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Abstract We describe the design, implementation, and performance of a new
parallel sparse Cholesky factorization code. The code uses a supernodal mul-
tifrontal factorization strategy. Operations on small dense submatrices are per-
formed using new dense-matrix subroutines that are part of the code, although
the code can also use theBLAS andLAPACK. The new code is recursive at both
the sparse and the dense levels, it uses a novel recursive data layout for dense sub-
matrices, and it is parallelized using Cilk, an extension of C specifically designed
to parallelize recursive codes. We demonstrate that the new code performs well
and scales well on SMP’s.

1 Introduction

This paper describes the design and implementation of a new parallel direct sparse
linear solver. The solver is based on a multifrontal supernodal sparse Cholesky factor-
ization (see, e.g., [20]). The multifrontal supernodal method factors the matrix using
recursion on a combinatorial structure called the elimination tree (etree). Each vertex
in the tree is associated with a set of columns of the Cholesky factorL (unknowns in
the linear system). The method works by factoring the columns associated with all the
columns associated with proper decsendants of a vertexv, then updating the coeffi-
cients of the unknowns associated withv, and factoring the columns ofv. The updates
and the factorization of the columns ofv are performed using calls to thedense level-3
BLAS [7, 6]. The ability to exploit the denseBLAS and the low symbolic overhead allow
the method to effectively utilize modern computer architectures with caches and mul-
tiple processors. Our solver includes a newly designed and implemented subset of the
BLAS/LAPACK, although it can use existing implementations, such asATLAS [26] and
BLAS produced by computer vendors [1, 2, 5, 15–17,23].

While the multifrontal supernodal method itself is certainly not new, the design of
our solver is novel. The novelty stems from aggressive use of recursion in all levels of
the algorithm, which allows the solver to effectively utilize complex advanced memory
systems and multiple processors. We use recursion in three ways, one conventional and
two new:
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– The solver uses a recursive formulation for both the multifrontal sparse factoriza-
tion and for the new implementation of theBLAS. This approach is standard in
multifrontal sparse factorization, and is now fairly common in new implementa-
tions of the dense linear algebra codes [3, 9, 10, 13, 12, 14, 25, 26]. A similar ap-
proach was recently proposed by Dongarra and Raghavan for a non-multifrontal
sparse Cholesky method [8]. This use of recursive formulations enables us to ex-
ploit recursion in two new ways.

– The solver exploits parallelism by declaring, in the code, that certain function calls
can run concurrently with the caller. That is, the parallel implementation is based
entirely on recursive calls that can be performed in parallel, and not on loop parti-
tioning, explicit multithreading, or message passing. The parallel implementation
uses Cilk [24, 11], a programming environment that supports a fairly minimal par-
allel extension of the C programming language and a specialized run-time system.
One of the most important aspects of using Cilk is the fact that it performs dynamic
scheduling that leads to both load balancing and locality of reference.

– The solver lays out dense submatrices recursively. More specifically, matrices are
laid out in blocks, and the blocks are laid out in memory using recursive partition-
ing of the matrices. This data layout, originally proposed by Gustavson et al. [12]
ensures automatic effective utilization of all the levels of the memory hierarchy
and can prevent false sharing and other memory-system problems. The use of a
novel indirection matrix enables low-overhead indexing and sophisticated memory
management for block-packed formats.

The rest of the paper is organized as follows. Section 2 describe the design of the new
dense subroutines. Section 3 describes the design of the parallel sparse Cholesky fac-
torization code. Section 4 describes the performance of the new solver, and Section 5
presents our conclusions.

2 Parallel Recursive Dense Subroutines

Our solver uses a novel set ofBLAS (basic linear algebra subroutines; routines that
perform basic operations on dense blocks, such as matrix multiplication; we informally
include in this term dense Cholesky factorizations). The novelty lies in the fusion of
three powerful ideas: recursive data structures, automatic kernel generation, and parallel
recursive algorithms.

