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1. Introduction

A useful tool for analyzing the spectrum of an Hermitian matrix is the Courant-
Fischer Minimax Theorem [2].

Theorem 1.1. (Courant-Fischer Minimax Theorem) Suppose that S ∈ Cn×n is an
Hermitian matrix, then

λk(S) = min
dim(U)=k

max
x ∈ U
x 6= 0

x∗Sx

x∗x

and

λk(S) = max
dim(V )=n−k+1

min
x ∈ V
x 6= 0

x∗Sx

x∗x

where λk(S) is the k'th largest eigenvalue of S.

The goal of this short communication it to present a generalization of Theo-
rem 1.1, which we refer to as the Generalized Courant-Fischer Minimax Theorem.
We now state the theorem, and we give a proof in the next section.

Theorem 1.2. (Generalized Courant-Fischer Minimax Theorem) Suppose that
S ∈ Cn×n is an Hermitian matrix and that T ∈ Cn×n is an Hermitian positive
semide�nite matrix such that null(T ) ⊆ null(S). For 1 ≤ k ≤ rank(T ) we have

λk(S, T ) = min
dim(U) = k
U ⊥ null(T )

max
x∈U

x∗Sx

x∗Tx

and

λk(S, T ) = max
dim(V ) = rank(T )− k + 1

V ⊥ null(T )

min
x∈V

x∗Sx

x∗Tx
.

2. Proof

We begin by stating and proving a generalization of the Courant-Fischer Theo-
rem for pencils of Hermitian positive de�nite matrices.
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Theorem 2.1. Let S, T ∈ Cn×n be Hermitian matrices. If T is also positive
de�nite then

λk(S, T ) = min
dim(U)=k

max
x∈U

x∗Sx

x∗Tx

and

λk(S, T ) = max
dim(V )=n−k+1

min
x∈V

x∗Sx

x∗Tx
.

Proof. Let T = L∗L be the Cholesky factorization of B. Let U be some k-
dimensional subspace of Cn, let x ∈ U , and let y = Lx. Since T is Hermitian posi-
tive de�nite (hence nonsingular), the subspace W = {Lx : x ∈ U} has dimension k.
Similarly, for any k-dimensional subspace W , the subspace U =

{
L−1x : x ∈W

}
has dimension k. We have

x∗Sx

x∗Tx
=
x∗L∗L−∗SL−1Lx

x∗L∗Lx
=
y∗L−∗SL−1y

y∗y
.

By applying the Courant-Fischer to L−∗SL−1, we obtain

λk(L−∗SL−1) = min
dim(W )=k

max
y∈W

y∗L−∗SL−1y

y∗y

= min
dim(U)=k

max
x∈S

x∗Sx

x∗Tx
.

The generalized eigenvalues of (S, T ) are exactly the eigenvalues of L−∗SL−1 so
the �rst equality of the theorem follows. The second equality can be proved using
a similar argument. �

Before proving the generalized version of the Courant-Fischer Minimax Theorem
we show how to convert an Hermitian positive semide�nite problem to an Hermitian
positive de�nite problem.

Lemma 2.2. Let S, T ∈ Cn×n be Hermitian matrices. Assume that T is also a

positive semide�nite and that null(T ) ⊆ null(S). For any Z ∈ Cn×rank(T ) with
range(Z) = range(T ), the determined generalized eigenvalues of (S, T ) are exactly
the generalized eigenvalues of (Z∗SZ,Z∗TZ).

Proof. We �rst show that Z∗TZ has full rank. Suppose that Z∗TZv = 0. We
have TZv ∈ null(Z∗). Therefore, TZv ⊥ range(Z) = range(T ). Obviously TZv ∈
range(T ), so we must have v = 0. Since null(Z∗TZ) = {0}, the matrix Z∗TZ has
full rank.

Suppose that λ is a determined eigenvalue of (S, T ). We will show that it is
a determined eigenvalue of (Z∗SZ,Z∗TZ). The pencil (Z∗SZ,Z∗TZ) has ex-
actly rank(Z∗TZ) determined eigenvalues. We will show that Z∗TZ is full rank,
so the pencil (Z∗SZ,Z∗TZ) has exactly rank(T ) eigenvalues. Since the pencil
(S, T ) has exactly rank(T ) determined eigenvalues, each of them an eigenvalue of
(Z∗SZ,Z∗TZ), this will conclude the proof.

