
Maximizing Non-Linear Concave Functions
in Fixed Dimension1

Sivan Toledo
Laboratory for Computer Science
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Abstract

Consider a convex set P in IRd and a piecewise polynomial concave function
F :P → IR. Let A be an algorithm that given a point x ∈ IRd computes F (x) if
x ∈ P, or returns a concave polynomial p such that p(x) < 0 but for any y ∈ P,
p(y) ≥ 0. We assume that d is fixed and that all comparisons in A depend on
the sign of polynomial functions of the input point. We show that under these
conditions, one can find maxP F in time which is polynomial in the number
of arithmetic operations of A. Using our method we give the first strongly
polynomial algorithms for many non-linear parametric problems in fixed di-
mension, such as the parametric max flow problem, the parametric minimum
s-t distance, the parametric spanning tree problem and other problems. We also
present an efficient algorithm for a very general convex programming problem
in fixed dimension.

Keywords: Convex programming, parametric searching, parametric optimiza-
tion, network flow.

1 Introduction

Consider a convex set P in IRd and a piecewise polynomial concave function F :P →
IR. Let A be an algorithm that given a point x ∈ IRd computes F (x) if x ∈ P, or
returns a separation polynomial , a concave polynomial p such that p(x) < 0 but for
any y ∈ P, p(y) ≥ 0. We assume that d is fixed and that all comparisons in A depend
on the sign of polynomial functions of the input point which are called comparison
polynomials . Our main result is that under these conditions, one can find maxP F
and a maximizer in time which is polynomial in the number of arithmetic operations
of A.

1An extended abstract of this paper appeared in [15].

1

The algorithm is based on the ingenious parametric searching technique invented
by Megiddo [12]. This technique can be directly applied to one dimensional concave
maximization problems, that is, when the domain of F is an interval on the real line.
The technique, which is described in detail in Section 2, can be summarized as follows.
We simulate the execution of A on a maximizer x? even tough we do not know the
location of x?. Therefore we handle it in the algorithm as a symbolic constant. When
we need to determine the sign of some polynomial p at x?, we compute the roots of
p. Since F is concave, it is fairly easy to determine the location of the maximum of
F with respect to each root. By determining between which two roots x? lies, we
can determine the sign of p(x?). In other words, we compute a decomposition of IR
such that in every cell the sign of p does not change, and determine which cell of the
decomposition contains a maximizer of F .

Cohen and Megiddo [4, 5] and independently Norton, Plotkin and Tardos [14]
generalized the technique to handle the multidimensional case, but only when F is
piecewise linear and the separation and comparison polynomials are all affine. When
a comparison polynomial p is affine, a space decomposition which is invariant for the
sign of p is a hyperplane H and two open half spaces. Such a hyperplane is called a
critical hyperplane. The restriction of F to H is a concave function in one dimension
lower. By induction, the maximum of F on H can be found. The assumption that
the comparison polynomials are affine also makes it relatively easy to explore the
neighborhood of H , and to determine on which side of it F is increasing, thereby
resolving the comparison. Since it is assumed that F is piecewise linear, there is a
maximizer which is a vertex of its graph. Such a maximizer can be found using linear
programming.

In the non-linear case the problem of resolving comparisons becomes much harder.
The comparison polynomials are not necessarily concave, and it is hard to compute a
sign invariant space decomposition and to locate the cell in the decomposition which
contain the maximizer. Our algorithm computes the decomposition and locates the
cell, but we prefer to describe it in a slightly different form which is more amenable
to recursive breakdown. We use a searching technique which is based on the weighted
Euclidean 1-center algorithm of Megiddo [13]. In this technique, the d dimensional al-
gorithm works by simulating the d−1 dimensional one on a hyperplane that contains
a maximizer of F . Three new tools are required in order to apply this searching tech-
nique to general concave maximization problems. The first is a sign invariant space
decomposition which will enable us to simulate the algorithm in one dimension lower.
The decomposition technique we use is Cylindrical Algebraic Decomposition [3]. We
use critical hyperplanes to locate a maximizer, so we need a way to decide on which
side of a hyperplane there is a maximizer. In Section 2.1 we describe a very general
algorithm for doing so, which is based on Fibonacci search. Finally, we use Lagrange
multipliers to find a maximizer.

