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1 Introduction
We present new communication-efficient parallel dense linear solvers: An LU fac-
torization algorithm and a triangular linear solver. The new algorithms perform
asymptotically a factor of P 1/6 less communication than existing algorithms, where
P is the number of processors . The new algorithms employ a 3-dimensional (3D)
approach, which has been previously applied only to matrix multiplication. We
have implemented and tested the new algorithms. Our LU factorization algorithm
is competitive with ScaLAPACK and scales better with the number of processors.

The new algorithms employ a 3D approach that reduces communication using
replication. The algorithms perform less communication but use more temporary
storage than existing algorithms, which all use a 2-dimensional (2D) approach.
Until now, the 3D approach has only been used for parallel matrix multiplication in
algorithms that were proposed by Berntsen [3], by Aggarwal, Chandra, and Snir [2],
by Gupta and Kumar [5], by Johnsson [7], and by Agarwal, Balle, Gustavson, Joshi,
and Palkar [1].

3D algorithms work by distributing the 3D iteration space of the computation
among processors. Matrix-matrix computations that can be implemented using
three nested loops have a natural representation on a 3D grid in which every grid
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point represents one ijk loop-index triplet, which in tern represents one elementary
computation (e.g., a scalar multiply-add). 3D algorithms distributes this space so
that every processor is responsible for a 3D subcube. In contrast, conventional
2D algorithms distributed the matrices among processors and employ an “owner-
computes” rule to assign work to processors (usually the owner of an output element
performs all the numerical computations that contribute to that output).

Our new algorithms transfer a total of Θ(P 1/3n2) words between processors,
a factor of P 1/6 better than the Θ(P 1/2n2) words that 2D solvers transfer (n is the
order of the matrix). These amounts are asymptotically the same as the amounts
that 3D and 2D matrix-multiplication algorithms transfer, respectively.

We also analyze the constants involved and show that they are small.
Our algorithms are formulated recursively and use a cyclic or block-cyclic data

layout.
We have implemented our new algorithm in C using MPI. The implementation

is general, in the sense that it allows any matrix order, any 3D processor grid, and
any block size for the block-cyclic data layout.

We have so far tested the algorithm on a network of workstations and on
an SGI Origin 2000 parallel computer. On 8 Linux workstations, the new LU
factorization is only slightly slower than ScaLAPACK’s 2D algorithm (around 36%
slower on large matrices). On 64 processors of an Origin 2000, our algorithm is
faster than ScaLAPACK on small matrices but slower by a factor of around 4 on
large matrices. We have not yet determined whether our algorithm is slower because
our algorithm inherently performs more communication when P is small, or because
our code is not well optimized. In any case, the analysis of 3D and 2D algorithms
shows that our algorithm scales better as the number of processors grows, so we
expect our algorithm to outperform 2D algorithms when many processors are used.

2 Communication-Efficient Triangular Solvers
This section describes a new parallel algorithm for solving triangular systems with
multiple right-hand sides and analyzes its efficiency. The main advantage of the
new algorithm over existing algorithms is that the new algorithm performs less
communication, at the expense of using more temporary storage. The algorithm
is essentially a schedule of the substitution algorithm, and is therefore numeri-
cally stable. The algorithm is based on an 3D assignment of processors to the 3D
computation structure of the substitution algorithm. In this abstract we limit the
discussion to a simple case in which the number of processors is P = p3 for an
integer p, and the matrices are order n = p × 2l for some integer l. The general
case, in which P = p1 × p2 × p3 for any integers p1, p2, and p3, and in which the
matrices can have any order, is not much harder and is described in the full version
of the paper and in [6].

The simple case of the algorithm solves AX = B where all three matrices are
n-by-n and A is triangular.

We refer to processors using their position in the 3D processor grid. For
example, processor ijk is the processor in position (i, j, k) in the grid. We also
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need to refer to entire 2D and 1-dimensional subsets of the grid. We define the rth
ij layer of the grid as all processors with indices (i, j, r) for some constant r. We
similarly define ij and jk layers. We define the sr’th i line as all processors with
indices (i, s, r) for some constant s and r.