2.1 Indirect Block Layouts

Our code stores matrices by block, not by column. Every block is stored contiguously
in memory, either by row or by column. The ordering of blocks in memory is based
on a recursive partitioning of the matrix, as proposed in [12]. The algorithms use a re-
cursive schedule, so the schedule and the data layout match each other. The recursive
layout allows us to automatically exploit level 2 and 3 caches and the TLB. The re-
cursive data layout also prevents situations in which a single cache line contains data
from two blocks, situations that lead to false sharing of cache lines on cache-coherent
multiprocessors.
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A11

Array of pointers, stored by column

A21 A12 A22 A31 A41 A32 A42 A13 A23 A14 A24 A33 A43 A43 A44

Array of submatrices, stored by submatix, each submatrix stored by row or by column

Figure 1. The use of indirection in the layout of matrices by block. The matrix is represented by
an array of pointers to blocks (actually by an array of structures that contain pointers to blocks).

Our data format uses a level of indirection that allows us to efficiently access ele-
ments of a matrix by index, to exploit multilevel memory hierarchies, and to transpar-
ently pack triangular and symmetric matrices. While direct access by index is not used
often in most dense linear algebra algorithms, it is used extensively in the extend-add
operation in multifrontal factorizations.

In our matrix representation, shown in Figure 1, a matrix is represented by a two-
dimensional array of structures that represent submatrices. The submatrices are of uni-
form size, except for the submatrices in the last row and column, which may be smaller.
This array is stored in a column major order in memory. A structure that represents
a submatrix contains a pointer to a block of memory that stores the elements of the
submatrix, as well as several meta-data members that describe the size and layout of
the submatrix. The elements of a submatrix are stored in either column-major order or
row-major order. The elements of all the submatrices are normally stored submatrix-
by-submatrix in a large array that is allocated in one memory-allocation call, but the
order of submatrices within that array is arbitrary. It is precisely this freedom to ar-
bitrarily order submatrices that allows us to effectively exploit multilevel caches and
non-uniform-access-time memory systems.

2.2 Efficient Kernels, Automatically-Generated and Otherwise

Operations on individual blocks are performed by optimized kernels that are usually
produced by automatic kernel generators. In essence, this approach bridges the gap be-
tween the level of performance that can be achieved by the translation of a naive kernel
implementation by an optimizing compiler, and the level of performance that can be
achieved by careful hand coding. The utility of this approach has been demonstrated by
ATLAS, as well as by earlier projects, such asPHIPAC [4]. We have found that on some
machines with advanced compilers, such asSGI Origin’s, we can obtain better perfor-
mance by writing naive kernels and letting the native optimizing compiler produce the
kernel. OnSGI Origin’s, a compiler feature called the loop-nest optimizer delivers better
performance at smaller code size than our automatically-generated kernels.

We currently have kernel generators for twoBLAS routines:DGEMM andDSYRK,
and we plan to produce two more, forDTRSM, and DPOTRF. The kernel generators
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accept as input several machine parameter and code-configuration parameters and gen-
erate optimized kernels automatically. Our matrix multiplication (DGEMM) kernel gen-
erator is essentially theATLAS generator (by Whaley and Petitet). We have implemented
a similar generator for rank-k update (DSYRK). The additional kernels ensure that we
obtain high performance even on small matrices; relying on only on a fastDGEMM ker-
nel, which is the strategy thatATLAS uses, leads to suboptimal performance on small
inputs. OurDSYRK kernel is simpler thanATLAS’s DGEMM kernel: it uses unrolling but
not optimizations such as software pipelining and prefetching.

The flexibility of our data structures allows us one optimization that is not possible
in ATLAS and other existing kernels. Our data structure can store a submatrix either
by row or by column; a bit in the submatrix structure signals whether the layout is by
row or by column. Each kernel handles one layout, but if an input submatrix is laid out
incorrectly, the kernel simply calls a conversion subroutine that transposes the block and
flips the layout bit. In the context of theBLAS andLAPACK calls made by the sparse
factorization code, it is never necessary to transpose a block more than once. In other
BLAS implementations that are not allowed to change the layout of the input, a single
block may be transposed many times, in order to utilize the most efficient loop ordering
and stride in each kernel invocation (usually in order to perform the innermost loop as
a stride-1 inner product).

