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1. INTRODUCTION

Designing an efficient banded linear solver for distributed-memory parallel
computers is a challenging task. The difficulty arises because the design
must achieve two conflicting goals. It must expose enough parallelism to
efficiently utilize multiple processors, and it must minimize the traffic in
the communication network and memory systems. The amount of work and
the length of the critical path in the Cholesky factorization of a band
matrix imply that the number of processors that can be effectively utilized
in this factorization is proportional to the square of the bandwidth. Mini-
mizing interprocessor communication and cache misses entails using a
blocked version of the factorization algorithm, which reduces the effective
parallelism even further. For matrices with very narrow bands, the factor-
ization can be modified to introduce more parallelism; however, such
modifications increase the total amount of work by more than a factor of
two [Demmel et al. 1993]. We do not consider narrow-band matrices in this
article, except for comparing the performance of our solver to that of a
narrow-band solver based on a modified factorization.

This article describes the design, implementation, and evaluation of a
solver for banded positive-definite symmetric linear systems with a reason-
ably wide band. It is based on ideas that were first described by Agarwal et
al. [1995]. The interface of the solver is identical to the interface of
ScaLAPACK’s new banded linear solver [Blackford et al. 1997], which is
designed for and restricted to narrow-band matrices. The two solvers
therefore complement each other. The article focuses on the Cholesky
factorization of the matrix. The companion banded triangular solver sub-
routine is not discussed, since its design is completely different. The solver
is now part of Version 1.2 of IBM’s Parallel Engineering and Scientific
Subroutine Library (PESSL). Our analysis shows that this solver is highly
scalable, and this is confirmed by the performance results on an IBM SP2
distributed-memory parallel computer. An additional important contribu-
tion of this article is that it makes a strong case for runtime scheduling and
data distribution for parallel algorithms with high computation-to-data
ratios. Redistributing the data at runtime allows the user to lay out the
data using a simple data distribution, and at the same time enables the
algorithm to work with a more appropriate distribution.

Our performance results indicate that our approach represents a viable
approach to the design of numerical algorithms for regular problems with
high computation-to-data ratios. The separation of the scheduler module
from the actual numerical computation module is also attractive from the
software engineering point of view. One can be easily modified or replaced
without affecting the other. The fact that our algorithm performs well even
on full (not banded) problems leads us to beleive that our methodology is
general enough to be applicable to a variety of dense-matrix algorithms
with minor modifications.

Computing the Cholesky factorization LLT of a symmetric banded
matrix A of order n with 2m 1 1 nonzero diagonals requires about
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~1/ 2!nm2 2 ~1/3!m3 arithmetic operations, and its critical path has length
3n 2 2.1 From Brent’s theorem [Brent 1974] it follows that, using a
conventional Cholesky factorization, one can obtain linear speedup with
O~m2! processors; however, using more processors than that will not yield
additional speedup.

Current parallel computers, including the IBM SP2 [Agerwala et al.
1995], have two characteristics that require the use of blocked algorithms
for matrix computations. First, their processors use cache memories that
are faster than their main memories, i.e., accesses to the cache enjoy
negligible latency and higher bandwidth than accesses to main memory.
Second, their main memory is physically distributed among the processors.
Accesses to the local portion of main memory enjoy lower latency and
higher bandwidth than accesses to remote memories (i.e., local memories of
other processors that are accessed on the SP2 using message passing). The
performance impact of a slow main memory access and an even slower
remote memory access can be reduced significantly in numerical linear
algebra computations by using blocked algorithms. In such an algorithm,
the matrix is treated as a block matrix with say r-by-r blocks. In the case of
the Cholesky factorization, the blocked algorithm only changes the order in
which independent operations are performed, so it computes exactly the
same factorization. The blocked Cholesky factorization has a communica-
tion-to-computation ratio of Q~1/r!,2 which allows a parallel computer with
a low interprocessor communication bandwidth to efficiently execute the
algorithm. The ratio of main memory traffic to cache traffic (and computa-
tion) in the blocked algorithm is Q~1/min~r,C1/ 2!!, where C is the size of
the cache. This ratio is often low enough to enable a processor with a slow
main memory and a fast cache to run near the speed of the fast cache.

Using a blocked Cholesky factorization, however, limits the available
parallelism in the algorithm. If we regard block operations such as factor-
ization and multiplication as elementary operations that are always per-
formed by a single processor, then the number of operations in the
factorization is Q~nm2/r3!, and the length of the critical path is Q~n/r!.
Therefore, the number of processors that can be efficiently utilized accord-
ing to Brent’s Theorem drops from O~m2! in the unblocked algorithm to
O~m2/r2! in the blocked algorithm.

It follows that, for a given problem, a small block size allows us to
effectively use more processors, but requires more interprocessor communi-
cation than a large block size. When we decrease the block size from m to 1,
the running time of a blocked band Cholesky factorization first decreases
due to the increasing number of processors, and then increases because the

1We count a multiply-subtract pair as a single operation. Counting subtractions roughly
doubles the operation count.
2A function f~n! is said to be Q~g~n!! if there exist positive constants c1, c2, and n0 such that
0 # c1 g~n! # f~n! # c2 g~n! for all n $ n0, and is said to be O~g~n!! if there exist positive
constants c and n0 such that 0 # f~n! # cg~n! for all n $ n0.
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increasing volume and frequency of communication overwhelm the running
time. While it would seem that a robust algorithm should therefore select a
block size that minimizes the running time even if it entails using only a
few processors, the correct strategy is different. Instead of using only a
small fraction of the available processors on narrow-band problems, a
robust code should switch to a modified factorization designed specifically
for narrow-band problems. Our experiments in Section 6 demonstrate that
on wide-band problems our algorithm indeed outperforms ScaLAPACK’s
modified factorization by more than a factor of 2, and that on narrow-band
problems ScaLAPACK’s modified factorization is faster. Therefore, our
algorithm should be used in a hybrid code that switches to a modified
factorization when the bandwidth is too narrow. Our algorithm currently
chooses the largest block size that allows it to use all the available
processors. (More specifically, our algorithm chooses the bandwidth of the
blocked matrix, based on the number of processors, and the ratio of the
original bandwidth to the block bandwidth gives the algorithm’s block size.)

We note that the block operations themselves contain a significant
amount of parallelism, but that exploiting this fine-grain parallelism
requires interprocessor communication with high bandwidth and low la-
tency. Interprocessor communication between nodes of the SP2 and similar
machines do not have these characteristics. On the other hand, each node
of the SP2 has a superscalar microprocessor with multiple independent
functional units that operate in parallel. Communication between the
functional units of the same CPU is fast and incurs no overhead. The
primitive block operations that our solver uses therefore take advantage of
the multiple functional units, so they are parallelized as well by using
so-called functional parallelism [Agarwal et al. 1994] at the instruction
level.

Achieving our design goals, namely designing a solver that uses a blocked
version of the Cholesky factorization that both minimizes communication
and work and enables the use of a large numbers of processors, required a
number of design innovations and departures from current practices. We
realized several things early in the project: (a) that using a conventional
block-cyclic layout coupled with an “owner-computes” scheduling rule
would prevent us from achieving our goals, (b) that since the algorithm
performed matrix-matrix operations that take hundreds or thousands of
cycles to complete as its primitive building blocks, we could delay schedul-
ing decisions to runtime with a negligible performance penalty, and (c) that
for moderate-to-large bandwidths, the time spent on floating-point arith-
metic would be large compared to the time required to reshape the data
layout of the matrix. Consequently, we decided to reshape the matrix prior
to the factorization so that the algorithm could work with a more appropri-
ate data layout.

