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Abstract—Reverse-GPS wildlife localization systems are
emerging as a key technology for regional high-throughput
wildlife tracking. Two such systems have been designed, imple-
mented, and deployed (in six sites on three continents). Both of
the existing systems suffer from limitations due to the modulation
that is used by transmitters, which are attached to wild animals,
and due to the detection and estimation algorithms that they
use to detect transmissions and estimate their arrival times. This
paper investigates key tradeoffs associated with three different
modulation schemes that wildlife tags can plausibly use. The
factors that we investigate include the ability to detect weak
signals from distant tags, the ability to accurately estimate the
time-of-arrival at a given SNR, and the computational cost of
these detection and estimation algorithms. Our key contributions
are (1) evidence that BPSK modulation is superior in essentially
all relevant metrics, except perhaps chip availability, to FSK and
OOK; (2) evidence that OOK is a second-best choice and its
main drawback is poor performance under interference from
other tags; (3) algorithms to inexpensively search the frequency-
delay space at moderate and high SNRs. We also report on
implementation efforts designed to integrate robust processing
of BPSK tags into a wildlife tracking system.

I. INTRODUCTION

Reverse-GPS wildlife tracking systems are emerging as a

key tool to track multiple wild animals at high temporal and

spatial resolutions at the regional scale [1], [2], [3]. These

systems track animals by attaching to the animals transmitting

radio tags. Tags transmit an identifying packet, which we refer

to as a ping, at fixed intervals of 1–8s. A system of fixed

receivers estimates the arrival times of a ping to the receivers

and uses these time-of-arrival (TOA) estimates to estimate the

location of the tag. The use of fixed terrestrial receivers and

miniature transmitting tags limit the range of such systems

to several kilometers to tens of kilometers. These systems

have been so far successfully deployed six times. The system

of MacCurdy and others has been deployed in the Dutch

Wadden Sea [4], [5] and in Mauritania [5]. The system that we

have been working on, ATLAS, has been deployed in Israel’s

Hula Valley [2], [3], in the Dutch Wadden Sea, in England,

and in Germany. A third system has been implemented, but

does not appear to have been deployed [6]. These systems

appear to have largely replaced earlier direction-of-arrival

regional wildlife localization systems [7], [8]. TOA emitter

localization systems are also used to track wild fish, but using

ultrasonic transmitters [9], [10] rather than radio transmitters;

the mathematical principles of these systems are similar to

those of radio-frequency (RF) systems, but some of the factors

that constrain the transmitters are different.

Size and regulation constraints on the transmitting tags used

by these systems limit transmit power and ping duration.

Therefore, typical signal-to-noise ratios (SNRs) are negative.

Receivers detect the pings and estimate their arrival time

by correlating the incoming signal (or a signal demodulated

from the incoming signal) with an approximate replica of

the transmitted packet, which consists of a long Gold code

or a long pseudo-random code. Certain constraints on the

modulation, detection, and TOA estimation techniques in these

systems have limited their performance and robustness. This

paper investigate techniques to remedy these weaknesses.

In particular, the system of MacCurdy and others suffered

from the use of an incoherent receiver to receive phase-

modulated transmissions emitted by tags with poor frequency

stability. MacCurdy’s receiver used complex baseband cor-

relation to detect and estimate the TOA of incoming trans-

missions; this technique leads to complete failure to detect

the transmissions once their frequency deviates even slightly

from the nominal frequency [1], [11]. ATLAS uses frequency

modulation and an incoherent receiver. The ATLAS receiver

demodulates the frequency-shift-keyed (FSK) signal and cor-

relates the real demodulated signal with a replica of the

packet [2]. This makes the receiver relatively immune to

transmitted carrier frequency errors, but reduces the sensitivity

of the receiver and degrades the accuracy of TOA estimates

(relative to complex base-band correlation receivers). The FSK

demodulator that ATLAS receivers use also suffers badly from

inter-tag interference, thereby limiting the ability to track tags

that transmit simultaneously. Krüger’s system [6] uses on-off

keying (OOK), which we show is less power efficient than

phase modulation; this system also uses a carrier-frequency

estimation method that is susceptible to interference.

Our aim in this paper is to thoroughly investigate alterna-

tive modulation schemes that miniature transmitting tags can

plausibly produce and to investigate techniques to detect these

transmissions and to estimate their TOAs. We pay particular

attention to the computational complexity of detection and

TOA estimation, since the power envelope of receivers in

such systems is often constrained. We exploit the distinction

between the two modes in which a receiver can be relative to a

particular tag. In acquisition (or searching) mode, receiver tries

to detect pings from a tag with no prior knowledge of either

the ping phase or the frequency error in the transmitter. In

tracking mode, the receiver knows the ping phase (and hence

when to expect the next ping from the tag) and has an estimate

of the frequency error in the near past; both are derived from
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successful prior detections.

The rest of this paper is organized as follows. Section II

explains the fundamental factors that drive the design of

reverse-GPS systems and the factors that constrain these

designs. Section III describes our model, algorithms to detect

transmissions from tags and to estimate their arrival times,

and the performance and behavior of these algorithms under

both white noise and under interference from other tracking

tags. Section IV describe our on-going efforts to implement

better tags and better detection and estimation algorithms for

ATLAS, and Section V presents our conclusion from this

research.