Processor i, j, k in a 3D grid of processors G, of l-by-m-by-n processors, is
written as Gijk, where 1 ≤ i ≤ l, 1 ≤ j ≤ m, 1 ≤ k ≤ n.

We now describe our algorithm for solving AX = B using p3 processors, where
all matrices are n-by-n.

We arrange the processors in a p-by-p-by-p 3D grid, and distribute the matri-
ces A and B in a block-cyclic distribution, as described in the Introduction, each
on a different face of the grid. More specifically, the matrix A is block-cyclically
distributed on the first jk layer and B is block-cyclically distributed on the first
ij layer. At the end of the execution, X will be block-cyclically distributed on the
first ik layer.

In the first phase of the algorithm, each processor 1jk, which stores a (non-
contiguous) block of A, broadcasts its block of A to the jk’th i line. The effect of
this step, viewed over the entire grid, is to broadcast all of A from the first jk layer
to all the jk layers. The algorithm broadcasts B similarly.

The second phase of the algorithm solves the linear system recursively. The
dimensions of all the matrices remain equal throughout the recursion. The algorithm
works as follows:

1. If A is p-by-p, then each layer of the processor cube solves one triangular linear
system with a single right-hand side. This is the base case of the recursion.
This step inefficient, because the p2 processors in each layer work for p steps
to solve a linear system that one processor can solve in p2 steps. According
to our assumptions, B and X have p columns, so there is exactly one layer of
processors per column. Each ik layer of the grid contains a copy of X . The
algorithm returns.

2. If the algorithm did not yet return, then A is at least 2p-by-2p and we split
A, B, and X into 2-by-2 block matrices[

A11

A21 A22

] [
X11 X12

X21 X22

]
=

[
B11 B12

B21 B22

]
.

The splitting is purely conceptual—no data movement occurs.

3. Solve A11X11 = B11 recursively using the entire processor grid. Since the
matrices are laid out on the processor grid in a cyclic distribution, these
blocks are distributed on the entire processor grid.

4. Solve A11X12 = B12 recursively.

5. Multiply and subtract B21 = B21 − A21X11. The entire processor grid per-
forms this matrix multiply-add using the 3D algorithm. Note however, that
since every jk layer already contains a copy of A and every ik layer contains a
copy of X , there is no need for broadcasting in the 3D matrix-multiplication
algorithm.
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6. Multiply and subtract B22 = B22 −A21X12.

7. Solve A22X21 = B21 recursively.

8. Solve A22X22 = B22 recursively.

We stress that steps 2–8 of the algorithm are performed sequentially, not in parallel.
All the parallelism in the algorithm lies in the leaves of the recursion, both matrix
multiplication and triangular solves.

Before we analyze the performance of the algorithm is it worth pointing out
that the algorithm can also be understood as a collection of 2D algorithms, each
performed by one ij layer in the processor grid. Each such layer solves a triangular
linear system with multiple right-hand sides.

Theorem 1. In a synchronous model of parallel computation, in which a processor
can perform one operation per step and where communication is instantaneous, the
number of computational steps that the algorithm requires is O(n3/p3 + n2/p).

Proof. We denote the number of steps for matrices of order n by Tn and hold p
fixed. The base case of the recursion is Tp = p. The number of steps to perform a
matrix multiply and subtract on matrices of order n is at most 2n3/p3. We therefore
have the following recurrence for the number of steps,

Tn ≤
{

4Tn/2 + 2(2(n/2)3/p3) when n > p
p when n = p

It’s not hard to verify by substitution that the solution of this recurrence is
Tn = O(n3/p3 + n2/p).

Corollary 2. The algorithm is asymptotically work efficient when p ≤ √
n. That

is, when p ≤ √
n the number of steps during which a processor works is proportional

to the total number of steps.

