faster solution times than all the ICC
preconditioners, including modified ICC. Specifically,
Vaidya’s preconditioners are faster on 2D problems
with Neumann boundary conditions.

3. Vaidya’s preconditioners do not appear to be com-
petitive with ICC preconditions on 3D problems.

4. Vaidya’s maximum-spanning-tree preconditioners are
sparser than ICC(0) preconditioners, but they con-
verge more slowly. We recommend some fill in Vaidya’s
preconditioners.

The full paper is available at www.tau.ac.il/~stoledo/
pubs.html. We will also make our code publicly avail-
able.

References

[1] Marshall Bern, John R. Gilbert, Bruce Hendrickson, Nhat
Nguyen, and Sivan Toledo. Support-graph preconditioners.
Technical report, School of Computer Science, Tel-Aviv Uni-
versity, 2001.

[2] George Karypis and Vipin Kumar. Multilevel k-way partitioning
scheme for irregular graphs. Journal of Parallel and Distributed
Computing, 48:96–129, 1998.

[3] George Karypis and Vipin Kumar. A parallel algorithm for mul-
tilevel graph partitioning and sparse matrix ordering. Journal
of Parallel and Distributed Computing, 48:71–85, 1998.

[4] Pravin M. Vaidya. Solving linear equations with symmetric diag-
onally dominant matrices by constructing good preconditioners.
Unpublished manuscript. A talk based on the manuscript was
presented at the IMA Workshop on Graph Theory and Sparse
Matrix Computation, October 1991, Minneapolis.

IMPLEMENTATION AND EVALUATION OF VAIDYA’S PRECONDITIONERS 3

1.5 2 3 4 5 6 7 8 910 20
0

1000

2000

3000

4000

5000

Fill Ratio

T
ot

al
 S

ol
ut

io
n

T
im

e

ICC, Natural Ordering
ICC, METIS Ordering
Modified ICC, Natrual
Vaidya, METIS

1.5 2 3 4 5 6 7 8 910 20
0

1000

2000

3000

4000

5000

Fill Ratio

T
ot

al
 S

ol
ut

io
n

T
im

e

ICC, Natural Ordering
ICC, METIS Ordering
Modified ICC, Natrual
Vaidya, METIS

Figure 2.1. Total solution times with ICC and Vaidya’s preconditioners on 1200-by-1200 2D isotropic prob-
lems with Neumann (left) and Dirichlet (right) boundary conditions. The graphs show the total solution times
(construction, factorization, ordering, and iterations) as a function of the fill ratio of the preconditioners. The
iterative solver stops when the 2-norm of the residual drops by a factor of 108. The solution times with a fill-
ratio-1 Vaidya’s preconditioner are high, outside the scale of the graphs. The rightmost data point in both graphs
represents a complete factorization of A with METIS ordering.

0 500 1000 1500
0

100

200

300

400

500

600

Mesh Size

N
um

be
r

of
 It

er
at

io
ns

4.77
4.77

4.71
4.66

4.63
4.61

4.59
4.58

4.57
4.56

4.56

4.554.55
4.55

4.54

4.845.23 5.17 4.874.87 4.81 5.22

ICC, Natural Ordering
ICC, METIS Ordering
Modified ICC, Natrual
Vaidya, METIS

0 500 1000 1500
0

100

200

300

400

500

600

Mesh Size

N
um

be
r

of
 It

er
at

io
ns

5.155.234.825.144.85
4.845.23 5.17 4.874.87 4.81 5.22

ICC, Natural Ordering
ICC, METIS Ordering
Modified ICC, Natrual
Vaidya, METIS

Figure 2.2. Convergence of fill-ratio-5 ICC and Vaidya’s preconditioners on 2D isotropic problems with Neu-
mann (left) and Dirichlet (right) boundary conditions. The matrix of a size-

√
n mesh is n-by-n. The numbers

near the graphs show the actual fill ratio of the preconditioners when it deviated from 5 by more than 2.5%.

2 3 4 5 6
0

100

200

300

400

Fill Ratio

Ite
ra

tio
ns

MICC, X Direction
Vaidya, X Direction
MICC, Y Direction
Vaidya, Y Direction
MICC, Isotropic
Vaidya, Isotropic

1.5 2 3 4 5 6
0

200

400

600

800

1000

Fill Ratio

T
ot

al
 S

ol
ut

io
n

T
im

e

MICC, X Direction
Vaidya, X Direction
MICC, Y Direction
Vaidya, Y Direction
MICC, Isotropic
Vaidya, Isotropic

Figure 2.3. Numbers of iterations (left) and solution times (right) of Vaidya and MICC on unisotropic 1200-
by-1200 2D model problems with Neumann boundary conditions. Vaidya’s preconditioners are ordered using
METIS whereas MICC uses the same natural ordering for all the problems.

School of Computer Science, Tel-Aviv Univesity, Tel-
Aviv 69978, Israel

E-mail address: stoledo@tau.ac.il

URL: http://www.tau.ac.il/~stoledo