II. DRIVING AND CONSTRAINING FACTORS

System design for TOA localization systems is driven by

the fundamental Cramer-Rao Lower Bound (CRLB). Given a

transmitted signal s of duration T seconds and bandwidth B
Hertz through a channel that delays it, attenuates it and adds

to it Gaussian white noise, the variance of a TOA estimate τ
(an estimate of the delay in the channel) is limited by

var(τ) ≥
(

SNR · T · F̄ 2
)

−1
,

where SNR is the signal-to-noise ratio of the received signal

and where F̄ 2 is the mean squared bandwidth of s [12,

pages 53 to 56]. The mean squared bandwidth is defined as

F̄ 2 =

´

(2πF )2|S(F )|2dF
´

|S(F )|2dF
,

where S(F ) is the Fourier transform of s.

Achieving or approaching the bound requires knowledge of

s in the receiver; incomplete information about s may degrade

the estimate. This knowledge can be in the form of a speci-

fication of s (e.g., carrier frequency, symbol rate, the symbol

sequence, etc) from which the actual signal may deviate to

some extent, or from a replica of the actual transmitted signal.

The CRLB indicates what the designer of a TOA localiza-

tion system can do to achieve high accuracy:

1) Increase the power of the transmitted signal s, to achieve

high SNR.

2) Increase the duration of s.

3) Increase the bandwidth of s (in a way that maximizes

F̄ 2).

4) Minimize uncertainties regarding what is transmitted

exactly, especially uncertainties that the receiver cannot

resolve.

When the system’s own transmissions occupy the channel

a significant fraction of the time, increasing the duration of

transmissions may reduce the SNR at receivers, especially if

transmission times of different tags are not coordinated.

In wildlife localization systems the ability to take the

measures listed above is severely constrained, due to the

following factors:

1) Increasing transmit power shortens the life-span of

battery-operated tags, may require heavier and larger

power-supply and power-amplifier components. Further-

more, power is usually constrained by relevant emission

regulations.

2) Increasing the duration of transmissions shortens the

life-span of batteries and increases inter-tag interference.

3) Increasing the bandwidth of transmissions requires a

wideband transmitter, which limits the choice of compo-

nents for tags. Furthermore, bandwidth is also limited by

emission regulation, which may limit either bandwidth

or the span of available frequency bands.

4) In wildlife localization systems, information about the

transmitted signal s are based on its specification (nom-

inal parameters). As explained below, we cannot expect

to have access to a high-quality replica of the signal that

was actually transmitted. Reducing uncertainty about the

transmitted signal may require modulators that are not

available on otherwise attractive transmitter components

and frequency control mechanisms that increase size

and/or power consumption (e.g., temperature compen-

sated oscillators).

Finally, addressing uncertainties about s in the receiver may

require a TOA estimator that is computationally much more

expensive than an estimator for a known s. This increases

the cost of receiver and limits the applicability of the system

to off-grid sites (where receivers are powered by solar/wind

power), or alternatively reduces the TOA estimate rate within

a given receiver power envelope.

The next subsections describe these constraining factors

more fully.

A. Regulatory Constraints

ATLAS tags are designed to comply with ETSI standard

EN 300 220 for non-specific short range devices [13]. The

tags operate on the 434 MHz band; the standard allows,

under operational band H, transmissions of up to 10mW ERP

with a duty cycle of 10% between 433.05 and 434.79 MHz;

transmitters are not required to ascertain that the channel is not

occupied and the transmission may span the entire 1.74 MHz

band. The same standard allows for higher power (25mW)

and wider bandwidth (3 MHz) at 865–868 MHz, but at a

lower duty cycle (1%) and low power density. The standard

allows for significantly higher power (500mW) only over a

much narrower 0.25 MHz sub-band. Wildlife tags may operate

under other regulatory regimes, but these rules are typical for

unlicensed equipment that does not participate in sophisticated

spectrum-sharing or interference-avoidance protocols.

We note that VHF bands in which wildlife telemetry is

allowed (e.g., 150 MHz in Europe and 166 MHz in the US) are

too narrow for TOA localization systems and that frequencies

above 1 GHz suffer from increased path loss that restricts

systems to short distances.

To summarize, regulation at sub-1 GHz frequencies typi-

cally allow transmit power of 10-25mW and bandwidths of

1.7–3 MHz.



Fig. 1. CC1310-Based ATLAS tags for the 434MHz band. The boards weigh
approximately 0.3g, leading to total tag mass of 0.8g and up.

B. Transmitter Constraints

Size and weight constraints favor the use of single-chip inte-

grated transmitters or transceivers. A chip that also integrates a

microcontroller (MCU) is often preferable to a radio-only chip,

to further reduce the total size of tags. First generation ATLAS

tags used two 4mm-by-4mm chips, a CC1101 integrated

transceiver and a separate MSP430 MCU [14]. The second

generation of ATLAS tags switched to a single 4mm-by-4mm

chip, a CC1310 or CC1350, which combine a radio with

an ARM MCU. One CC1310-based tag design is shown in

Figure 1. The CC13x0 devices support FSK and GFSK (a

band-limited version of FSK) modulation at data rates of up

to 4 Mb/s, as well as on-off-keyking (OOK; maximum data

rate for OOK is not clearly specified). The (G)FSK modulator

in CC13x0 modulates the RF synthesizer directly; the signal

is not produced digitally at baseband and upconverted.