2.3 Parallel Recursive Dense Subroutines

The fact that the code is recursive allows us to easily parallelize it using Cilk. The syntax
of Cilk, illustrated in Figure 2 (and explained fully in [24]) allows the programmer to
specify that a function call may execute the caller concurrently with the callee. A special
command specifies that a function may block until all its subcomputations terminate.
Parallelizing the recursiveBLAS in Cilk essentially meant that we added thespawn
keyword to function calls that can proceed in parallel and thesync keyword to wait for
termination of subcomputations. The full paper will contain a full example. We stress
that we use recursion not just in order to expose parallelism, but because recursion
improves locality of reference in the sequential case as well.

3 Multifrontal Supernodal Sparse Cholesky Factorization

Our multifrontal supernodal sparse Cholesky implementation is fairly conventional ex-
cept for the use of Cilk. The code is explicitly recursive, which allowed us to easily par-
allelize it using Cilk. In essence, the code factors the matrix using a postorder traversal
of the elimination tree. At a vertexv, the code spawns Cilk subroutines that recursively
factor the columns associated with the children ofv and their descendants. When such a
subroutine returns, it triggers the activation of an extend-add operation that updates the
frontal matrix ofv. These extend-add operations that apply updates from the children
of v are performed sequentially using a special Cilk synchronization mechanism called
inlets.
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cilk matrix* snmf factor(vertex v) {
matrix* front = NULL;
inlet void extend add helper(matrix* Fc) {
if (!front) front = allocate front(v);
extend add(Fc, front);
free front(Fc);

}

for (c = first child[v]; c != -1; c = next child[c]) {
extend add helper( spawn snmf factor(c) );

}
sync; // wait for the children & their extend-adds
if (!front) front = allocate front(v); // leaf

// now add columns of original coefficient matrix to
// frontal matrix, factor the front, apply updates,
// copy columns to L, and free columns from front

return front;
}

Figure 2. Simplified Cilk code for the supernodal multifrontal Cholesky factorization with inlets
to manage memory and synchronize extend-add operations.

3.1 Memory Management and Synchronization using Inlets

Inlets are subroutines that are defined within regular Cilk subroutines (similar to inner
functions in Java or to nested procedures in Pascal). An inlet is always called with a first
argument that is the return value of a spawned subroutine, as illustrated in Figure 2. The
runtime system creates an instance of an inlet only after the spawned subroutine returns.
Furthermore, the runtime system ensures that all the inlets of a subroutine instance are
performed atomically with respect to one another, and only when the main procedure
instance is either at aspawn or sync operation. This allows us to use inlets as a syn-
chronization mechanism, which ensures that extend-add operations, which all modify a
dense matrix associated with the columns ofv, are performed sequentially, so the dense
matrix is not corrupted. This is all done without using any explicit locks.

The use of inlets also allows our parallel factorization code to exploit a memory-
management technique due to Liu [18–20]. Liu observed that we can actually delay
the allocation of the dense frontal matrix associated with vertexv until after the first
child of v returns. By cleverly ordering the children of vertices, it is possible to save
significant amounts of memory and to improve the locality of reference. Our sequential
code exploits this memory management technique and delays the allocation of a frontal
matrix until after the first child returns. In a parallel factorization, we do not know in
advance which child will be the first to return. Instead, we check in the inlet that the
termination of a child activates whether the frontal matrix of the parent has already been
allocated. If not, then this child is the first to return, so the matrix is allocated and initial-
ized. Otherwise, the extend-add simply updates the previously-allocated frontal matrix.
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Since Cilk’s scheduler uses on each processor the normal depth-first C scheduling rule,
when only one processor works onv and its descendants, the memory allocation pattern
matches the sequential one exactly, and in particular, the frontal matrix ofv is allocated
after the first-ordered child returns but before any of the other children begin their fac-
torization process. When multiple processors work on the subtree rooted atv, the frontal
matrix is allocated after the first child returns, even if it is not the first-ordered child.

