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1. INTRODUCTION

A useful tool for analyzing the spectrum of an Hermitian matrix is the Courant-
Fischer Minimaz Theorem [2].

Theorem 1.1. (Courant-Fischer Minimax Theorem) Suppose that S € C"*™ is an
Hermitian matriz, then

Ak (S min max 5
dim(U)=k 5[y %%
x#0
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where \i.(S) is the k’th largest eigenvalue of S.

The goal of this short communication it to present a generalization of Theo-
rem 1.1, which we refer to as the Generalized Courant-Fischer Minimax Theorem.
We now state the theorem, and we give a proof in the next section.

Theorem 1.2. (Generalized Courant-Fischer Minimaz Theorem) Suppose that
S € C" ™ s an Hermitian matriz and that T € C"*™ is an Hermitian positive
semidefinite matriz such that null(T) C null(S). For 1 < k < rank(T') we have

Ae(S,T) = min max Z‘*SJZ
U L null(T)
and
Ax(S,T) = max mi x*Sx .
dim(V) = rank(T) — k + 1 zeV x*Tx
V L null(T)
2. PROOF

We begin by stating and proving a generalization of the Courant-Fischer Theo-
rem for pencils of Hermitian positive definite matrices.
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Theorem 2.1. Let S,T € C™ ™ be Hermitian matrices. If T is also positive
definite then

x*Sx
(S, T) = i
K(5,T) dirg?g)l:kglea(}( x*Tx

and

x*Sz

o Tx

Proof. Let T = L*L be the Cholesky factorization of B. Let U be some k-
dimensional subspace of C", let x € U, and let y = Lz. Since T' is Hermitian posi-
tive definite (hence nonsingular), the subspace W = {Lx : « € U} has dimension k.
Similarly, for any k-dimensional subspace W, the subspace U = {L‘lac rx € W}
has dimension k. We have

x*Sx  *L*L*SL 'Lz y*L~*SL™ 'y

Ae(S,T) = max min
dim(V)=n—k+1z€V

o*Tx x*L*Lx N y*y
By applying the Courant-Fischer to L=*SL~!, we obtain
y*Lf*SLily

M(L™*SL™Y) = min max
dim(W)=k yeW y*y

. r*Sx
= min max .
dim(U)=k z€S x*T'x

The generalized eigenvalues of (S,T) are exactly the eigenvalues of L=*SL~! so
the first equality of the theorem follows. The second equality can be proved using
a similar argument. (]

Before proving the generalized version of the Courant-Fischer Minimax Theorem
we show how to convert an Hermitian positive semidefinite problem to an Hermitian
positive definite problem.

Lemma 2.2. Let S,T € C"*™ be Hermitian matrices. Assume that T is also a
positive semidefinite and that null(T) C null(S). For any Z € Crxrank(T) g,

range(Z) = range(T), the determined generalized eigenvalues of (S,T) are exactly
the generalized eigenvalues of (Z*SZ,Z*TZ).

Proof. We first show that Z*TZ has full rank. Suppose that Z*TZv = 0. We
have TZv € null(Z*). Therefore, TZv 1 range(Z) = range(T'). Obviously TZv €
range(7T), so we must have v = 0. Since null(Z*T'Z) = {0}, the matrix Z*TZ has
full rank.

Suppose that A is a determined eigenvalue of (S,7T). We will show that it is
a determined eigenvalue of (Z2*SZ,Z*TZ). The pencil (Z*SZ,Z*TZ) has ex-
actly rank(Z*TZ) determined eigenvalues. We will show that Z*TZ is full rank,
so the pencil (Z*SZ,Z*TZ) has exactly rank(T) eigenvalues. Since the pencil
(S,T) has exactly rank(T") determined eigenvalues, each of them an eigenvalue of
(Z*SZ,Z*TZ), this will conclude the proof.

Now let p be an eigenvalue of (Z2*SZ,Z*TZ). It must be determined, since
Z*TZ has full rank. Let y be the corresponding eigenvector, Z*SZy = pZ*TZy,
and let + = Zy. Now there are two cases. If u = 0, then SZy = Sx = 0
(since Z* has full rank and at least as many columns as rows). The vector z is
in range(Z) = range(T'), Tx # 0. This implies that y = 0 is also a determined
eigenvalue of (S,T).
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If u # 0, the analysis is a bit more difficult. Clearly, TZy € range(T) =
range(Z). But range(Z) = range(Z**) |1, Proposition 6.1.6.vii|, so Z*t*Z*TZy =
TZy [1, Proposition 6.1.7]. We claim that SZy € range(Z). If it is not, it Zy
must be in null(7") C null(S), but  would have to be zero. Therefore, we also have
2+t 7Z*SZy = SZy, so by multiplying Z*SZy = uZ*TZy by Z*T we see that p is
an eigenvalue of (S, T). O

We are now ready to prove Theorem 1.2, the generalization of the Courant-
Fischer Minimax Theorem. The technique is simple: we use Lemma 2.2 to reduce
the problem to a smaller-sized full-rank problem, apply Theorem 2.1 to characterize
the determined eigenvalues in terms of subspaces, and finally show a complete
correspondence between the subspaces used in the reduced pencil and subspaces
used in the original pencil.

Proof. (Theroem 1.2) Let Z € C**""k(T) haye range(Z) = range(T). We have
x*Z*SZx

T) = Z*SZ.7°T7) = i _—
and
Ae(S,T) = \e(27S2,2°TZ) = max vZTZr

min ————.
dim(W) = rank(T) — k +1 *<W o Z*TZx

The leftmost equality in each of these equations follows from Lemma 2.2 and the
rightmost one follows from Theorem 2.1.
We now show that for every k-dimensional subspace U C C" with U L null(7T),

there exists a k-dimensional subspace W C crank(?) gych that

*Sx y*Z*SZy
: Uy=q——-—": W
{:c*Tas ve } {y*Z*TZy ve ’
and vice versa. The validity of this claim establishes the min-max side of the
theorem.

We first need to show that & < rank(T'). This is true because every vector in U
is in range(T"), so its dimension must be at most rank(T).

Define W = {y e crank(?) ; 7, ¢ U}. Let by, ..., by be a basis for U. Because

U L null(T), b; € range(T'), so there is a y; such that Zy; = b;. Therefore,
dimension of W is at most k. Now let the vectors y;’s be a basis of W and define
b; = Zy;. The b;’s span U, so there are at most k£ of them, so the dimension of W
is at least k. Therefore, it is exactly k.

Every z € U is orthogonal to null(T'), so it must be in range(T"). There exist a y €
crank(T) guch that Zy = 2. So we have x*Sx/v*Tr = y*Z*SZy/y* Z*TZy. Com-
bining with the fact that y € W, we have shown inclusion of one side. Now suppose
y € W. Define z = Zy € U. Again we have x*Sz/2*Tx = y*Z*SZy/y*Z*T Zy,
which shows the other inclusion.

Now we will show that for every k-dimensional subspace W there is a subspace
U that satisfies the claim. Define U = {Zy:y € W}. Because Z has full rank,
dim(U) = k. Also, U C range(Z) = range(T) so U L null(T"). The equality of the
Raleigh-quotient sets follows from taking y € W and « = Zy € U or vice versa.
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