Chips from other vendors have similar architectures and are

subject to similar limitations. For example, the EZRadioPRO

family of sub-1 GHz integrated transmitters and transceivers

support (G)FSK and OOK modulation at up to 1 Mb/s. We

note that in many cases, OOK can be produced by modulat-

ing power to a transmitter even if the transmitter does not

support OOK or does not support it at the required bitrate [6,

Section 5.1.2].

The dominance of (G)FSK in these integrated transceivers,

especially at high data rates, is not an accident. These devices

have relatively simple incoherent receivers, and in such re-

ceivers, phase and/or amplitude modulation schemes do not

improve the bit-error rate relative to frequency modulation

schemes.

However, binary phase-shift keying (BPSK or PSK) is not

difficult to produce directly at RF; essentially, all that is

required is an inverter and optionally an amplitude shaper (to

limit the bandwidth). Hence, some integrated transmitters and

transceivers can produce high data-rate BPSK. One example

is the fairly old AX5031 4mm-by-4mm transmitter, which can

produce BPSK at up to 2 Mb/s (the transceiver part from

the same family, AX5051, only supports 0.6 Mb/s data rates).

A newer example is the EFR32 family of RF MCUs, which

support BPSK transmissions (only), but which are physically

larger than the CC13x0, at 5mm-by-5mm.

The main implication of producing FSK by direct modula-

tion of the synthesizer is that the trajectory of the transmitted

signal in phase space is not carefully controlled and therefore

not necessarily repeatable. That is, the carrier phase may

change arbitrarily between symbols. This essentially rules out

the use of complex base-band correlation to detect transmis-

sions and to estimate their TOAs, as we explain below.

Another characteristic of miniature transmitters and

transceivers is that their carrier frequency is not very stable;

the carrier (as well as the symbol clock) are derived from a

crystal oscillator that is usually not temperature compensated

and that is subject to dramatic temperature changes when the

tag is attached to a wild animal.

C. Replica Constraints

In TOA wildlife localization system, information about

the transmitted signal s is derived from its specification:

carrier frequency, symbol rate, modulation parameters, and

the symbol sequence. As explained in Section II-B, miniature

transmitters may produce signals that deviate significantly

from their specification.

Other types of TOA localization systems estimate arrival

times using stored replicas of the actual transmitted signal, not

from its specification. This eliminates estimation inefficiency

caused by discrepancies between the specification and the

actual signal. This technique is used in radar systems, in which

the transmitter and receiver are co-located; a small fraction of

the transmitter’s energy is used to create a representation of

what was transmitted.

A related technique is used in passive emitter localization

systems designed to localize unknown but strong transmis-

sions: the received signals from two receivers are correlated

to estimate the time-difference-of-arrival (TDOA) of a signal

between the two receivers. Here knowledge of s is embodied

by the signal received at another receiver. However, wildlife

localization systems cannot use this technique, because the

signals emitted by tags are weak and usually received together

with strong interferers. In environments with strong interferers,

the TDOAs are likely to be those of an interferer, not those

of the target.

D. Receiver Constraints

ATLAS receivers consist of a sampling radios (typically

USRP N200) that feeds a computer running Linux or Win-

dows, typically a high-end desktop class computer (quad-core

or dual-core Intel i7 processor). Computers in this performance

class process RF samples (at about 8 Ms/s) to detect FSK

transmissions and to estimate TOAs at roughtly real-time

rate. That is, they take about 10ms to process 10ms worth

of samples. This performance is achieved by code in C



that uses FFT to correlate and that uses a high-performance

multicore FFT library (FFTW [15]). This is a constraining

factor, especially when a receiver must acquire the ping phase

of many tags. Receivers can use weaker computers, such as

Raspberry Pis, but these can only handle a small number of

tags.

III. DETECTION AND TOA ESTIMATION TECHNIQUES

This section presents and analyzes techniques to estimate

the TOA of packets emitted by wildlife tags.

We denote the transmitted signal by s(t). In practice, s is

a real continuous signal, but it is convenient to treat it as a

complex (quadrature) signal defined as the Hilbert transform

of the transmitted signal. We assume that s is a physical

realization of a nominal signal p known to the receiver. The

nominal and transmitted signals may differ in two key ways

that we explain below. We denote the received signal by r,

where r(t+ τ) = αs(t) + ǫ(t+ τ), where α is an attenuation

factor and ǫ represents band-limited noise and interference.

In RF localization systems, the carrier frequency is often

much higher than the bandwidth of p so r is down-converted

to make sampling and processing feasible or inexpensive. We

implicitly assume that r has been down converted to baseband

or to a low intermediate frequency and that p is represented

in this low frequency.

We refer to the discrete sampled versions of p and r as p[n]
and r[m]. We assume that the two sampling clocks have the

same frequency but that they differ arbitrarily in phase. The

assumption that the two frequencies are identical is satisfied

by using an accurate (GPS-locked) clock to sample r.