Using our new technique we obtain the first strongly polynomial algorithms to
a wide variety of non-linear parametric problems in fixed dimension. For example,

2

given a graph in which the edges have concave polynomial weights, we can maximize
the max-flow in the graph, the minimum spanning tree, the minimum s-t distance
and so on. As is the case with other applications of Megiddo’s parametric search
technique, when there is a fast parallel algorithm for evaluating F , a fast parallel
algorithm for maximizing F can be obtained, and the efficiency of the sequential
maximization algorithm can be greatly improved. Using this improvement, we ob-
tain an efficient algorithm for optimizing a linear function under convex polynomial
constraints in fixed dimension. Our running time analysis is in the Random Access
Machine model [2].

Megiddo’s parametric searching technique is a lifting transformation. An algo-
rithm for evaluating a function F is simulated, and the point in which the function
is evaluated is handled as a symbolic constant λ. Megiddo’s lifting technique applies
to a very specific class of algorithms. Variables that are functions of λ are assumed
to be polynomial functions of λ, and conditional statements involving λ are assumed
to depend on the sign of such variables. Unfortunately, parametric searching algo-
rithms do not belong to this class, since they also find roots of polynomials. This
poses a difficulty in trying to lift such an algorithm, in order to generate a two di-
mensional searching algorithm. Our algorithm can be viewed as an extension of the
Megiddo’s technique to algorithms that are also allowed to find roots of polynomials.
Interestingly, Megiddo’s technique has been applied to many algorithms that perform
polynomial root finding, especially in geometric optimization (see for example [1]).
The implicit assumption in such applications is that the algorithm, which includes
root finding, is implemented using symbolic algebra tools that allow computation in
algebraic extensions and eliminate the need to handle algebraic numbers explicitly. If
so implemented, the algorithm does not perform root finding and can be lifted using
Megiddo’s technique. In this paper we show explicitly how to lift an algorithm that
performs root finding.

The next section describes in detail the application of Megiddo’s technique to
concave maximization problems. The general case is presented in Section 4. The
two dimensional case is presented separately in Section 3 in order to provide a full
description of an easy to visulize case. We conclude the paper in Section 5 with
several applications of our results.

2 Maximizing One Dimensional Concave Functions

We begin with a brief review of Megiddo’s parametric search technique [12] and how
to use it to solve parametric maximization problems. We first define the class of
algorithms that can be used as evaluators of F .

Definition Let A be an algorithm that gets as a part of its input a point x ∈ IRd, and
returns a real number depending on x, denoted F (x). We say that A is polynomial
in x with degree δ if the only dependencies on x are:

3

1. A is allowed to evaluate the polynomials p1(x), . . . , pk(x) of degree at most δ,
where δ does not depend on the input.

2. The only operations on variables in A that depend on x are addition of such
variables, addition of constants, and multiplication by constants.

3. The conditional branches in A that depend on x depend only on signs of vari-
ables that depend on x.

Definition A point x0 ∈ P is called a non-singular point of F if there is an ε > 0
such that the restriction of F to P ∩ {x : |x − x0| < ε} is a polynomial function. If
x0 is a non-singular point of F , this restriction of F is called the piece of F at x0.

Corollary 2.1 If A is polynomial in x with degree δ, then all the variables in A
that depend on x contain polynomials of degree of at most δ, and F (x) is piecewise
polynomial whose pieces are polynomials of degree at most δ.