Now let µ be an eigenvalue of (Z∗SZ,Z∗TZ). It must be determined, since
Z∗TZ has full rank. Let y be the corresponding eigenvector, Z∗SZy = µZ∗TZy,
and let x = Zy. Now there are two cases. If µ = 0, then SZy = Sx = 0
(since Z∗ has full rank and at least as many columns as rows). The vector x is
in range(Z) = range(T ), Tx 6= 0. This implies that µ = 0 is also a determined
eigenvalue of (S, T ).
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If µ 6= 0, the analysis is a bit more di�cult. Clearly, TZy ∈ range(T ) =
range(Z). But range(Z) = range(Z∗+) [1, Proposition 6.1.6.vii], so Z∗+Z∗TZy =
TZy [1, Proposition 6.1.7]. We claim that SZy ∈ range(Z). If it is not, it Zy
must be in null(T ) ⊆ null(S), but µ would have to be zero. Therefore, we also have
Z∗+Z∗SZy = SZy, so by multiplying Z∗SZy = µZ∗TZy by Z∗+ we see that µ is
an eigenvalue of (S, T ). �

We are now ready to prove Theorem 1.2, the generalization of the Courant-
Fischer Minimax Theorem. The technique is simple: we use Lemma 2.2 to reduce
the problem to a smaller-sized full-rank problem, apply Theorem 2.1 to characterize
the determined eigenvalues in terms of subspaces, and �nally show a complete
correspondence between the subspaces used in the reduced pencil and subspaces
used in the original pencil.

Proof. (Theroem 1.2) Let Z ∈ Cn×rank(T ) have range(Z) = range(T ). We have

λk(S, T ) = λk(Z∗SZ,Z∗TZ) = min
dim(W ) = k

max
x∈W

x∗Z∗SZx

x∗Z∗TZx

and

λk(S, T ) = λk(Z∗SZ,Z∗TZ) = max
dim(W ) = rank(T )− k + 1

min
x∈W

x∗Z∗TZx

x∗Z∗TZx
.

The leftmost equality in each of these equations follows from Lemma 2.2 and the
rightmost one follows from Theorem 2.1.

We now show that for every k-dimensional subspace U ⊆ Cn with U ⊥ null(T ),
there exists a k-dimensional subspace W ⊆ Crank(T ) such that{

x∗Sx

x∗Tx
: x ∈ U

}
=
{
y∗Z∗SZy

y∗Z∗TZy
: y ∈W

}
,

and vice versa. The validity of this claim establishes the min-max side of the
theorem.

We �rst need to show that k ≤ rank(T ). This is true because every vector in U
is in range(T ), so its dimension must be at most rank(T ).

De�ne W =
{
y ∈ Crank(T ) : Zy ∈ U

}
. Let b1, . . . , bk be a basis for U . Because

U ⊥ null(T ), bj ∈ range(T ), so there is a yj such that Zyj = bj . Therefore,
dimension of W is at most k. Now let the vectors yi's be a basis of W and de�ne
bi = Zyi. The bi's span U , so there are at most k of them, so the dimension of W
is at least k. Therefore, it is exactly k.

Every x ∈ U is orthogonal to null(T ), so it must be in range(T ). There exist a y ∈
Crank(T ) such that Zy = x. So we have x∗Sx/x∗Tx = y∗Z∗SZy/y∗Z∗TZy. Com-
bining with the fact that y ∈W , we have shown inclusion of one side. Now suppose
y ∈ W . De�ne x = Zy ∈ U . Again we have x∗Sx/x∗Tx = y∗Z∗SZy/y∗Z∗TZy,
which shows the other inclusion.

Now we will show that for every k-dimensional subspace W there is a subspace
U that satis�es the claim. De�ne U = {Zy : y ∈W}. Because Z has full rank,
dim(U) = k. Also, U ⊆ range(Z) = range(T ) so U ⊥ null(T ). The equality of the
Raleigh-quotient sets follows from taking y ∈W and x = Zy ∈ U or vice versa.
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