The signal p consists of a sinusoidal carrier modulated by

N chips (symbols) of a pseudo-random sequence g[i] = ±1
(possibly a Gold code, but at the lengths that we consider, good

pseudo-random codes behaves similarly to Gold codes). We

denote the carrier frequency by f (and we denote ω = 2πf )

and the chip period by θ (the chip clock frequency is 1/θ).

We denote by g(t) = g(⌊t/θ⌋) a continuous version of g[i].
We consider in this paper three modulation schemes that

miniature integrated transmitters and transceivers can produce:

FSK, BPSK, and OOK. In BPSK, the nominal signal is

p(t) = pBPSK(t) = Aei(φ+ωt)g(t) .

In OOK, the nominal signal is

p(t) = pOOK(t) = Aei(φ+ωt)
1

2
(g(t) + 1) .

In FSK, we define ω(t) = 2π(f + g(t)v) where v is the

deviation; the nominal signal is

p(t) = pFSK(t) = Aei(φ+
´

t

0
ω(ψ)dψ) .

We assume that p is zero outside [0, T ] where T = nθ.

The transmitted signal s may differ from the nominal

signal p in two main ways. First, s may be a stretched or

compressed version of p, s(t) = p((1 + δ)t) for some small

δ with absolute value of several parts per million (ppm). The

stretching/compression is a result of an inaccurate reference

oscillator from which both the carrier frequency and the

symbol clock are derived. Stretching and compression multiply

the carrier frequency and the symbol clock by the same factor,

but down-conversion changes that, as the next section shows.

Second, the rate of transition between symbols or chips in

p and s may differ and may not be known precisely. The

expressions given above for the modulated signals produce

very wideband signals, because of the step changes in g.

The transmitter may intentionally band-limit s in order to

comply with emission regulations, and/or analog components

in the transmitter may limit the bandwidth due to their

physical limitations. The bandwidth-limiting mechanisms can

be modeled mathematically by low-pass filtering g. This slows

down the frequency transitions in FSK and causes a ramp-

down of amplitude towards transition times and ramp-up

following transitions in PSK and OOK. This smoothing of

g is not necessarily fully specified and tightly controlled at

the transmitter.

A. Simulation and Experimental Parameters

In simulations below, as well as in experiments we carried

out with actual transmitters and receivers, we use transmission

parameters that correspond to those that are used in the ATLAS

system. Specifically, we use sequences of length N = 8192,

chip rate of 1 Mb/s, sampling rate of 8.333 Ms/s. The carrier

frequency of 434 MHz but the signals are down-converted to

baseband (zero intermediate frequency) before sampling.

The down-conversion magnifies the effect of reference-

clock error on the carrier frequency, but not the effect on

the symbol rate. A typical 10ppm clock-rate error changes

the 434 MHz carrier by 4.34 KHz; once down-converted

to 4 MHz, the carrier-frequency error becomes larger than

1000ppm. The symbol rate has not been translated and its error

remains 10ppm. Viewed differently, the 10ppm error displaces

the timing of the last symbol by about 8ms × 10−5 = 0.08µs

or 8% of one symbol period θ. On the other hand, the 4 MHz

down-converted carrier phase rotates during the 8ms packet

32 times too many, implying 64 extraneous phase inversions.

B. Coherent Detection and TOA Estimation

If p = s (there are little or no frequency and transition-rate

errors), the maximizer τ̂ of the absolute value of the correlation

of p and r is a maximum likelihood estimator of the delay

τ . We approximate the continuous correlation (p ⋆ r)(κ) =
´

p(t − κ)r̄(t)dt where r̄ is the complex conjugate of r by

interpolating the discrete correlation

(p ⋆ r)[k] =
∑

n

p[n− k]r̄[n] ,

which can be computed efficiently in O((T/∆) log2(T/∆))
time using the FFT, where 1/∆ is the sampling rate. In this

paper we use quadratic interpolation, which interpolates a

parabola through (p ⋆ r)[k−1], (p ⋆ r)[k0], and (p ⋆ r)[k+1],
where k0 is the index at which |(p ⋆ r)[k]| is maximized.

ATLAS takes the maximum of that parabola as the estimate

τ̂ of argmax(p ⋆ r)(κ) and hence of τ . In this paper we
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Fig. 2. The shape of the peak of the absolute value of the complex correlation
of a PSK signal and of the correlation of a demodulated PSK signal. The
vertical gray lines mark sampling times.

use a slightly more sophisticated scheme; we have found that

the maximum of the parabola is a biased estimator and that

the bias depends on the location of the peak in the inter-

sample period. Results reported here correct for this bias by

using a piecewise-linear model fitted to simulation results

(with a different pseudo-random code). We refer to this TOA

estimator as complex correlation. We have also experimented

with another form of interpolation, which is based on a least-

square fitting of an isosceles triangle. This improved the

accuracy on unshaped PSK complex correlation, because the

shape of the correlation magnitude is indeed a triangle, as can

be seen in Figure 2. We have not combined this technique

with bias removal and the results in the rest of the paper do

not use it.