3.2 Interfaces to the Dense Subroutines

The sparse Cholesky code can use both traditionalBLAS and our new recursiveBLAS.
Our newBLAS provide two advantages over traditionalBLAS: they exploit deep mem-
ory hierarchies better and they are parallelized using Cilk. The first advantage is not
significant in the sparse factorization code, because it affects only large matrices, in
particular matrices that do not fit within the level-2 cache of the processor. Since many
of the dense matrices that the sparse factorization code handles are relatively small, this
issue is not significant. The second advantage is significant, as we show below, since
it allows a single scheduler, the Cilk scheduler, to manage the parallelism in both the
sparse factorization level and the denseBLAS/LAPACK level.

On the other hand, the recursive layout that ourBLAS use increases the cost of
extend-add operations, since computing the address of the(i, j) element of a frontal
matrix becomes more expensive. By carefully implementing data-access macros (and
functions that the compiler can inline on theSGI platform), we have been able to reduce
the total cost of these operations, but they are nonetheless significant.

4 Performance

Figure 3 shows that the uniprocessor performance of our new dense matrix subroutines
is competitive and often better than the performance of state-of-the-art vendor libraries
(SGI’s SCSLversion 1.3 in this case). The graphs show the performance of the vendor’s
routine declines when the matrix grows above the size of the processor’s level-2 cache,
but that the performance of our routine does not. The graphs in the figure also show that
even though the cost of copying to and from column-major order is significant, on large
matrices our routine outperforms the vendor’s routine even when this cost is included.
Measurements on Pentium-III machines running Linux, now shown here due to lack of
space, indicate that our new routines are similar in performance and sometimes faster
than ATLAS. They are faster especially on small matrices, where the benefit of using
multiple automatically-generated kernels is greatest. The data in the figure shows the
performance of dense Cholesky factorization routines, but the performance characteris-
tics of other routines are similar.

In experiments not reported here, we have found that on the Origin 3000, the unipro-
cessor performance of our new dense codes does not depend on the ordering of blocks.
That is, as long as we lay out matrices by block, performance is independent of the or-
dering of blocks (recursive vs. block-column-major). It appears that the spatial locality
that laying out matrices by block provides is sufficient, and that the additional coarser-
grained spatial locality that we achieve by recursive layout of blocks does not contribute
significantly to performance.
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Figure 3. The uniprocessor performance of the new dense Cholesky factorization (denoted
TAUCS) compared to the performance ofSCSL, SGI’s native BLAS/LAPACK. Each plot shows
the performance of our new subroutine with recursive layout, the performance of the new sub-
routine when the input and output is in column-major order (in which case we copy the input and
output to/from recursive format), and the performance ofSCSL.

Figure 4 shows that our new dense matrix routines scale well unless memory access
times vary too widely. The graphs show the performance of the dense Cholesky factor-
ization routines on a 32-processorSGI Origin 3000 machine. The entire 32-processor
machine was dedicated to these experiments. On this machine, up to 16 processors can
communicate through a single router. When more than 16 processors participate in a
computation, some of the memory accesses must go through a link between two routers,
which slows down the accesses. The graphs show that when 16 or fewer processors are
used, our new code performs similarly or better thanSCSL. The performance difference
is especially significant on 16 processors. But when 32 processors are used, the slower
memory accesses slow our code down much more than it slowsSCSL (but evenSCSL

slows down relative to its 16-processors performance). We suspect that the slowdown
is mostly due to the fact that we allocate the entire matrix in one memory-allocation
call (so all the data resides on a single 4-processor node) and do not use any memory
placement or migration primitives, which would render the code less portable and more
machine specific.