Our solver breaks the input matrix into blocks whose size depends on the
number of processors and the bandwidth of the matrix. It then computes a
static schedule that determines which processor works on which block and
in what order. The matrix is then reshaped according to the requirements
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of the schedule, factored, and then the factor is put back together in the
input data layout. The reshaping of the matrix as well as the runtime
computation of an irregular schedule for a regular problem represent
departures from current practices in the design of parallel algorithms. Our
performance results, which are reported in Section 6, show that the solver
is efficient and suggest that current practices should be reexamined.

The remainder of the article is organized as follows. Section 2 describes
the integration of the solver into PESSL, a ScaLAPACK-compatible subrou-
tine library and our overall implementation strategy. Section 3 presents an
overview of the factorization algorithm. The details of the algorithm,
together with a complete analysis of the assignment of processors to block
operations, are discussed in Section 4. Section 5 explains how the matrix is
reshaped. Section 6 presents experimental results that show that the solver
performs well and that substantiate our main claims. Section 7 presents
our conclusions from this research.

2. LIBRARY CONSIDERATIONS AND IMPLEMENTATION ISSUES

This section describes the input and output formats that the solver uses, as
well as the overall implementation strategy.

The interface of the solver is compatible with ScaLAPACK’s parallel
band solver [Blackford et al. 1997; Choi et al. 1992]. There are three
user-callable subroutines: a factorization subroutine that computes the
factorization LLT 5 A, a triangular-solve subroutine that given the factor-
ization solves the linear system AX 5 LLTX 5 B, and a combined factor
and solve subroutine. Either the lower or the upper triangle of A is
represented in the input data structure.3 If the lower part of A is supplied,
then the factorization routine returns L. If the upper part is stored, the
factorization returns LT. Without loss of generality, we only consider the
case where the lower part is represented.

The solver assumes that the lower parts of the input band matrix and the
output factor that overwrites it are stored in packed format in a global
array. Columns of the matrix occupy columns of the array, with diagonal
matrix elements stored in the first row of the array. The global array is
distributed in a one-dimensional block data layout in which a contiguous
group of columns is stored on each processor. All the block columns, except
perhaps the last, have the same size. This data layout is the one-dimen-
sional distributed analog of the lower packed format for storing symmetric
band matrices on uniprocessors and shared-memory multiprocessors.
Lower packed format is used by numerical linear algebra libraries such as
LAPACK [Anderson et al. 1995] and IBM’s ESSL [IBM 1994].

3Because the requirement to handle matrices whose upper triangle is stored was added late in
the project, this case is handled somewhat less efficiently than the case in which the lower
triangle of the matrix is stored. This design decision was made solely to save development
time and does not reflect an inherent difference between the two cases.
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The algorithm is implemented using the single-program multiple-data
(SPMD) model with explicit message passing between processors. The
solver uses ScaLAPACK’s own message-passing library, the Basic Linear
Algebra Communication Subroutines (BLACS), as much as possible, in
order to maintain compatibility and interoperability with ScaLAPACK. In
two cases we use a more comprehensive message-passing library, the
Message Passing Interface (MPI). In the factorization subroutine itself, we
found it desirable to use nonblocking sends and receives, which are
available in MPI but not in the BLACS. In the triangular solver, we found
it desirable to receive messages whose exact size is not known to the
receiving processor. This feature, too, is available in MPI but not in the
BLACS. The BLACS were designed as a portable layer between ScaLA-
PACK and other message-passing libraries such as PVM and MPI. The
BLACS provide an interface that allows programmers to use the underlying
message-passing library. This interface ensures correct translation of pro-
cess groups and processor ranks between the BLACS and MPI. We used
this interface to integrate MPI with the BLACS, and the solver should
therefore run on any machine in which the BLACS are implemented on top
of MPI.

Operations on blocks are performed by calls to the sequential level-3
Basic Linear Algebra Subroutines (BLAS) [Dongarra et al. 1990] and to a
sequential Cholesky factorization subroutine from either LAPACK or the
IBM Engineering and Scientific Subroutine Library (ESSL).

Our implementation efforts revealed two software engineering problems
with the ScaLAPACK software infrastructure. One of them is also present
to some extent in PESSL. First, ScaLAPACK largely relies on user-supplied
work arrays rather than on dynamic memory allocation. This approach
requires the library designer to find a simple upper bound on the amount of
memory required in all cases. This upper bound is specified in the docu-
mentation and becomes part of the definition of the interface of the code.
The irregular nature of our algorithm caused the tighest bound we found to
be complicated. We judged the formula representing the upper bound to be
too complicated to become part of the user interface of the code. Hence,
instead of relying on user-supplied work arrays, our code dynamically
allocates memory using Fortran 90 syntax. The second difficulty we experi-
enced arose due to the limited functionality of the BLACS. Although we
could extend this functionality in some cases, we used the underlying MPI
message-passing library in other cases. For example, we have implemented
a collective all-to-all primitive on top of the point-to-point facility already
included in the BLACS, but we used MPI to perform nonblocking message
passing.

3. AN OVERVIEW OF THE FACTORIZATION ALGORITHM

The block Cholesky factorization of an n-by-n matrix A can be summarized
as follows, assuming that the factor L overwrites the lower part of A. Each
nonzero r-by-r block Aij of the matrix undergoes the transformation
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Ãij 5 Aij 2 O
k50

j21

Lik Ljk
T (1)

(we use zero-based indices throughout the article). Diagonal blocks are
subsequently factored,

Ãii 5 Lii Lii
T. (2)

A nondiagonal block Lij of the factor is computed by solving a triangular
linear system

Lij Ljj
T 5 Ãij. (3)

We refer to this operation as scaling. When the matrix is banded, blocks
that are identically zero are ignored, so the transformation formula (1)
changes to

Ãij 5 Aij 2 O
k5max~0,i2mr!

j21

Lik Ljk
T , (4)

where mr is the block half-bandwidth. We implement Eq. (4) by j 2
max~0,i 2 mr! multiply-subtract operations of the form

Ãij 4 Ãij 2 Lik Ljk
T . (5)

The blocks Aij, Ãij, and Lij can all occupy the same location in memory,
which we informally denote by Lij. Eqs. (2), (3), and (4) can be combined
into a single expression that we refer to as the Cholesky formula for block
~i, j!,

Lij 5 ~Aij 2 O
k5max~0,i2mr!

j21

Lik Ljk
T !Ljj

2T, (6)

where the matrices Aij, Lij, Lik, and Ljk are square of size r except in the
last block row, and where Ljj

2T denotes ~Ljj
21!T. Note that the last operation

to be performed in the formula, the multiplication by Ljj
2T, requires the

solution of a triangular system of linear equations if i . j, and the
Cholesky factorization of an r-by-r block if i 5 j. In the factorization
algorithm, Cholesky formula Lij for block ~i, j! is computed in j 1 1 2
max~0,i 2 mr! consecutive block operations of types (2) and (3) or (5).