For OOK, we correlate r with pBPSK. There is clearly no

harm in this; in the absence of noise the peak of the correlation

should have exactly the same value. However, pBPSK penalizes

the presence of correctly-phased signal when the OOK signal

should be zero, whereas pOOK does not. Therefore, we feel

that correlating with pBPSK produces a more robust estimator.

Smoothing g has little effect on the performance of

complex-correlation estimators for PSK and OOK. If

transition-rates are not known and/or vary between symbols,

complex correlation is still a good TOA estimator for BPSK

and OOK, but not for FSK. The problem with FSK is that any

variation in the transition rate from ω(t) at symbol i to ω(t)
at symbol i+1 introduces a variation in the relative phase of

s during these two symbols (say at the center of the symbol).

Hence, magnitude of the complex correlation signal p⋆ r may

fail to show a significat peak at τ .

In BPSK, the phase at the center of each symbol is known

from g, even if slow transitions cause the phase to be unpre-

dictable near the boundary of symbols. This implies that |p⋆r|
will have a strong peak at τ . The situation with OOK is even

simpler, because the phase of s is always φ+ ωt, even if the

amplitude ramps up and down slowly.

However, even in BPSK and OOK, the complex-correlation

estimator is very sensitive to stretching and compression of

s, as shown in the map of the ambiguity function of the

BPSK complex correlator in Figure 3 (left). A frequency

error of 0.5ppm (only 217Hz for f = 434 MHz) is enough

to wipe out completely the peak in the complex correlation

function. This is a known problem that plagued the system

of MacCurdy and others [1]. Sections III-E and III-D propose

techniques for estimating the stretching (or compression) of s
relative to p, which allow complex correlation with a correctly

stretched/compressed version of p.

Simulation results shown in Figure 4 show that in the

absence of frequency discrepancy between p and s, complex

correlation estimators for PSK and OOK are very effective. At

the transmission parameters of ATLAS, they produce standard

deviations of less than 1ns at SNRs of 0dB, and they identify

the correct correlation peak down to SNRs of less than -30dB.

At even lower SNRs the sample variance in the simulation

becomes huge because the correlation peak that corresponds

to τ is no longer the maximizer of the correlation. The

performance of OOK is about 3dB lower than that of PSK.

C. Detection and TOA Estimation using Demodulated Signals

Another approach to addressing the difficulties caused by

the discrepancies between p and s is to demodulate r and to

correlate the real demodulated signal d with g. That is, we

pass the samples r[n] though a process that aims to recover

from it a real estimate d[n] of the real function g. We do

not aim to recover the symbol clock or the binary symbols.

Since the demodulator is local (d[n] depends only on r[m] for

|m − n| ≤ 2θ/∆), d is relatively insensitive to discrepancies

between s and p. The BPSK demodulator that we use estimates

the differential of g, not g itself, but the principle is the same.

For FSK, we construct d as follows. We define two matched

filters f
(θ)
+1 and f

(θ)
−1 for complex sinusoids for frequencies f+v

and f − v of length θ/∆ (a single symbol) and apply them to

r, f+1 = f
(θ)
+1 ⋆ r. The demodulated signal is

dFSK =
|f+1| − |f−1|

|f+1|+ |f−1|
.

This signal is limited to [−1,+1] and reaches these extremes at

samples in which the matched filters are aligned with symbols

and only if f + v is orthogonal to f − v; it they are not

orthogonal, d will vary in a smaller range. Once d is computed,

we correlate d with g, find the maximum of the absolute value

of d⋆g, interpolate to approximate the continuous correlation,

and find the maximum of the interpolated real correlation

signal.

For BPSK, we convert g[n] to a differential signal, h[n] =
|g[n] − g[n − 1]| − 1, with value +1 when g[n] is different

than the previous symbol and −1 when they are identical.

We define two matched filters of length 2θ/∆ (two symbols):

p
(2θ)
same, a continuous-phase complex sinosoid for frequency f ,

and p
(2θ)
diff , a complex sinosoid for frequency f with a 180◦

phase shift in the middle. We correlate the matched filters with

r to produce filtered signals psame and pdiff and demodulate
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using the expression

dDPSK =
|pdiff| − |psame|

|pdiff|+ |psame|
.

The delay estimate τ̂ is the interpolated maximum of the

absolute value of the real correlation between dDPSK and the

differential symbol sequence h.

Demodulating OOK is even simpler. The simplest demod-

ulator simply computes the absolute value of samples of r.

We designed a more robust estimator that works as follows.

We first correlate r with a matched filter of length θ/∆ (one

symbol) at the carrier frequency f and take the absolute value

of this filtered signal f (θ) ⋆ r. We then compue the moving

average c of this real signal, averaged over windows of 12

symbols. Finally, we subtract the moving average (to remove

the DC component) and normalize by |c|. That is,

dOOK[i] =

(

f (θ) ⋆ r
)

[i]− c[i]

|c[i]|

where

c[i] =

i+6θ/∆
∑

j=i−6θ/∆

(

f (θ) ⋆ r
)

[j]

/ (

12θ

∆
+ 1

)

.