Proof. When p ≤ √
n,

p3 × (n3/p3 + n2/p) = n3 + n2p2 ≤ 2n3

Theorem 3. The amount of communication in the algorithm is O(n2p lg(n/p)).

Proof. We denote the amount of communication for matrices of order n by Cn

and hold p fixed. The base case of the recursion is Cp = p3 . The amount of
communication needed to perform a matrix multiply and subtract on matrices of
order n is at most pn2. We therefore have the following recurrence for the number
of steps,
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Cn ≤
{

4Cn/2 + 2(p(n/2)2) when n > p
p3 when n = p

It’s not hard to verify by substitution that the solution of this recurrence is
Cn = O(n2p lg(n/p)).

2.1 Eliminating Redundant Communication

We now present a more efficient variant of the algorithm from the previous section.
The improved algorithm performs less communication. The amount of communica-
tion that it performs is O(n2p). It is asymptotically the same as the amount that
the parallel 3D matrix multiplication performs. The key to the improvement of the
algorithm is the elimination of redundant communication.

The redundancy in the previous algorithm lies in the calls to the 3D matrix
multiplication routine. This routine performs communication that, in the con-
text of the triangular solver, is unnecessary. The 3D matrix multiplication routine
broadcasts its inputs throughout the processor cube, and it performs a distributed
summation to compute the product. It turns out that in the context of our triangu-
lar solver, the inputs to matrix multiplications are already duplicated throughout
the cube, and the output can be left unsummed. The summation can be delayed
until elements of the product are actually needed by the triangular solver.

The key idea is to generalize the algorithm so that it solves triangular linear
systems of the form AX = B − Y , where Y is represented in a special way. Specif-
ically, Y is represented by a sum of matrices, one on each ij layer. A, B, and X
are fully summed are replicated. The role of Y is to collect partial updates to the
right-hand sides. To solve a linear system AX = B, we simply start the algorithm
with Y = 0. The role of Y in this case is to store partial updates to B when the
algorithm descends into the recursion.

The improved algorithm maintains the following data-layout invariants:

• The coefficient matrix A is replicated in each jk layer. The matrix does not
change during the algorithm, so we can perform the replication before the
algorithm begins at a communication cost of pn2.

• The original right-hand sides B are replicated in each ij layer.

• Y is kept unsummed. Each ij layer contains one term of the matrix sum. The
data layout in all the layers is the same and conforms to the layout of B (that
is, a processor that stores bij also stores a term of yij).

• The values of X that have already been computed are replicated in each ik
layer.

The algorithm is again recursive, but before the recursion begins, we replicate A and
B as required and initialize Y = 0. This transfers 2pn2 words between processors.
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Since no values of X have been computed, the invariant concerning it holds. The
algorithm uses the same framework as the previous algorithm:

1. If A is p-by-p, then each layer of the processor cube solves one triangular
linear system with a single right-hand side B − Y . We first sum the right-
hand sides: each k line sums a single element of a single right-hand-side.
We now perform the solution of the p triangular linear systems. Finally, we
replicate the elements of X that have been computed in each ik layer. The
total amount of communication in this step is Θ(p3). The algorithm returns.

2. If the algorithm did not yet return, split A, B, X and Y into 2-by-2 block
matrices[

A11

A21 A22

] [
X11 X12

X21 X22

]
=

[
B11 B12

B21 B22

]
−

[
Y11 Y12

Y21 Y22

]
.

3. Solve A11X11 = B11 − Y11 recursively using the entire processor grid.

4. Solve A11X12 = B12 − Y12 recursively.

5. Multiply Ỹ21 = Y21+A21X11 but leave Y only partially summed—intraprocessor
summations are performed but intraprocessor summations are not. Our in-
variants imply that A21 and X11 are already replicated, and we leave Ỹ21

partially summed, so this step is equivalent to a 3D multiply-add, but with
no communication at all. We can overwrite Y21 with Ỹ21.