In the algorithm, the equations impose a partial order on the scheduling
of the block operations of Eq. (6), because a multiply-subtract operation
cannot be performed until the two blocks of L that are involved have been
computed, and the final scaling or factorization applied to a block cannot
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proceed until all multiply-subtract operations have been completed. Our
solver uses a systolic schedule. By a systolic schedule we mean a schedule
in which all the operations on a block are performed in consecutive time
steps and in which all the arguments of an operation arrive at a block
exactly when they are needed. In each time step a processor performs (at
most) one block operation (2), (3), or (5), as well as sending and receiving up
to two blocks.

The scheduler of our solver assigns the block operations in Eqs. (2), (3),
and (5) to processors. The assignment works in two levels. In the first level,
all the block operations in the Cholesky formula (6) for block ~i, j! are
assigned to a single process, also denoted by ~i, j!. In the second and more
specific level, a set of Cholesky formulas, or processes, is assigned to a
single physical processor. We denote the processor to which process ~i, j! is
assigned by P~i, j!. A processor computes a single Cholesky formula as-
signed to it in consecutive time steps. The processor that computes a
Cholesky formula stores the corresponding block in its local memory for the
entire factorization algorithm. A processor executes one formula after
another until all the blocks it was assigned have been factored.

More specifically, the algorithm uses the following schedule. A block
formula Lij starts its computation when its first block operand(s) arrives,
except for L00, which starts in the first time step with no operands. After a
block is computed by the processor assigned to it, it immediately starts to
move. A nondiagonal block Ljk of the Cholesky factor moves one column to
the right in every systolic time step. This block participates in a multiply-

subtract operation Ãjl 4 Ãjl 2 LjkLlk
T with the block ~ j,l! that it is passing

through, where k , l # j. After block ~ j,k! passes through diagonal block
~ j, j!, it starts moving down column j, again participating in the multiply-

subtract operation Ãij 4 Ãij 2 LikLjk
T with every block ~i, j! it is passing

through, where j , i # k 1 m. As can be seen, each nondiagonal block
(except for blocks in the last mr block rows) updates exactly mr blocks using
Eq. (5). A diagonal block Ljj is factored, as in Eq. (2), immediately after all
the symmetric updates (4) have been applied to it. It then starts moving
down column j. It participates in a triangular solve (3) in every subsequent
systolic time step, in rows i 5 j 1 1 through i 5 j 1 mr. It stops moving
when it reaches the last nonzero block in column j.

The next section shows that ~mr 1 1!~mr 1 2!/6 processors are always
sufficient for this schedule. A simple greedy schedule that assigns each
formula that starts its computation to some idle processor during every
time step is guaranteed to work. The next section also exhibits schedules
that balance the storage requirements of all the processors.

The solver factors the matrix in five major phases. The first phase
determines, based on the half-bandwidth m and the number p of proces-
sors, the largest block size r that still permits the algorithm to efficiently
use p processors. The second phase computes a schedule in which each
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processor is assigned a set of Cholesky formulas and the order in which
these formulas will be computed. The third phase partitions the input
matrix into r-by-r blocks and sends each block to the processor which is
assigned to compute it. The fourth phase executes the schedule. The fifth
phase reshapes the matrix again so that the factor computed in phase four
overwrites the input matrix in its original data layout. We remark that
phases three and five are performed only in order to provide the user with
a simple and convenient input and output format: they are not part of the
factorization itself.

4. A DETAILED ANALYSIS OF THE ALGORITHM

In this section we formally define and analyze a systolic factorization
schedule and the assignment of actual processors to Cholesky formulas.
The section proves that the schedule is correct, and it establishes the
number of physical processors required to simulate the systolic algorithm.
We show that the number of systolic processes that are simultaneously
active is ~mr 1 1!~mr 1 2!/6 and that the same number of processors
are capable of simulating our systolic algorithm. In addition, we show that
our systolic factorization algorithm almost always balances the amount of
local storage required on each processor.

The algorithm partitions the band matrix into an nr-by-nr block band
matrix, with blocks of size r-by-r and block half-bandwidth mr. Only blocks
in the lower part of the matrix are stored and used. There are ~mr 1 1!nr

2 mr~mr 1 1!/ 2 nonzero blocks in the matrix, mr 1 1 in a block column
(except for the last mr block columns). The original and block half-
bandwidths are related by the equation m 5 rmr 2 lr. The last block in a
block column is an upper triangular matrix with the first lr diagonals of the
upper triangular matrix equal to zero.

Our systolic algorithm works in discrete time steps. Each step takes a
single time unit, which is the time it takes a single processor to perform
one block multiply-subtract operation (a GEMM level-3 BLAS) and send
two blocks and receive two blocks, where all the blocks are square of order
r. In some time steps, instead of a block multiply-subtract operation, a
processor may need to solve an r-by-r triangular linear system with r
right-hand sides (a TRSM level-3 BLAS), factor an r-by-r block (implement-
ed by LAPACK’s POTRF or ESSL’s POF), or perform a multiply-subtract
that updates an r-by-r symmetric matrix (a SYRK level-3 BLAS). We
assume that these operations take less time than a multiply-subtract
operation. The assumption is justified for the values of r in which we are
interested, since operation counts in these operations are one half, one
third, and one half, respectively, of the operation count of a multiply-
subtract (GEMM). (When r is very small, divides and square roots can
dominate the running time of these operations, so operation counts do not
always provide good estimates of the running times.)
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In time step t 5 i 1 j 1 k of the systolic schedule, Lik is multiplied by
Ljk

T , and the product is subtracted from Aij, as will be proved in Theorem 1
below. The operation is performed by processor P~i, j!, which locally stores
Aij. At the beginning of the time step this processor receives the block Lik

from processor P~i, j 2 1! and the block Ljk from processor P~i 2 1, j!. The
final operation in Eq. (6), either the solution of a triangular linear system
or the factorization of a block, is performed at time step i 1 2j.

We now give a detailed description of our algorithm. We specify the
algorithm for a diagonal block Aii first, followed by the code for a nondiago-
nal block Aij. Comments are preceded by a percent sign.

For k 5 max~0,i 2 mr! to i 2 1
% Iteration k of the loop is performed during time step i 1 i 1 k
Receive Lik from P~i,i 2 1!

If k . max~0,i 2 mr! then send Lik to P~i,i 1 1!

Update Aii 4 Aii 2 LikLik
T by calling SYRK

End for
Factor Aii 5 LiiLii

T during time step 3i (by calling
LAPACK’s POTRF or ESSL’s POF)

If i , nr 2 1 then send Lii to P~i,i 1 1! during time step 3i

Next, we give the code for a nondiagonal block Aij. Note that for the last
block in a column, that is, when i 5 j 1 mr, the “for” loop is empty, and
the block Aij is upper triangular with zeros in the first lr diagonals.

For k 5 max~0,i 2 mr! to j 2 1
% Iteration k of the loop is performed during time step i 1 j 1 k
Receive Lik from P~i, j 2 1!

Receive Ljk from P~i 2 1, j!
Send Lik to P~i, j 1 1!

If k . max~0,i 2 mr! then send Ljk to P~i 1 1, j!
Update Aij 5 Aij 2 LikLjk

T by calling GEMM
End for
Receive Ljj from P~i 2 1, j! during time step i 1 2j
If i , j 1 mr then send Ljj to P~i 1 1, j! during time step i 1 2j
Compute Lij 5 AijLjj

2T by calling TRSM during time step i 1 2j
Send Lij to P~i, j 1 1! during time step i 1 2j

The following theorem proves that the timing indicated in the code is
correct.