Assume that we have an efficient algorithm A for evaluating F (x), which is poly-
nomial in x with some fixed degree δ, and that F is a concave function. Megiddo’s
main idea is to simulate A at a maximizer of F , denoted x?. As long as no com-
parisons are made, that is, no conditional branches that depend on the input point
are to be executed, it is easy to simulate the algorithm, by treating the variables as
polynomials and performing polynomial arithmetic. How do we resolve a conditional
branch that depend on the sign of a variable? We find the roots of the polynomial
stored in that variable, and locate x? among them as follows. We evaluate F at each
of the roots, and determine the location of a maximizer with respect to each of the
roots. (For now we assume that if we can evaluate F at a point we can also decide
the direction to x?, and in section 2.1 we justify this assumption.) In other words,
for every root, we test whether it is x?, or else whether x? is to its left or to its right.
Given this information, we can easily decide which way should the branch take, since
the sign of a polynomial is constant between its roots. We thus obtain a smaller and
smaller interval that is known to contain x?, and finally the algorithm terminates. In
section 2.1 we show how to obtain at this stage a maximizer of F and the two pieces
of F to its left and right. These pieces allow us to generalize the algorithm to higher
dimensions, and they provide a certificate of optimality for the maximizer.

In more abstract terms, given a comparison polynomial p, we decompose the
space (here IR) into cells which are invariant for the sign of p. In the one dimensional
case, the cells are points, which are the roots of p, and open intervals. Given this
decomposition, we decide in which cell there is a maximizer of F , and thus resolve
the comparison.

4

Running time analysis. Assuming that the algorithm A runs in T0 time, the
one dimensional maximization algorithm runs in time T1 = O(T 2

0), since whenever
the algorithm makes a comparison, we evaluate the function at each of the roots.
Megiddo [12] noticed that if we also have a parallel algorithm that evaluates the
function, we can exploit the parallelism to obtain faster maximization algorithm.
Assume that the parallel algorithm uses P processors and runs in Tp parallel time.
We simulate the algorithm sequentially. In each parallel step there are at most P
independent comparisons. Instead of evaluating the function at each of the roots
of all the associated polynomials, we perform a binary search over the set of O(P)
roots to locate x? among them. This results in O(log P) evaluations of F , and O(P)
overhead for performing the binary search by repeatedly finding the median of the set
of unresolved roots. Having done this, we can determine the sign of each of the O(P)
roots at x? and proceed to the next parallel step. The total cost of this procedure is
T1 = O(PTp + T0Tp log P). Since we only require that comparisons will be made in
parallel, we can use Valiant’s weak model of parallel computation [16].

2.1 Where is F Maximized?

Given a point x1, we need to determine the location of x? relative to x1. The tech-
niques for doing so in one dimension and the techniques that were used by [4, 5, 14]
do not seem to generalize to non-linear comparison polynomials and higher dimen-
sions. This section describes a new technique which is easy to generalize. We evaluate
F (x1). If we have previously encountered a point x0 such that F (x0) ≥ F (x1), we
can safely assume that there is a maximizer in the direction of x0. Otherwise, we do
not resolve the comparison. We duplicate the state of the simulated algorithm, and
in one copy resolve the comparison as if there is a maximizer to the left of x1, and in
the other copy as if there is a maximizer to the right of x1. We run those two copies
in parallel (by interleaving their execution on a sequential machine). For each root of
a comparison polynomial we obtain (from either copies; we do not know which one
of them is correct), we evaluate F at that point. As long as we do not encounter a
value of F larger than F (x1), we can determine which side of a given root contains a
maximizer. If we run into a point x2 where the value of F is larger than F (x1), we
again will not be able to resolve the comparison. But in this case, the maximizer is
on the same side of x1 as x2, so now we can resolve the comparison that involved x1.
In particular, we can decide which copy of the algorithm was given the correct answer
and discard the other. Of course, we now must run two copies of the algorithm in
which we resolve the comparison involving x2 in different ways. There are always two
copies of the algorithm executing. Eventually, both of our copies will terminate. Each
one of them returns F (x) as a polynomial. One of them corresponds to the piece of
F to the right of the point xk with the highest F value encountered, and the other
corresponds to the piece of F to the left of this point. We maximize these polynomials
over the corresponding intervals. If one of them attains a maximum higher than the