The ambiguity function |dDPSK ⋆ h| of the DPSK detector,

shown in Figure 3 (right), demonstrates the robustness of



these estimators. The correlation peak is easily detectable even

at stretching or compression of the reference clock of the

transmitter by 200ppm or more, which far exceeds the errors

caused by temperature and aging of miniature low-cost crystal

oscillators. We also see that stretching and compression of s
causes severe bias in τ̂ . The ambiguity function of our FSK

detector and OOK detector are not shown but are qualitatively

and quantitatively similar.

Also, correlating the output of a demodulator increases

σ2(τ̂ ) = var(τ̂ ) significantly relative to complex correlation

estimators. The results in Figure 4 reveal performance degrada-

tion of about an order of magnitude in σ(τ̂ ) at high SNRs (near

0) and of more than 2 orders of magnitude at low SNRs. The

degradation in location accuracy would be similarly degraded.

D. Low-SNR Brute-Force Coherent Acquisition

To estimate τ̂ using complex correlation under a carrier-

frequency error, we need to estimate δ, the carrier-frequency

error.

One way to estimate δ is to correlate r(t) not only with

p(t), but also with p((1+ δ)t) for a range of potential δs. The

absolute value of r(t)⋆p((1+δ)t) is a horizontal cross-section

through the ambiguity function (see Figure 3). By computing

these cross sections every δ0 difference and covering the

range of plausible reference-clock errors, say ±20ppm, we

can ensure that at least one cross section is close enough

to the peak of the ambiguity function. This is essentially

the same technique that is used for Doppler search in GPS

receivers. We stress that we use the notation p((1 + δ)t) to

denote the RF replica, which we never represent explicitly; we

create representations of down-converted replicas, in which the

carrier error is multiplied by approximately fRF /fIF whereas

the relative symbol rate error remains δ.

The shape of the ambiguity function determines an upper

bound on δ0. For the parameters of ATLAS transmissions,

the ambiguity function for complex PSK correlation shown

in Figure 3 suggests setting δ0 ≈ 0.1ppm. To account for

frequency errors of ±20ppm, we would need to correlate r
with about 400 replicas p. This is a significant computational

overhead, higher than that of the typical C/A Doppler search in

GPS , mostly due to the longer pseudo-random sequences that

ATLAS uses. However, at low SNR and if no prior information

on δ is available, this search is necessary.

We propose two techniques to reduce the overhead of the

frequency search. One technique tracks δ through multiple

transmissions of the same tag. As long as the temperature

of the tag is stable, δ will be stable, which allows us to use a

very limited search. More specifically, given the estimate δ̂ of

the previous transmission detected, we search at δ̂−δ0, δ̂, and

δ̂ + δ0; if the maximum absolute value of the correlation at δ̂
is higher than at adjacent frequencies, we keep the estimate;

otherwise we search for δ̂ again. We expect that in most cases,

the three complex correlations will be sufficient to both verify

that δ̂ is still a good estimate and to estimate the TOA.

The other technique, which we propose in the next section,

exploits the tolerance of correlations with a demodulated

signal to frequency errors to dramatically reduce the cost of

the search for δ̂.

E. High-SNR Acquisition

A more efficient way to estimate the frequency error δ
is to first estimate the arrival time τ using a frequency-

tolerant delay estimator that correlates a demodulation of r. As

shown in Figure 3, these TOA estimators are indeed frequency

tolerant (the figure shows an estimator for PSK transmissions,

but the behaviors of estimators for FSK and OOK are similar).

Once τ is known, we mix r(t + τ) with p(t) (pointwise

complex multiplication). This produces a complex exponential

at the error frequency δ. For example, for PSK we have

r(t+ τ) ⊗ p̄(t) = (αs(t) + ǫ(t+ τ))⊗ p̄(t)

= (αp((1 + δ)t) + ǫ(t+ τ)) ⊗ p̄(t)

= αAei(φ+ω(1+δ)t)g(t)⊗Ae−i(φ+ωt)g(t)

+ǫ(t+ τ)⊗Aei(φ+ωt)g(t)

= αA2e−iωδ + ǫ(t+ τ)⊗Aei(φ+ωt)g(t) .

We now perform an FFT and estimate δ as δ̂ =
(1/ω) argmaxδ |FFT (r(t + τ)⊗ p(t))|.

Once we have obtained the estimate δ̂, we estimate τ̂ again

using complex correlation, to improve the delay estimate.

This method of efficiently searching for the peak of the

ambiguity function only works as long as the demodulation-

correlator is able to estimate τ . As shown in Figure 4, the

demodulation-correlator can identify the delay only down to

SNRs of about -20dB. At lower SNRs, the complex correlator

can still estimate τ , but we would need to search for δ using

the brute-force method of Section III-D. The method described

here only works at relatively high SNRs (down to -20dB or

so, for the parameters of the ATLAS system).

F. SNR Estimation, Detection Thresholds, and TOA Variance

Estimation

TOA emitter localization systems must be able to determine

when they have acquired the signal from the target and can

switch to tracking mode, and they must also be able to

determine when tracking has failed (in which case they need

to switch back to acquisition mode). Another common re-

quirement is to estimate the uncertainty in estimated positions,

which depends on the uncertainty in TOA estimates.