THEOREM 1. The timing indicated in the algorithm is correct. That is, the
block Lik that is supposed to be received by processor P~i, j! during time
t 5 i 1 j 1 k from processor P~i, j 2 1! is always sent by P~i, j 2 1!

during time t 2 1, and the block Ljk that is supposed to be received by
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processor P~i, j! during time t 5 i 1 j 1 k from processor P~i 2 1, j! is
always sent by P~i 2 1, j! during time t 2 1.

PROOF. We use induction on t. We use the relation t 5 i 1 j 1 k or k
5 t 2 i 2 j (k 5 t 2 2i for diagonal blocks i 5 j) throughout the proof.
At time step 0, the only block that can be active according to the timing
constraint t 5 i 1 j 1 k is the diagonal block ~0,0!. The “for” loop for this
block is empty, since the loop’s upper bound i 2 1 5 21 is greater than its
lower bound, 0. Therefore, no block should be received, so the hypothesis
holds.

Suppose that the theorem is true for all time steps up to t 2 1 $ 0. We
now analyze the blocks that should be received during time step t. Consider
first a diagonal block ~i,i!, and let k 5 t 2 2i be such that max~0,i 2
mr! # k # i 2 1. Processor P~i,i! should receive the block Lik from P~i,
i 2 1!. By the induction hypothesis, processor P~i,i 2 1! sends block Lik

to P~i,i! during time step i 1 ~i 2 1! 1 k 5 2i 1 k 2 1 5 t 2 1.
Now consider a nondiagonal block ~i, j!, and let k 5 t 2 i 2 j be such

that max~0,i 2 mr! # k # j 2 1. Processor P~i, j! should receive the
block Lik from P~i, j 2 1!. By the induction hypothesis, processor P~i, j
2 1! sends block Lik during time step i 1 ~ j 2 1! 1 k 5 i 1 j 1 k 2 1
5 t 2 1 to P~i, j!. Processor P~i, j! should also receive the block Ljk from
processor P~i 2 1, j!. By the induction hypothesis, processor P~i 2 1, j!
sends block Ljk during time step ~i 2 1! 1 j 1 k 5 t 2 1 to P~i, j!. At
time step i 1 2j processor P~i, j! should receive block Ljj from processor
P~i 2 1, j!. Again, by the induction hypothesis, processor P~i 2 1, j! sends
block Ljj during time step ~i 2 1! 1 2j 5 i 1 2j 2 1 5 i 1 j 1 k 2 1
5 t 2 1 to P~i, j!. e

It is easy to see that block ~i, j! becomes active during time step i 1 j
1 max~0,i 2 mr! and that it is completed during time step i 1 2j. There-
fore, the Cholesky formula for block ~i, j! is active during

~i 1 2j! 2 ~2i 1 j 2 mr! 1 1 5 ~ j 2 i! 1 mr 1 1 5 2 d 1 mr 1 1

time steps, where d denotes the diagonal i 2 j of block ~i, j! (except in the
first mr 2 1 columns where formulas can be active for fewer time steps
than that). Successive formulas along a diagonal start and end their
activities three time steps apart. Figure 1 shows an example of the
schedule.

We now prove a main result of this section, namely, that the number of
active processes is at most ~mr 1 1!~mr 1 2!/6.

THEOREM 2. There are at most ~mr 1 1!~mr 1 2!/6 processes active at
any time step.
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PROOF. Let mr 5 3q 1 z, where 0 # z # 2. We treat the three cases
z 5 0, z 5 1, and z 5 2 separately.

We start with the case mr 5 3q 1 1. We prove the theorem by exhibit-
ing an assignment of

~mr 1 1!~mr 1 2!

6  5
~mr 1 1!~mr 1 2!

6
5

~3q 1 2!~q 1 1!

2

processors to all the Cholesky formulas in the schedule. We assign exactly
q 1 1 processors to each pair of diagonals d and mr 2 d for each value
of d between 0 and mr/ 2, as well as ~q 1 1!/ 2 processors to diagonal
mr/ 2 if mr is even. (Note that if mr is even, then there is an odd number
of diagonals, and q is odd.) When mr is odd, the total number of processors
in the assignment is ~q 1 1!~mr 1 1!/ 2. When mr is even, the total
number of processors in the assignment is ~q 1 1!~mr/ 2! 1 ~q 1 1!/ 2 5
~q 1 1!~mr 1 1!/ 2. To see that the assignment of ~q 1 1! processors per
pair of diagonals is necessary, note that blocks on diagonal d require
mr 2 d 1 1 time steps and that blocks on diagonal mr 2 d require
mr 2 ~mr 2 d! 1 1 5 d 1 1 time steps. A block from diagonal d and a
block from diagonal mr 2 d therefore require mr 1 2 5 3~q 1 1! time
steps together. We now show that assigning q 1 1 processors for a pair of
diagonals is sufficient. Assign a single processor to block ~ j 1 d, j! on
diagonal d and to block ~ j 1 mr 2 q, j 1 d 2 q! on diagonal mr 2 d.
Since block ~ j 1 d, j! completes at time step ~ j 1 d! 1 2j 5 3j 1 d, and
since block ~ j 1 mr 2 q, j 1 d 2 q! starts at time step 2~ j 1 mr 2 q! 1
~ j 1 d 2 q! 2 mr 5 3j 1 d 1 ~mr 2 3q! 5 3j 1 1, this single proces-
sor can execute both formulas. Since this processor spends
3~q 1 1! steps on both, and since blocks along a diagonal start 3 time
steps apart, we can also assign the same processor to blocks

Fig. 1. The systolic schedule and the assignment of processors for the case where nr 5 10 and
mr 5 4. The figure shows for each block the time steps in which the block’s formula starts and
ends its activity, separated by a colon, and the physical processor assigned to the formula, in
parentheses.
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~ j 1 d 1 w~q 1 1!, j 1 w~q 1 1!! and their “mates” on diagonal
mr 2 d for any integer w. We therefore need q additional processors to
cover these two diagonals. The same holds for all pairs of diagonals. If
there is an odd number of diagonals, the middle diagonal requires
~mr 1 2!/ 2 5 ~3q 1 3!/ 2 time steps per block. Therefore, the processor
that is assigned to the block in column j in this diagonal can also compute
the blocks in columns j 1 w~q 1 1!/ 2 for any integer w. Hence
~q 1 1!/ 2 processors can cover the middle diagonal. This concludes the
proof for the case mr 5 3q 1 1.

We prove the theorem for the case mr 5 3q 1 2 by reducing it to the
previous case. We assign a group of ~3q 1 2!~q 1 1!/ 2 processors to the
formulas that are not on the main diagonal, and another group of q 1 1
processors to main-diagonal formulas. The assignment of the first group is
analogous to the assignment of the ~3q 1 2!~q 1 1!/ 2 in the case m9r 5
3q 1 1. Since a formula on diagonal d 1 1 in this case is active for the
same number of steps as a formula on diagonal d in the case m9r 5 3q 1
1, namely 3q 1 2 2 d time steps, the assignment of processors to the
remaining formulas is sufficient. More specifically, the processor assigned
to block ~ j 1 d 1 1, j! on diagonal d 1 1 is also assigned to block ~ j 1
mr 2 q, j 1 d 2 q! on diagonal mr 2 d, for d 5 0, . . . , ~mr 2 1!/ 2.
Since the first block completes at time step 3j 1 d 1 1, and the second
starts at time 3j 1 d 1 2, the assignment of both to a single processor is
feasible. These two blocks require 3~q 1 1! time steps together, as in the
case m9r 5 3q 1 1. If the number of diagonals is even, there is an unpaired
middle diagonal that requires ~q 1 1!/ 2 processors, since each block on it
requires ~3q 1 3!/ 2 time steps. We omit further details and calculations
that are completely analogous to the previous case. Since the main-
diagonal blocks require 3q 1 3 time steps each, q 1 1 processors are
sufficient for the diagonal formulas. The total number of processors in the
assignment is therefore

q 1 1 1
~3q 1 2!~q 1 1!