5

other inside its interval, this is the optimum, and this polynomial is the piece of F
on both sides of the maximum. Otherwise, they both attain the same maximum, and
in that case the point xk is a maximizer, and these two polynomials are the pieces
of F on its two sides. Since in most cases the cost of evaluating F dominates the
cost of duplicating the state of the algorithm we ignore this cost in the running time
analysis.

The same idea works in any dimension. Let F : IRd → IR be a concave function.
Suppose that we already know the value of F at some points in IRd, and that the
highest value we computed is F (x0). Given a hyperplane H , let the maximum of F
on H be F (x1). If F (x0) ≥ F (x1), we can safely assume that there is a maximizer in
the direction of x0. Otherwise there is another point x on the other side of H with
F (x) > F (x1). Hence at the intersection of the line segment xx1 with H the value
of F must be higher than F (x1) due to the concavity of F , a contradiction.

2.2 Finding a Feasible Point

In many cases the domain P is either all of IRd, or easy to compute as the intersection
of a small number of constraints pi(x) ≥ 0, where the pi’s are concave polynomials,
such as in the parametric max flow problem. But there are cases in which the domain
of F is defined by an exponential number of constraints, such as the parametric
minimum s-t distance in a connected graph. Using ideas from [4, 5, 14], we describe
how to deal with this problem in the non-linear case.

We assume that there is an algorithm Af for testing whether a point x belongs to
P, which either declares that x ∈ P, or declares that x 6∈ P and provides in addition a
violated constraint p(x) < 0, where p is a concave polynomial. We use this algorithm
to either find a point xf in P or decide that P is empty. If P is empty we report this
and halt. Otherwise, given a critical point x0, we test whether x0 ∈ P, and if not, we
know that there is a maximizer of F in the direction of xf .

We simulate the feasibility testing algorithm Af on xf . During the simulation,
we maintain an interval [a, b], which is known to contain P. In addition, for each
endpoint z ∈ {a, b} of the interval, if it is finite, we also maintain a constraint pz that
is violated if we pass this endpoint. (We begin with the interval (−∞,∞).) When
we must resolve a comparison, we find the roots of the comparison, and determine
whether one of them is a feasible point, in which case we return this point and halt.
If a given root being tested is not in P, a violated constraint p is returned. Since
for each x ∈ P, p(x) ≥ 0, we know that P must lie in [a, b] and also in the interval
{x : p(x) ≥ 0}. We therefore update [a′, b′] = [a, b] ∩ {x : p(x) ≥ 0}. If this new
interval is empty, we conclude that P is empty. Note that this event actually carries
more information, since if we assume without loss of generality that {x : p(x) ≥ 0}
is to the left of [a, b], then the two constraints p and pa provide a certificate that P
is empty. If the new interval in not empty and not equal to [a, b], we replace the
polynomials associated with the updated endpoints with p. It is easy to see that if we

6

have a parallel feasibility testing algorithm, we can exploit the parallelism and obtain
a faster algorithm using Megiddo’s scheme.

If at no point of the simulation the feasible interval becomes empty, then our
simulated algorithm terminates, and returns an answer. In addition, we have an
interval [â, b̂] where P must lie. If the algorithm returns “yes”, it means that every
point in [â, b̂] is a feasible point. Otherwise, it returns “no” and a violated constraint
p. It follows that this constraint is violated for all points of [â, b̂], so this constraint
together with either pâ or pb̂ provide proof of emptiness for P.