Figure 5 (left) shows that our overall sparse Cholesky code scales well with up to 8
processors. The code does not speed up further when it uses 16 processors, but it does
not slow down either. The graph also shows the benefit of parallelizing the sparse and
dense layers of the solver using the same parallelization mechanism. The code speeds
up best (green circles) when both the sparse multifrontal code and the dense routines
are parallelized using Cilk. When we limit parallelism to either the sparse layer or to
the dense routines (red/blue triangles), performance drops significantly.

We acknowledge that the absolute performance of the sparse factorization code,
as shown in Figure 5 (right), appears to be lower than that of state-of-the-art sparse
Cholesky codes. We have not measured the performance of the code relative to the
performance of other codes, but from indirect comparisons it appears that the code is
slower thanPARADISO [22], for example. We have received reports that the code is
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Figure 4. The parallel performance of the new dense Cholesky factorization (without data copy-
ing) on matrices of dimension 2000 (left) and 4000 (right). The lack of speedup on 2 processors
on the 2000-by-2000 matrix appears to be a Cilk problem, which we have not been able to track
down yet.
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Figure 5. The performance of the parallel supernodal multifrontal sparse Cholesky in Cilk. The
graph on the left shows the performance of the numerical factorization phase of the factoriza-
tion on a 500 MHz Origin 3000 machine, on a matrix that represents a regular 40-by-40-by-40
mesh. The symbolic factorization phase degrades performance by less than 5% relative to the
performance shown here. The three plots show the performance of our Cilk-parallel sparse solver
with our Cilk-parallel dense routines, the performance of our Cilk-parallel sparse solver with se-
quential recursive dense routines, and of our sequential sparse solver withSCSL’s parallel dense
routines.
The plot on the right shows the performance on a dual-processor Pentium-III machine for some
of thePARASOL test matrices. Performance is given in seconds to allow comparisons with other
solvers. The plot shows the performance of our code with recursive dense routines on 1 and 2
processors, and also the performance of our sparse code when it callsATLAS.

significantly faster on a uniprocessor than the sequential code of Ng and Peyton [21].
The sequential code is 5-6 times faster than Matlab 6’s sparsechol, which is written in
C but is not supernodal. We believe that using relaxed supernodes will bring our code to
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a performance level similar to that of the fastest codes (currently the code only exploits
so-called fundamental supernodes). We plan to implement this enhancement in the near
future.

5 Conclusions

Our research addresses several fundamental issues: Can blocked and possibly recursive
data layouts be used effectively in a large software project? In other words, is the over-
head of indexing the(i, j) element of a matrix acceptable in a code that needs to do
that frequently (e.g., a multifrontal code that performs extend-add operations on frontal
matrices)? How much can we benefit from writing additional automatic kernel gen-
erators? We clearly benefit from theDSYRK generator, but will additional ones help,
e.g. for extend-add? Can Cilk manage parallelism effectively in a multilevel library that
exposes parallelism at both the upper sparse layer and the lower dense layer?

So far, it seems clear that the Cilk can help manage parallelism and simplify code
in complex parallel codes. However, the slowdowns on 32 processors suggest that Cilk
codes should manage and place memory carefully on ccNUMA machines. It also ap-
pears that additional optimized kernels are beneficial, particularly since many of the
dense matrices that sparse solvers handle are quite small. It is not clear yet whether the
improved spatial locality of blocked layouts justifies the additional overhead of random
accesses to matrix elements.

Our research not only addresses fundamental questions, but it also aims to provide
users of mathematical software with state-of-the-art high-performance implementations
of widely-used algorithms. A stable version of our sequential code is freely available at
www.tau.ac.il/˜stoledo/taucs. This version includes the sequential multi-
frontal supernodal solver, but not the recursiveBLAS or the parallelized Cilk codes. We
plan to freely distribute all the codes once we reach a stable version that includes them.
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