2
5

~3q 1 4!~q 1 1!

2
5

~mr 1 2!~mr 1 1!

6
,

which proves the theorem for this case.
We prove the theorem for the case mr 5 3q. We assign a single processor

to the formulas along diagonal mr, and we assign a group of ~3q 1 2!
~q 1 1!/ 2 processors to diagonal 0 through mr 2 1. Since formulas on
diagonal mr take one time step to complete, and since they start three
time steps apart, it is clear that a single processor can execute all of them.
Other processors are assigned pairs of diagonals, but now the pairing is
d with mr 2 d 2 1. Since a pair of formulas, one from each diagonal,
takes 3~q 1 1! time steps together, we can again assign q 1 1 processors
for each pair of diagonals. Specifically, the single processor assigned to
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block ~ j 1 d, j! on diagonal d, which completes at time step 3j 1 d, is also
assigned to block ~ j 1 mr 2 q, j 1 d 2 1 1 1! on diagonal mr 2 d 2 1,
which starts at time step 3j 1 d 1 1. Again, the two blocks require
3~q 1 1! time steps together. If q and mr are even, we can pair up all the
diagonals 0 through mr 2 1, so the total number of processors is

1 1 ~q 1 1!
mr

2
5 1 1

mr~mr 1 3!

6
,

~mr 1 1!~mr 1 2! 1 2

6

5 ~mr 1 1!~mr 1 2!

6 .

If q and mr are odd, diagonal number ~mr 2 1!/ 2 is paired with itself, and
the total number of processors remains the same:

1 1 ~q 1 1!
mr 2 1

2
1

q 1 1

2
5 1 1 ~q 1 1!

mr

2
, ~mr 1 1!~mr 1 2!

6 
This concludes the entire proof. e

Table I shows an example of a complete schedule for the case mr 5 3q
1 1 5 4, nr 5 10, and p 5 5. In the first and last 6q 5 6 time steps,
some processors are idle. The total number of idle time steps in the

Table I. A Complete Schedule for the Case mr 5 3q 1 1 5 4, nr 5 10, and p 5 5 (an ijk
entry in location (p,t) in the table indicates that, during time step t, processor p is

computing the kth block operation of Cholesky formula (i, j) in Eq. (6); individual Cholesky
formulas are enclosed in parentheses)

p 0 1 2 3 4 5 6 7 8 9

0 (000) 2 2 2 (220 221 222) (511) (440 441
1 2 2 (110 111) (400) 2 (330 331 332 333)
2 2 (100) 2 (300) 2 (320 321 322) (521 522)
3 2 2 2 (210 211) (410 411) (430 431 432
4 2 2 (200) 2 (310 311) (420 421 422) (531

p 10 11 12 13 14 15 16 17 18 19

0 442 443 444) (733) (662 663 664 665 666) (955)
1 (622) (551 552 553 554 555) (844) (773 774 775
2 (541 542 543 544) (743 744) (763 764 765 766)
3 433) (632 633) (652 653 654 655) (854 855) (874
4 532 533) (642 643 644) (753 754 755) (864 865

p 20 21 22 23 24 25 26 27

0 (884 885 886 887 888) 2 2 2
1 776 777) 2 (995 996 997 998 999)
2 (965 966) (985 986 987 988) 2 2
3 875 876 877) 2 2 2 2 2
4 866) (975 976 977) 2 2 2 2
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example is 6qp 5 30, so the inefficiency is 30/140 5 21%. It can be
shown that in general the number of idle time steps is about 6qp ' 2mr

and that they occur in the first and last 6q or so steps, with equal numbers
of idle steps in the beginning and end of the factorization. We omit further
details.

The assignment of processors to formulas that is used in the proof is not
unique, however. An important objective of the actual assignment in the
solver is to balance the number of blocks that are assigned to, and therefore
stored at, every processor. Although the proof of the theorem does not
discuss the storage balancing explicitly, it turns out that the specific
assignment used in the proof balances the storage perfectly in many cases.
We begin by analyzing the storage balance resulting from the proof’s
assignment and then explain how our solver’s scheduling algorithm bal-
ances the storage. In the discussion we ignore the slight imbalance that is
caused by the end effects of the first and last mr 2 1 columns.

When mr 5 3q 1 1 is even, so that all the diagonals are paired, a
processor processes exactly two blocks every 3~q 1 1! steps (except in the
beginning and end of the factorization). Therefore, each processor stores
about nr/~q 1 1! blocks. If mr 5 3q 1 1 is odd, and one diagonal is
unpaired, processors assigned to it process a block every 3~q 1 1!/ 2 steps,
so they store the same number of blocks as processors assigned to pairs of
diagonals. Hence, in the case mr 5 3q 1 1 the storage is perfectly bal-
anced among processors. When mr 5 3q 1 2, processors assigned to blocks
that are not on the main diagonal process two blocks every 3~q 1
1! steps. Processors assigned to the main diagonal process a single block
every 3~q 1 1! steps, so they store only half as many blocks as the other
processors. It turns out that the storage imbalance, measured by the ratio
of the number of blocks stored by the most heavily loaded processor to the
average number of blocks per processor, is ~3q 1 4!/~3q 1 3! in this case.
When mr 5 3q, all processors except the single one assigned to diagonal
mr process two blocks every 3~q 1 1! steps. This single processor assigned
to diagonal mr processes a block every 3 steps. This processor therefore
must store a factor of about about ~q 1 1!/ 2 more blocks than other
processors. The imbalance can be rectified by reassigning processors to
diagonals every q 1 1 columns, so that each processor processes the mr

diagonal only about 1/~q 1 1! of the time. We omit further details about
this strategy, but mention that it leads to perfect storage balance for large
matrices.

Our scheduler uses a simple round-robin greedy approach to the assign-
ment of processors to formulas, which leads to excellent storage balancing
(see Figure 2). Since many assignments of ~mr 1 1!~mr 1 2!/6 or more
processors are possible, the scheduler simulates the systolic factorization
algorithm, building the assignment as it goes along. At any given systolic
time step, the scheduler cyclically scans the list of processors and assigns
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the first idle processors it finds to formulas that become active. Figure 2
shows that the worst storage imbalance occurs with two processors, when
one stores twice as many blocks as the other, but that with three or more
processors the resulting imbalance is small: the processor with the heaviest
load stores less than 17% more blocks than the average.

5. RESHAPING THE DATA LAYOUT

Even though reshaping a distributed array is a conceptually simple opera-
tion in which each array element is sent from its source to its destination,
it can take a significant amount of time if not done carefully. Specifically,
complex address calculations must be avoided whenever possible; memory-
to-memory copying must be done efficiently to minimize cache and TLB
(translation lookaside buffer) misses; and interprocessor communication
must often be done in large blocks to reduce the effects of communication
latency and of frequent processor interrupts. The design of the reshaping
module of the solver, which is based on the design of similar subroutines in

Fig. 2. The imbalance of storage among processors, measured by the ratio of the number of
blocks stored by the most heavily loaded processor to ~total number of blocks!/p, where p is
the number of processors. The figure shows the the imbalance for a matrix with nb 5
200kb. When nb is smaller, the imbalance is generally smaller.
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a parallel out-of-core library [Toledo and Gustavson 1996], aims to avoid
these problems.