3 A Two Dimensional Algorithm

We now describe the parametric maximization algorithm in two dimensions, that is,
when F :P → IR where P ⊆ IR2. Let (x?, y?) be a maximizer of F . The main idea
of the algorithm is to simulate the one dimensional algorithm on F restricted to a
line x = x?. Since a concave function restricted to a line (or a hyperplane in higher
dimensions) is still concave, the problem of maximizing F restricted to a line is a one
dimensional problem. If we can simulate the one-dimensional algorithm on such a
line, we can find a maximizer y? on the line, which is also a global maximizer, and
we are done. The problem of course is how to make decisions during the simulation.
Let p be a comparison polynomial in the simulated non-parametric algorithm. We
compute a cylindrical decomposition of IR2 which is invariant for the sign of p. This
decomposition is constructed by computing the self intersections of the curve p = 0
and the points of vertical tangency of the curve. Those points are projected on the x-
axis, and the plane is decomposed into vertical slabs between those points. A vertical
slab (which is a generalized cylinder) may intersect the curve p = 0, but the roots of
p do not intersect each other inside the slab (see Figure 1).

We execute the one dimensional algorithm on the vertical lines that decompose
the plane into slabs, and we decide in which slab there is a maximizer (recall that in
Section 2.1 we have shown that if we can maximize F on a line, we can also decide
on which of its sides there is a maximizer).

The crucial point is that in each slab there is a constant number of roots to the
polynomial p(x, y) as a one dimensional polynomial in y. The location of those roots
depends on x, but the dependency is continuous. Hence we can simulate the one
dimensional algorithm in a consistent manner. However, the one dimensional algo-
rithm executes the non-parametric algorithm on the roots of p. We cannot perform
this directly, since the location of the roots depend on x. However, we can simu-
late the non-parametric algorithm. When the non-parametric algorithm performs a
comparison involving a polynomial q, we compute a cylindrical decomposition which
is invariant for both p and q. Again, we determine the slab in this decomposition
that contains a maximizer. We examine the root of p on which we simulated the
non-parametric algorithm in this slab, and determine the sign of q in that cell of the
decomposition, which is possible since the decomposition is invariant for the sign of

7

x

y

Figure 1: A cylindrical decomposition of IR2 invariant for the sign of a polynomial. The
solid curve is the root of the polynomial.

q.
Once all the executions of the non-parametric algorithm terminate, we must com-

pare the returned values, which are polynomials, to each other in order to decide
which one is higher. To compare a value r1(x, y) on a root y1(x) of p with a value
r2(xy) on a root y2(x), we compute (again using cylindrical decomposition) the x-
coordinates of the intersections of {r1(x, y1) = r2(x, y2), p(x, y1) = p(x, y2) = 0}, and
decide in which slab there is a maximizer. Using this information, we can compare
r1 to r2. Using a similar approach we can also find the maximum of a polynomial
in a certain interval, which is required in the technique of Section 2.1. Finally the
simulated one dimensional algorithm terminates. In fact, two copies of it terminate,
one which is a simulation to the left of the vertical line l on which the highest value of
F was found, and the other to its right. Each returns a curve pi(x, y) = 0, i ∈ {L,R}
on which the maximum is obtained, and the two pieces of F above and below this
curve, pi,A and pi,B. We find the maximum of F to the left of the line L by solving

max pL,A(x, y)
pL,A(x, y) = pL,B(x, y)

using Lagrange multipliers. All the functions involved are polynomial, so this can be
solved using cylindrical decomposition (since the problem reduces to finding all the
solutions to a system of polynomial equations). This method establishes the global
maximum, and in addition generates four pieces of F that prove that the point found
is indeed a maximizer. Using Helly’s theorem, it is easy to show that we can reduce

8

the number of these pieces to three.
When there exist a parallel non parametric algorithm, we can obtain a parallel one

dimensional algorithm. To use it, we also need to sort the list of roots that are ob-
tained in each step of the one dimensional algorithm. We could do it by constructing
the cylindrical decomposition invariant for the signs of all the comparison polynomi-
als, but this would be too expensive. Instead, we simulate a sorting algorithm, and
whenever it compares two roots, we construct the decompositions invariant for the
signs of both polynomials, locate the slab that contains a maximizer, and test which
of our two roots is higher in that slab. If we use Megiddo’s technique and sort the
roots using a simulation of a parallel sorting algorithm such as Cole’s parallel merge
sort [7], the number of calls to the one dimensional algorithm during the sorting
algorithm will be only O(log2 P), where P is the number of roots we have to sort.