The variance of TOA errors for a given signal depends

linearly on the noise-to-signal ratio (inverse SNR), as shown

by the CRLB. The variance of the errors depends on the SNR

of the signal from which we estimate the TOA; this signal is

r in the case of complex correlation, and is the output of the

demodulator in the case of demodulator correlation. Therefore,

we aim to estimate the SNR of these signals, not the SNR at

the antenna or at the analog-to-digital converter (ADC).

The method that we use to estimate the SNR was proposed

by Weller-Weiser et al. [2] but its properties were not carefully

investigated until now. When correlating a demodulated signal



d[n] with g[m] (the case presented in [2]), we normalize g so

that ‖g‖ = 1 and use the estimate

‖signal‖ =

N
∑

i=0

d

[

i+
τ̂

∆

]

g[i]

‖noise‖
2

=

(

N
∑

i=0

d

[

i+
τ̂

∆

]2
)

− ‖signal‖
2

SNR estimate =
‖signal‖

2

‖noise‖2
.

In other words, the total energy (signal plus noise and/or

interference) is the Euclidean norm of the demodulated signal

during the transmission period. This vector decomposes into

two orthogonal parts, the signal, whose length is the dot

product between the demodulated signal and the direction of

g, and the rest, which we take to be noise and interference.

When correlating complex signals, we use the same formula

but replace d with r and g with p (more precisely, with the

frequency-corrected p).

The graphs in Figure 5 show that for complex correlation

with PSK signals, this SNR estimator is unbiased and that its

variance is small for SNRs above about -20dB. At lower SNRs

the estimator becomes more noisy, and at some point it flattens

out and stops dropping even when the actual SNR keeps

dropping. The point at which this failure occurs is the point at

which the SNR of the correlation signals drops below 0dB and

it is no longer possible to identify the correlation peak asso-

ciated with the signal. For white noise, this happens at SNRs

below about -35dB, consistent with the results in Figure 4.

When the transmission is subject to inteference from another

tag transmitting a different pseudo-random sequence using the

same transmission parameters (frequency, modulation, symbol

rate, etc), the SNR estimator flattens out earlier, at about -

25dB; at that point, the SNR estimate no longer distinguishes

between a very weak signal and a strong inteferer.

The SNR estimator of the demodulated PSK signal is biased

with respect to the SNR at the antenna or the ADC, as shown

in Figure 5 (right). It also shows similar breakdowns at low

SNRs, and it also suffers from an earlier breakdown under

interference than under white noise.

The data in Figure 4 shows that the dependence of the TOA

variance on the true inverse SNR is approximately linear, as

predicted by the CRLB (if we assume that our TOA estimator

is efficient). Given the accuracy of the SNR estimator for

complex correlation, this indicates that the TOA variance is a

linear function of the SNR estimator, and hence can be easily

predicted from it using linear regression.

The data presented in Figure 5 also shows that we can

use these SNR estimators to reliably decide that the target is

present in r. At SNR estimates well above the point in which

the estimates flattens out, the estimate indicates the presence

of s in r. Below these flattening out points, it becomes

no longer possible to distinguish a strong interferer from a

weak target. Figure 6 shows in more details how to set the

Fig. 9. Our prototype tag based on the AX5031 transmitter, mounted on a
custom board (purple) and attached to a CC1350 evaluation board.

detection threshold for acquisition and tracking. The figure

shows the distribution of the SNR estimator when no target is

present in r, only white noise (blue) or an interferer (brown).

ATLAS stores these histograms, which allows it to find the

SNR estimator threshold that corresponds to a particular false-

negative probability. We normally use thresholds of 10−6for

acquisition and 10−5 for tracking.

On OOK signals, the SNR estimators are much more

sensitive to interferers, as shown in Figure 7. Under white

noise, the complex OOK correlator is biased and flattens

out at high SNRs; these are results of correlating r with

pPSK rather than with pOOK and are of little significance. The

behavior of correlating the output of our OOK demodulator

is almost identical to the behavior of demodulated PSK. The

SNR estimator of the complex OOK correlator becomes noisy

at SNRs about about -15dB in the presence of an interferer.

The SNR estimator of the demodulated OOK signal is much

noisier, sometimes reporting very low SNRs when the actual

SNR is good, even 0dB or above. These weaknesses in the

SNR estimator provide more evidence that PSK should be

preferred if at all possible. Interference from other tags is also

very harmful to FSK packets, as shown in Figure 8.

IV. IMPLEMENTATION

While the main aim of the research reported in this paper has

been to understand the implications of different modulation

schemes, which we have largely accomplished in Section III

using simulations, our ultimate goal is to implement the most

promising techniques in ATLAS. We have not completed this

task but we have made some significant steps towards this

goal. This section describes these steps.

A. A Prototype for PSK-Capable Tags

First, we have identified at least one integrated radio that

can transmit high-bitrate BPSK packets, the AX5031, and we

have built a prototype tag using it. The part can transmit on

434 MHz as well as on 868 and 915 MHz and can transmit
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Fig. 5. The relationship between the actual SNR of PSK signals and the estimated SNRs for complex correlation (left) under both white noise (top) and an
interferer transmitting a different pseudo-random sequence but with the same transmission parameters (frequency, modulation, etc). The graphs on the right
present the same analysis but for correlation of the output of a DPSK demodulator.