The main idea behind the reshaping module is the computation of the
intersection of two data distributions. Consider reshaping a distributed
array from a source distribution Ds to a target distribution Dt. Each
distribution decomposes the array into contiguous regions (not necessarily
axis-parallel), each of which is simultaneously stored on a single processor.
The term “contiguous region” is used in a loose sense to mean that it and its
subsets can be efficiently copied to and from a contiguous buffer in memory
(i.e., packed and unpacked). The intersection of the distributions is the
decomposition of the global array into a union of disjoint maximal contigu-
ous regions such that each region is the intersection of a single set of Ds

and a single set of Dt. The reader can visualize the intersection by
considering the array with the regions of Ds bounded by red lines and the
regions of Dt bounded by green lines. In Figure 3, place the two diagrams
with the heavy lines colored red and green one on top of the other. The
intersection is the collection of contiguous regions bounded by lines of any
color, including lines of mixed colors (see Figure 3). The property of the
intersection which is of interest is that each of its maximal regions is stored

Fig. 3. Distributed layouts of a symmetric banded matrix with 29 rows and columns and a
half-bandwidth of 12. Only the lower part of the matrix is stored. The figure on the left shows
the input and output layout on five processors. The heavy lines that show the data distribu-
tion are called red in the text. It is a ScaLAPACK-compatible block distribution of the columns
of the matrix, where each processor (except the last) stores a group of seven columns. The
numbers represent the processor that owns each group of columns. The columns are stored
locally on every processor packed into an array with at least 13 rows. The figure on the right
shows the layout that the systolic factorization algorithm uses in this case. The heavy lines
are called green in the text. The matrix is layed out in 3-by-3 blocks, and the numbers show
which processor is assigned to, and therefore stores, each block. This same layout is shown in
Figure 1.
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on a single processor in the source distribution and on a single processor in
the target distribution.

In our case, one distribution is always a column block distribution of a
banded matrix, and the other is always an apparently irregular distribu-
tion of square blocks. The intersection is therefore a decomposition of the
matrix into rectangular blocks of varying sizes, which are easy to enumer-
ate. Blocks that contain only zero diagonals of the banded matrix are
ignored by the reshaping routines, as well as by the rest of the solver.

The reshaping module works in the following way. Each processor
enumerates the regions of the intersection that reside in its memory in the
source distribution. For each region, the code knows, using data structures
generated by the scheduler, the identity of the processor in the target
distribution that stores that region. The region is then packed into a buffer
that holds all the regions that must be sent to that processor. The send
buffer on a given processor is divided into p segments, and a region to be
sent to processor i is packed into the ith segment. We pack with each
region its rectangular size and the indices of its upper left corner in the
distributed global array. Once all the regions have been packed, the buffers
are sent to their destinations using one call to a BLACS all-to-all-variable
subroutine. Then each processor unpacks each region it received, determin-
ing the address to which it must be copied in the local memory from the
indices that were sent with it. In order to determine the size of the buffer to
be sent to each processor, the code enumerates sizes (areas) of all the
regions in the intersection once before packing them into the buffers. By
knowing the size of each region and the processor to which it must be sent,
it is easy to compute their placement in the sent buffer.

We claim that this approach addresses the issues that were raised in the
first paragraph of this section. First, indexing and address calculations are
done three times per region and not on a per-element basis. Second, the
packing and unpacking of regions is done via calls to DCOPY, an optimized
memory copy subroutine in the BLAS. (This subroutine is called once per
column of a region, with only two pointer increment operations between
calls.) All interprocessor communication is done in one call to an all-to-all
message-passing subroutine. (This subroutine is part of the solver; its
interface is similar to that of the MPI subroutine MPI_Alltoallv, but it is
implemented on top of the BLACS.)

One disadvantage of this scheme is that it requires large send and
receive buffers for the all-to-all-variable operations, one capable of storing
the local part of the array in the input distribution and another to store the
local part in the output distribution. In fact, these buffers are slightly
larger because four indices are packed together with the array regions and
because packed triangular blocks on the main and last diagonals are
unpacked into full square blocks (see Figure 3). To conserve space, one of
the buffers utilizes the same storage that the irregular block distribution
uses. We chose not to reuse the storage that the input matrix and its factor
occupied as the other buffer for two reasons. First, due to the space
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required for the indices and because of the unpacking of blocks, this space
alone may be insufficient. Second, depending on the leading dimension of
the local part of this array, the space that the matrix occupies may be
discontiguous. Therefore, reusing this space would have required complex
memory management code that we chose not to implement. To summarize,
in typical cases the reshaping subroutines require scratch space of about
twice the size of the input matrix. By using the original matrix area when
the space it occupies is contiguous, the scratch space could be reduced by a
factor of two. It is also possible to reshape the matrix in place. In this
approach almost no scratch space is required, except for block indices and
two temporary r-by-r blocks per processor, but it is more complicated to
implement and may be slower. Again, we chose not to implement an
in-place reshaping algorithm.

We now discuss an alternative design that uses less memory. It allocates
send and receive buffers of a fixed size, assuming this size can hold about
the size of the largest region in the intersection. It then packs regions into
the send buffer and sends them as soon as the buffer is full, repeating this
step until all regions have been sent. In such a scheme each processor must
receive messages and unpack them frequently to avoid blocking senders
and even a possible deadlock. This scheme would have required more
frequent irregular message passing, so it is reasonable to assume that it
would have been slower. Whether such a scheme, which is somewhat more
complex than the all-to-all scheme, is preferable to our implementation
depends on the message-passing latency and on the importance of conserv-
ing memory.

6. PERFORMANCE OF THE SOLVER

The experiments were performed on an IBM SP2 parallel computer [Ager-
wala et al. 1995]. The machine was configured with so-called thin nodes
with 128MB of main memory running AIX version 4.1.3. Thin nodes have a
66.7MHz POWER2 processor, a 64KB four-way set-associative level-1
data-cache, no level-2 cache, and a 64-bit-wide main memory bus. They
have smaller data paths between the cache and the floating-point units
than all other POWER2-based SP2 nodes. In all the experiments the
message-passing layer used the network interface in user-space mode and
did not use interrupts. For block operations on the nodes we used IBM’s
Engineering and Scientific Subroutine Library (ESSL) version 2.2. For
some comparisons we used IBM’s Parallel Engineering and Scientific
Subroutine Library (PESSL) version 1.1, which is based on and compatible
with ScaLAPACK, a public domain linear algebra package for linear
algebra computations.4 We used POWER2-specific versions of all the librar-
ies.

Whereas individual SP2 nodes have a well-balanced architecture, the
performance of the interprocessor-communication subsystem is not

4PESSL also contains routines for Fourier transforms and related computations that are not
part of ScaLAPACK.
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balanced with the performance of the nodes. The peak floating-point
performance of POWER2-based nodes is 266 million operations per second,
thanks to two floating-point functional units that can each execute a
multiply-add operation in every cycle. The high bandwidth between the
register file and the cache, as well as the high bandwidth of the main
memory system, enable the nodes to achieve near-peak performance on
many dense-matrix operations [Agarwal et al. 1994], including all the block
operations that our solver uses. SP2 nodes with 128- and 256-bit-wide
buses have an even higher main memory bandwidth, which increases the
performance of both intraprocessor and interprocessor data transfers. The
bandwidth of the communication subsystem is at most 41MB/sec. per node
when a processor sends and receives data at the same time. The message-
passing layer does not allow for a significant overlapping of communication
and computation.