Running time analysis. We first note that the cost of constructing the cylindrical
algebraic decomposition of a constant number of polynomials of bounded degree in
fixed dimension is only a constant (in fact, the cost is polynomial in the number of
polynomials, the degree, and the binary encoding of the coefficients, but not in the
dimension). Denoting the running time of the non-parametric algorithm A by T0 and
of the d-dimensional algorithm by Td, the running time is T2 = O(T0(T1 + T0T1)) =
O(T 4

0). If there exists a parallel non-parametric algorithm that runs in Tp parallel
time and uses P processors, we can again improve the running time. The total
running time is O(PTp + Tp(log PT1 + log2 PT1 + log PTp log PT1)) and since T1 =
O(PTp + Tp log PT0), the running time is T2 = O(T0(Tp log P)3). The breakdown of
the running time into terms is as follows. In each parallel step of the non-parametric
algorithm P comparison polynomials are generated and a decomposition invariant
for each one of them is constructed. Then the one dimensional algorithm is called
log P times to locate the slab in which there is a maximizer in the combined list of
critical values. As explained before, sorting all the y critical values requires log2 more
calls to the one dimensional algorithm. Finally a binary search is performed using a
simulated non-parametric algorithm. It is simulated on log P y roots. On each of them
the algorithm proceeds in Tp steps, and in each one P comparison polynomials are
generated, each requiring a constant number of calls to the one dimension algorithm.

3.1 Finding a Feasible Point

We now extend the technique of section 2.2 to two dimensions; the same technique
works in any dimension. We use the technique we have just described for simulating
the one dimensional feasibility testing algorithm on a vertical line that intersects P.
All we need to show is how to decide on what side of a given line P lies, since if P
intersects the line, the one dimensional algorithm will detect this.

Suppose we are given a line in the plane, and must test on which of its sides P
lies. Since the one dimensional algorithm determines that the line does not intersect

9

P, it reports two constraints that are contradictory on that line, p and q. Since we
simulate the one dimensional algorithm and perform its arithmetic on polynomials,
the violated constraints are polynomials in x and y. Since for any (x, y) ∈ P both
p(x, y) ≥ 0 and q(x, y) ≥ 0, we find a point in the intersection of p(x, y) ≥ 0 and
q(x, y) ≥ 0. If there is such a point x0 and P is not empty, then P lies on the
same side of the line as x0, and we maintain p and q as a certificate for this fact. If
p(x, y) ≥ 0 ∩ q(x, y) ≥ 0 = ∅, then P is empty.

If the simulated algorithm terminates without either finding a point in P, or
deciding that P is empty, we have two cases. The answer it gives is valid for any line
x = x0 we might run it on, as long as x0 is in the interval [xa, xb] which is known
to contain P. When the simulated algorithm terminates, if it returns a point in P,
we are done. Otherwise it declares that the intersection of P with any vertical line
x = x0 in the vertical slab which is known to contain P is empty, and supplies a pair
of constraints p and q as a certificate. We compute a point in p(x, y) ≥ 0∩ q(x, y) ≥.
If there is no such point, then p and q are a proof that P is empty. Otherwise,
if they intersect above to the left of the slab for example (i.e. to the left of xa),
then p and q together with the two constraints that assert that P is to the right of
xa, provide a proof that P is empty. Those four contradictory constraints allow us
to generalize the algorithm to higher dimension, in the same way we used the one
dimensional certificates of emptiness for constructing the two dimensional algorithm
in this section. The number of constraints is a certificate of emptiness can be brought
down to at most d + 1 in dimension d, by Helly’s Theorem.