PSK packets at up to 2 Mb/s and at up to 15dBm. We designed

a custom printed circuit board to evaluate the transmitter and

connected it to a commercial evaluation board for the CC1350.

We wrote firmware for the CC1350 to periodically transmit

BPSK packets from the AX5031 at 1 Mb/s and we verified

that our implementation of the algorithms described above

(implementations within ATLAS, which are separate from

Matlab implementations that we used for the simulations) can

acquire and track transmissions from the tag.

We have also used this prototype tag to assess the frequency

stability of these miniature integrated transceivers, in order to

drive the configuration of brute-force searching.

Figure 10 shows the carrier-frequency trajectory of our

prototype tag during normal operation. In this experiment, the

tag was stationary on a table at room temperature (around

20C). It was then lifted and then warm air was blown on it. We

can see carrier frequency changes of more than 10ppm. The

experiment shows that we must expect variations of this mag-

nitude in carrier frequency, but also that when not subject to

temperature gradients, the frequency remains stable and can be

easily tracked. The carrier frequency was estimated using the

ATLAS implementation of the algorithm from Section III-E.

We have also designed a miniature tag that uses a CC1310

as a processor and an AX5031 as a transmitter. The design,

shown in Figure 11, is 12 by 23mm. There are two challenges

associated with miniaturizing an AX5031-based tag. One is

the obvious fact that the tag needs both the AX5031 and

a processor. The second is that the AX5031 requires an

elaborate matching network consisting of 14 capacitors and

inductors. In comparison, the first-generation ATLAS tags
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Fig. 10. Carrier-frequency estimation by our algorithm on pings (at a ping
rate of 1Hz) produced by our prototype tag. The dramatic spike was created
by lifting the tag and then blowing warm air on it by exhaling.

used the CC1101 transceiver, for which a single integrated

passive device replaces the entire matching network, allowing

for more compact designs. Given these constraints, the size of

this board is reasonable, and we plan to manufacture a batch

of these tags soon.

Another option that we plan to evaluate are new EFR32

RF MCUs; the data sheet of these devices states that they

can transmit BPSK, and they are capable of high bitrates.

However, BPSK is not yet supported by the development

Fig. 11. A board design for a AX5031-based tag, using a CC1310 as a
controller. The dimensions are 12 by 23mm. The AX5031 and its periphery
is mounted on the bottom of the board (depicted in blue) and the CC1310 is
mounted on the top (brown).

environment for the devices, so we cannot currently test them.

These devices come in 5mm-by-5mm packages (larger than

the 4mm-by-4mm CC13x0) and integrated passive matching

devices are available for them, hopefully allowing for very

compact board designs.

B. High-Performance Algorithms and Implementation in AT-

LAS Receivers

In addition to the Matlab codes that we used for the

simulations shown above, we have also implemented most of

the algorithms required to handle BPSK packets in ATLAS. In

particular, we have implemented the generation of pBPSK, the

DPSK demodulator, the complex correlator, and the carrier-

frequency estimator from Section III-E. The implementation

of the computationally-expensive signal processing algorithms
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Fig. 7. The relationship between the actual SNR and estimated SNR of OOK signals.

is in C and they utilize a high-performance FFT library [15].

The rest is written in Java. The implementation is integrated

with the acquisition and tracking algorithms of ATLAS and it

can acquire and track BPSK tags.

V. CONCLUSIONS

Our conclusions from this study are fairly clear. BPSK

modulation has emerged as a clear winner for reverse-GPS

wildlife tracking systems, as long as the system employs a

ping detection algorithm that is tolerant to carrier-frequency

errors in tags. When implemented using complex correlation

(which require that the carrier-frequency errors are estimated

and adjusted for), BPSK is highly immune to both white

noise and to interference from other tags and offers sensitivity

and TOA estimation accuracy that are superior to those of

FSK and OOK, the other modulation schemes that miniature

UHF transmitters and transceivers can emit. Furthermore, we

have shown how to estimate the frequency errors of tags

using a computationally inexpensive algorithm as long as

SNRs are not very low. Finally, because the performance of

our demodulated DPSK correlator is similar to that of our

demodulated FSK correlator, we can say that BPSK has no

disadvantages relative to FSK in this application, other than

perhaps the wider availability of miniature FSK transmitters.

OOK is theoretically similar to BPSK but less efficient

in terms of use of power and much more susceptible to

interference from other tags. The inefficiency is both due to

the fact that half the transmitted power is a carrier that is

useless for tag identification and for TOA estimation, and due

to the fact that the synthesizer consumes power even when

the transmitter is in the off state; in miniature transmitters,

most of the power is consumed by the synthesizer, not by

the RF power amplifier. However, there are more integrated

transmitters and transceivers that can transmit OOK than

devices that can transmit BPSK; this is one reason that we

explored this modulation.
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Fig. 8. The relationship between the actual SNR and estimated SNR of FSK signals. We do not show the performance of the complex correlator since it is
unreliable for FSK.

There appears to be no good reason to use FSK, the

modulation scheme that ATLAS currently use, other than the

fact that virtually every miniature integrated transmitter and

transceiver can produce FSK.
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