The interaction between our algorithm and the architectural balance of
the SP2 is best explained with a few examples. In a typical time step of the
schedule, a node receives two r-by-r matrices, multiplies two r-by-r matri-
ces, and sends the same two r-by-r matrices. A single node can multiply
two 512-by-512 matrices in less than 1.26 seconds, giving a rate of more
than 213 million operations per second (see Table III). Sending and
receiving the four matrices would take less than 0.21 seconds assuming a
41MB/sec. rate. Even if the effective rate is only half of that, and if no
overlapping of communication and computation occurs, the communication
time represents less than 25% of the time it takes to complete a time step.
If the block’s size is only 256 by 256, however, the matrix multiplication
takes only 0.16 seconds at the same rate, and communication takes more
than 0.05 seconds at a rate of 41MB/sec. At half the communication rate,
communication time represents about 40% of the time step. We conclude
that while communication costs do not overwhelm the running time when
the block size is larger than about 200, they represent a significant
overhead even for operations on fairly large dense submatrices.

Table II shows that the performance of our factorization algorithm on the
SP2 is excellent compared to the performance of other distributed dense-
matrix computations in PESSL, which is shown in Table III. The perfor-
mance of our algorithm is also good relative to the performance of the
corresponding sequential factorization subroutine in ESSL. The sequential
subroutine factored matrices of order n 5 25,000 and half-bandwidths m
ranging from 50 to 400 on a single thin SP2 node at rates of 146–182
Mflops. (The corresponding sequential factorization algorithm in LAPACK
on a single thin node is between 1.2 times slower for m 5 400, to 3.1 times
slower for m 5 50.)

Two important performance trends emerge from Table II. First, the table
shows that larger block sizes usually yield better performance, because the
computation-to-communication ratio increases. The main exception to this
trend occurs at blocks of size r 5 600 because many processors are idle
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during the processing of the first and last mr 2 1 block columns of the
matrix. Since the numbers of nonzeros in the matrices in the table are kept

Table II. Factorization Algorithm Performance on an SP2 with Thin Nodes. The table shows
the performance using four block sizes for r (100, 200, 400, and 600). Total storage per

processor is kept approximately constant in all the experiments (about 20 million bytes per
processor for the matrix itself). The total running time is denoted by Tt; the factorization
time is denoted by Tf ; the reshaping time is denoted by Tr; and the number in millions of

floating-point operations per second per processor is denoted by MF/p.

p n m 1 1 r Tt Tf Tr MF/p

4 34100 300 100 25.4 19.5 5.9 30
5 32000 400 100 26.2 20.5 5.7 39
7 35800 500 100 30.2 24.1 6.0 42

10 42600 600 100 35.1 29.3 5.8 43
12 43800 700 100 36.1 30.2 5.8 49
15 48000 800 100 39.5 33.3 6.2 51
19 54000 900 100 44.1 37.6 6.4 52
22 56300 1000 100 46.0 39.6 6.4 55
26 60500 1100 100 49.3 42.2 7.0 56
31 66100 1200 100 54.5 47.5 6.8 56

4 17000 600 200 32.9 27.3 5.6 45
5 16000 800 200 33.0 27.4 5.5 60
7 17800 1000 200 37.6 31.6 6.0 65

10 21200 1200 200 44.1 38.1 6.0 67
12 21800 1400 200 44.9 39.2 5.7 76
15 24000 1600 200 49.9 43.3 6.6 78
19 27000 1800 200 55.3 49.3 6.0 80
22 28000 2000 200 57.2 51.2 6.0 85
26 30200 2200 200 62.0 55.4 6.6 86
31 33000 2400 200 68.5 61.3 7.1 85

4 8400 1200 400 46.9 41.6 5.3 58
5 8000 1600 400 46.4 41.0 5.4 76
7 8800 2000 400 51.8 46.0 5.8 82

10 10400 2400 400 61.2 55.6 5.6 83
12 10800 2800 400 64.4 58.1 6.2 91
15 12000 3200 400 71.7 64.9 6.8 94
19 13200 3600 400 78.9 71.9 7.0 93
22 14000 4000 400 84.4 77.1 7.3 98
26 14800 4400 400 88.8 81.2 7.6 100
31 16400 4800 400 99.9 91.4 8.5 98

4 5400 1800 600 55.1 49.3 5.8 62
5 4800 2400 600 48.2 43.3 4.9 76
7 5400 3000 600 55.4 50.5 4.9 79

10 6600 3600 600 71.5 65.5 6.0 76
12 7200 4200 600 78.7 72.1 6.5 82
15 7800 4800 600 86.2 80.0 6.2 82
19 9000 5400 600 101 93.7 7.0 82
22 9000 6000 600 102 94.2 7.4 81
26 9600 6600 600 108 101 7.2 81
31 10800 7200 600 124 115 8.5 81
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roughly constant, larger block sizes lead to fewer block columns, so the
number of these idle time steps become more significant. Second, the table
shows that for a given block size, performance improves with the number of
processors, because the bandwidth of the matrix increases. When the block
bandwidth increases, the fraction of the systolic steps that involve a matrix
multiply-subtract increases. When the bandwidth is small, on the other
hand, there are relatively more block operations that require fewer arith-
metic operations than a multiply-subtract, such as scaling. Processors that
perform such operations remain idle for part of the systolic time step,
waiting for other processors to complete multiply-subtract operations.

Figure 4 shows that the performance of the algorithm scales well with
the number of processors even for a fixed-size matrix. The utilization of
processors only drops from 82 Mflops to 69 Mflops when the number of
processors increases from 7 to 31. Since some numbers are not of the form
~mr 1 1!~mr 1 2!/6 for any integer mr, in some cases adding more
processors does not decrease the running time. In such cases the utilization
per processor is somewhat lower. For example, the running time with 26 to
30 processors is essentially the same, so the utilization is best with 26
processors. (But note that additional processors do improve the storage
balancing, as shown in Figure 2.)

Table IV shows that the performance of the algorithm on so-called wide
SP2 nodes is better than on the thin nodes. Wide nodes have a larger cache,
256 kilobytes, a 256-bit-wide bus, and a wider data path from the cache to
the floating-point units. Consequently, wide nodes enjoy better floating-
point performance, better block-copy performance, and better interproces-
sor communication performance. The improvement in block-copy perfor-
mance is the largest of the three. The performance of both the factorization
algorithm itself and of the reshaping phase is improved on wide nodes. The
improvement is larger in the reshaping phase, because its performance
depends more heavily on the performance of block-copy operations.

Table III. The Performance in Millions of Floating-Point Operations per Second per
Processor of 4 Parallel Dense-Matrix Subroutines in PESSL. The data are intended to put
the performance of the band solver in perspective. All the matrices are square with a 512-
by-512 submatrix per processor, and the processor grid is always square. PDGEMM is the
general matrix multiply-add subroutine. PDSYRK is the symmetric matrix multiply-add

subroutine. PDTRSM is the triangular solver, and PDPOTRF is the Cholesky factorization
subroutine. We used a two-dimensional block layout for PDGEMM and PDSYRK and a two-
dimensional block-cyclic layout with block size 64 for PDTRSM and PDPOTRF. The number

of processors used is denoted by p.