6. Multiply and subtract Ỹ22 = Y22 + A21X12 in the same way.

7. Solve A22X21 = B21 − Ỹ21 recursively.

8. Solve A22X22 = B22 − Ỹ22 recursively.

Theorem 4. The triangular solver algorithm presented above is correct.

Proof. We prove the theorem by induction. The base case is clearly correct—we
sum the right-hand side and solve using a correct algorithm.

Assume that the algorithm is correct for inputs of order n/2. Given an input of
size n, the X11 and X12 outputs are correct because they are computed recursively.
The splitting into blocks gives us A21X11 + A22X21 = B21 − Y21, or A22X21 =
B21 − (Y21 + A21X11) = B21 − Ỹ21, so X21 is also correct . The same argument
works for X22.

Theorem 5. The number of computational steps that the algorithm requires is
O(n3/p3 + n2/p).

Proof. The proof of Theorem 1 applies here as well.
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Corollary 6. The algorithm is asymptotically work efficient when p ≤ √
n.

Theorem 7. The amount of communication in the algorithm is O(pn2).

Proof. The algorithm performs communication only before the recursion starts
and in the leaves of the recursion. The amount of communication required before
the recursion is Θ(pn2), to replicate A and B, p times each. The amount of commu-
nication at the leaves of the recursion is also Θ(pn2), since the recursion has (n/p)2

leaves and each requires O(p3) communication.

2.2 A More Detailed Analysis of Communication

The previous sections discussed the asymptotic behavior of the algorithm. Since
the reduction in communication over conventional algorithms is only a factor of
Θ(P 1/6), it is important to perform a more detailed analysis of the constants in-
volved.

The algorithm replicates two n-by-n distributed matrices, A and B, p times
each, using broadcasts when the algorithm starts. The algorithm also replicates the
output matrix X p times using broadcasts. These broadcasts occur at the bottom
level of the recursion, whenever a block of X is computed. Finally, the algorithm
sums a fourth matrix, Y . The summation has p terms, each distributed. The
amount of communication is roughly the same in each of these 4 operations.

2.3 The General Case

The full version of the paper, as well as [6] describes extensions of the simple case to
arbitrary 3D processor grids, to odd n, to n not divisible by p, and to block-cyclic
data layouts (as opposed to pure cyclic layouts). These extensions are omitted from
this abstract due to lack of space.

3 Communication-Efficient Triangular Factorization

The new 3D LU factorization algorithm is similar in many ways to the 3D triangular
solver. Due to lack of space in this abstract and to the similarity to the triangular
solver, we do not describe the details of the LU algorithm. Instead, we present the
basic recursive algorithm and the analysis of its performance. It uses the same data
layout on a 3D processor grid, and it also employs and inefficient base case.

Here is the recursive LU factorization algorithm for factoring an n-by-n matrix
on a p-by-p-by-p grid of processors.

1. If A is p-by-p, factor it using a nonrecursive algorithm that is omitted from
this abstract and return.

2. If the algorithm did not yet return, split A into a 2-by-2 block matrix

A =
[

A11 A12

A21 A22

]
.
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3. Factor A11 = L11U11 recursively using the entire processor grid.

4. Solve L21U11 = A21 for L21 using the 3D triangular solver from Section 2.1.

5. Solve L11U12 = A12 for U12 using the 3D triangular solver.

6. Update Ã22 = A22 − L21U12 using a 3D matrix multiply-add subroutine.

7. Factor Ã22 = L22U22.

We present the results of our theoretical analysis of the algorithm without
proofs. It is, however, worth noting that unlike the triangular solver, the proof
of the communication bound in Theorem 9 is simple and does not require delayed
summation. The reason is that the recursive LU algorithm makes only two calls to
itself on matrices of half the size, whereas the triangular solver makes 4 such calls.

Theorem 8. The number of computational steps that the algorithm requires is
O(n3/p3 + n2/p).

Theorem 9. The amount of communication in the algorithm is O(n2p).

4 Experimental Results
This section summarizes our experimental results. The experiments compare our C-
and-MPI implementation of our 3D algorithms to ScaLAPACK’s [4] 2D algorithms.

We conducted the experiments reported here on a 400MHz, 112-processor
SGI Origin 2000 that was only lightly loaded at the time of the experiments. The
machine has 14GB of main memory and no significant paging occurred during our
experiments.

We report experiments on 64 processors. We used ScaLAPACK to compute
the LLT (Cholesky) factorization on 1 and on 64 processors, and we used our al-
gorithm to compute the LU factorization using 64 processors. We compare ScaLA-
PACK’s Cholesky to our LU since our LU does not perform partial pivoting, so
from the performance characteristics it is more similar to a Cholesky factorization
than to a pivoting LU factorization, except that it performs twice the amount of
work and communication. Hence, in table 1 we multiply the Cholesky running times
by 2 to simplify comparisons.

Our results, which are summarized in Table 1, validates our theoretical anal-
yses but also indicate that our implementation is probably not as well optimized as
ScaLAPACK’s.

Specifically, on small matrices, where communication represents a huge over-
head and both algorithms show little or no speedups, our algorithm outperforms
ScaLAPACK. On matrices larger than about n = 300, our algorithm becomes slower
than ScaLAPACK. We have not researched this extensively but several explanations
are possible. The most likely one is that MPI’s broadcast and reduction primitives,
which our code uses extensively, are implemented inefficiently, and that the point-
to-point primitives that ScaLAPACK uses perform better. Another reason might be
that our algorithm spends more time in the inefficient bottom layer of the recursion.
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Table 1. The running times in seconds of ScaLAPACK’s 2D Cholesky
factorization algorithm and of our 3D LU factorization algorithm, all in double
precision. Column 1 shows the size of the matrix. Columns 2–4 show the time it
takes ScaLAPACK to factor the matrix on 1 processor (multiplied by 2 for easy
comparisons), the time it take ScaLAPACK to factor the matrix on 64 processors
(multiplied by 2), and the time it takes our algorithm to factor the matrix.

n 2 ∗ T LLT

1 2× T LLT ,2D
64 T LU,3D

64

200 0.02 0.02 0.02
250 0.02 0.04 0.03
300 0.04 0.04 0.03
400 0.10 0.06 0.08
500 0.18 0.06 0.14
800 0.68 0.14 0.44

1000 1.30 0.16 0.69
1500 4.66 0.42 1.62
2000 11.06 0.72 3.02
3000 38.86 1.64 7.22
4000 87.80 3.22 12.06

We also conducted experiments on a cluster of 8 Linux workstations with even
better results. On small matrices our algorithm is slightly faster than ScaLAPACK
and on large matrices it is only 36% slower. Due to lack of space, we omit further
details from this abstract.

5 Conclusions And Discussion
We have presented new communication efficient algorithms for LU decomposition
and solution of triangular linear systems. The algorithm perform asymptotically a
factor of P 1/6 less communication than all existing algorithms.

While generally slower than ScaLAPACK’s [4] 2D algorithm, our implemen-
tation of these algorithms is faster than ScaLAPACK’s 2D algorithms on small ma-
trices and large numbers of processors, where communication matters most. These
findings are consistent with our theoretical analyses of the algorithms.

In another experiment not reported here, which was conducted on a clus-
ter of Linux workstations, the gap between the performance of our algorithm and
ScaLAPACK’s was smaller.

Clearly, much more work is required to bring our implementation to the per-
formance level of a mature code like ScaLAPACK’s. In particular, we conjecture
that the main reason that our algorithm is sometimes slower than ScaLAPACK is
our extensive use of MPI’s broadcast and reduction primitives.

Obvious extensions to these algorithms would be a 3D Cholesky algorithm and
3D algorithms for LU factorization with partial pivoting and for the QR decompo-
sition. The extension to Cholesky is easy but the other two may prove challenging.
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