Subroutine p 5 1 p 5 4 p 5 16

PDGEMM 213 163 143
PDSYRK 206 87 76
PDTRSM 206 46 21
PDPOTRF 195 66 48
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Fig. 4. The performance of the factorization algorithm on an SP2 with thin nodes. The figure
shows the performance for a fixed problem size using 7 through 32 processors. The matrix is of
order n 5 8800, and its half-bandwidth is m 1 1 5 2000. The graph on the top shows the
running time in seconds, with x’s representing the total running times and o’s representing
the factorization time alone. The difference is due mostly to the reshaping of the matrix. The
graph on the bottom shows the performance in millions of floating-point operations per second
per processor, computed from the total running time.
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Fig. 5. A comparison of the performance of our factorization algorithm with the performance
of a modified factorization algorithm designed mainly for narrow-band matrices, on an SP2
with 4 processors. Since the block half-bandwidth mr is 3 here, the crossover point between
the two algorithms is between 33 and 67. Experiments on 15 processors show the same
pattern and narrow the range for the cross over point to between 33 and 50. The performance
of our algorithm is denoted by o’s, and the performance of the modified factorization by x’s.
The modified factorization does not work at all on very wide bandwidths. The graph on the
top shows the running times of the two algorithms as a function of the bandwidth of the
matrix, and the graph on the bottom shows their performance in millions of floating-point
operations per processor. Both graphs are on a log-log scale. The total number of nonzeros
in all the matrices was kept roughly constant at about 107. For example, n 5 105 when the
bandwidth is 102.
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Table II, Table IV, and Figure 4 show that the overhead of reshaping the
data usually accounts for less than 20% of the total factorization time. In
many cases the overhead is smaller than 10%, even on thin nodes.

Finally, we compare our algorithm to a modified symmetric band factor-
ization and to a full (not banded) factorization.

Figure 5 compares the performance of our factorization algorithm with
the performance of another distributed banded linear solver designed for
narrow bandwidths. This second algorithm was designed and implemented
by Andrew J. Cleary of the University of Tennessee and is part of ScaLA-
PACK version 1.2. Both algorithms were linked with the same libraries,
namely the PESSL implementation of the BLACS, the ESSL implementa-
tion of nodal level-3 BLAS, and the LAPACK implementation of nodal
factorizations.5 His algorithm does not use the band Cholesky factorization
that our algorithm uses. Instead, it uses a modified factorization that
results in about four times the amount of work. The modified factorization
allows processors to work on large subproblems with relatively little
interprocessor communication. This modified factorization only works on
narrow-band matrices where 2m # n/p. The performance depicted in the
figure validates our expectation that our algorithm would outperform the
modified factorization when the bandwidth is wide, because it performs
roughly a quarter of the amount of work, and that the modified factoriza-
tion would be superior on narrow-band matrices. Our algorithm does not
perform well on narrow-band matrices, which it was not designed to
handle. We obviously advise users to only use our algorithm on wide-band
matrices.

A symmetric banded matrix can also be factored using a full (not banded)
Cholesky factorization algorithm. On sequential computers, the full
Cholesky approach uses more space and performs more floating-point
operations, since all the zeros in the matrix are explicitly represented (both
algorithms can be performed in-place). The comparison is more complicated
on parallel machines because of communication overheads, load imbalance,
and scratch space requirements. Compared to ScaLAPACK’s full Cholesky
factorization algorithm, our banded algorithm performs fewer floating-

5In the rest of this section we linked our algorithm with the ESSL implementation of the nodal
Cholesky factorization rather than the LAPACK implementation. The difference between the
performance of two versions is negligble, at most 2% and usually well below 1%.

Table IV. The Difference in Performance between an SP with Thin Nodes and SP2 with
Wide Nodes

Thin Nodes Wide Nodes

p n m 1 1 r Tt Tf Tr MF/p Tt Tf Tr MF/p

4 34100 300 100 25.4 19.5 5.9 30 17.1 14.2 2.9 44
4 17000 600 200 32.9 27.3 5.6 45 24.3 21.5 2.8 61
4 8400 1200 400 46.9 41.6 5.3 58 37.2 34.4 2.7 74
4 5400 1800 600 55.1 49.3 5.8 62 43.8 41.0 2.8 78
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point operations and has fewer restrictions on the data layout. Data layout
restrictions can lead to load imbalance with certain numbers of processors.
On the other hand, our algorithms usually perform more communication
and use more scratch space. Both of these overheads are incurred during
the reshaping phases. Reshaping is not required in ScaLAPACK’s algo-
rithm, since ScaLAPACK expects the user to lay out the matrix in a
block-cyclic layout that admits an efficient distributed factorization. Since
our current implementation uses scratch space of about twice the size of
the matrix, our algorithm uses more memory when the half-bandwidth m is
more than about n/3.

Since our algorithm performs fewer floating-point operations than the
full factorization algorithm, since its load balancing is good, and since the
reshaping overhead is usually less than 20% of the running time, we
recommend that users use our algorithm whenever possible. A possible
exception is for matrices that are not block-banded and matrices that have
very few zero block diagonals (a matrix is block-banded for block size r
when its lower part has at least 2r 2 1 zero diagonals). In such cases the
two algorithms perform a similar amount of arithmetic, so the overhead of
reshaping the data layout may render our algorithm somewhat slower.

7. CONCLUSIONS

This article describes the design, implementation, and evaluation of a band
Cholesky factorization algorithm for distributed-memory parallel comput-
ers. Both the analysis and the experiments indicate that the algorithm
delivers excellent performance on wide-band matrices, especially with a
large number of processors. The algorithm uses several novel ideas in the
area of distributed dense-matrix computations, including the use of a
dynamic schedule that is based on a systolic algorithm and the separation
of the input and output data layouts from the layout that the algorithm
uses internally. The algorithm also uses known techniques such as blocking
to improve its communication-to-computation ratio and to minimize the
number of cache misses.

Our factorization algorithm uses an irregular schedule that requires an
irregular data structure. We have chosen to shield the user from this data
structure and to reshape the data layout before and after the factorization.
Our experiments indicate that the reshaping phase is efficient and that it
does not significantly reduce the overall performance of the code.

The correctness of our algorithm relies on the proof of Theorem 2,
because without the proven bound on the number of processors that are
simultaneously active the dynamic scheduler would run out of processors.
The proven bound, which is tight, ensures that the systolic factorization
algorithm can be simulated by a given number of processors.

The comparison of the performance of our band Cholesky factorization
algorithm with the performance of the modified factorization used in
ScaLAPACK version 1.2 indicates that the best approach is to combine the
two algorithms into a single code. This hybrid should use our algorithm
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when the bandwidth is large enough to result in large blocks and to use
the modified factorization when the bandwidth is small. (Presently, only
our wide-band algorithm is implemented in PESSL.) Our experiments
indicate that on the SP2 our algorithm is faster than ScaLAPACK’s
algorithm when it uses a block size r greater than about 33 to 50 (see
Figure 5). The hybrid should also use our algorithm when the half band-
width is wider than n/~2p! regardless of the block size because the
modified factorization does not work at all in such cases. Our code was
designed to be compatible with ScaLAPACK’s algorithm to enable such
integration.
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