4 The General Algorithm

Before we describe the algorithm and prove its correctness, we need some definitions
and lemmas.

Definition A semi-algebraic cell of IRd is a set of points satisfying a finite set of
polynomial equalities and inequalities.

Definition A semi-algebraic variety is either a semi-algebraic cell, or one of the sets
A ∩ B, A ∪B and A \B, where A and B are two semi-algebraic varieties.

Definition A decomposition of IRd is the representation of IRd as the union of a finite
number of disjoint and connected semi-algebraic varieties.

Definition A decomposition of IRd is invariant for the signs of a family of polynomials
if, over each cell of the decomposition, each polynomial is always positive, always
negative, or always zero.

Definition A decomposition Dd of IRd, that is IRd = E1 ∪ · · · ∪ EN is cylindrical if
n = 0 (the trivial case) or if n > 0 and:

10

1. IRd−1 has a cylindrical decomposition Dd−1 which can be written IRd−1 = F1 ∪
· · · ∪ FM , and

2. For each cell Ei of Dd there is a cell Fj of Dd−1 such that Ei can be written in
one of the following forms

{(x, y) : x ∈ Fj ∧ y < fk(x)} (a segment)
{(x, y) : x ∈ Fj ∧ y = fk(x)} (a section)
{(x, y) : x ∈ Fj ∧ fk(x) <

y < fl(x)} (a segment)
{(x, y) : x ∈ Fj ∧ y > fk(x)} (a segment)

where the fk’s are the solutions of polynomial equations (x denotes x1, . . . , xd−1

and y denotes xd).

Theorem 4.1 (Collins) There exists an algorithm that computes a cylindrical de-
composition of IRd invariant for the sign of a family of n polynomials. If the poly-
nomials are all of degree δ or less, and the length of the binary encoding of their
coefficients is bounded by H, the running time of this algorithm is bounded by

(2δ)22d+8

n2d+6

H3.

Lemma 4.2 Let Dd be a cylindrical decomposition of IRd invariant under a family P
of polynomials, and let H be a hyperplane in IRd specified by x1 = α for some real α.
Then the intersection of Dd with H is a cylindrical decomposition of IRd−1 (with the
natural mapping of IRd−1 onto H) invariant under the restriction of the polynomials
in P to H.

Proof: The intersection of Dd with H is obviously a decomposition of IRd−1 and
invariant under the signs of the family of polynomials. We prove that it is also
cylindrical. The proof uses induction on the recursive structure of the cylindrical
decomposition. We assume that the intersection of Dd−1 with H is cylindrical, and
we prove that the intersection of Dd with H is cylindrical. The claim is obviously for
d = 1, because D1 is a decomposition of the x1 axis which is invariant for the sign
of some family of polynomials P1. The intersection of H with the x1-axis is only a
point, and the decomposition of a point is always cylindrical and invariant for the
signs of P1.

We now assume that the claim is true for Dd−1. Let C ′ be a cell of the intersection
of Dd with H , which is the intersection of the cell C with H . Let us assume that C
is of the form

{(x1, x2, . . . , xd) : (x1, x2, . . . , xd−1) ∈ F ∧
xd > fk(x1, x2, . . . , xd−1)}

11

where F ∈ Dd−1. Let F ′ be the intersection of F with H . Then C ′ can be written as

{(α, x2, . . . , xd) : (α, x2, . . . , xd−1) ∈ F ′ ∧
xd > fk(α, x2, . . . , xd−1)}.

The other cases are similar. We note that the crucial point in the proof is that H is
parallel to all the projection axes.

Lemma 4.3 Using the same notation, let

D1 = {−∞ = α0, α1, . . . , αk, αk+1 = ∞}
(that is the α’s are the points in the one dimensional decomposition). Then the
intersection of Dd with H depends continuously on α as long as αi < α < αi+1.

Proof: It is obvious that the intersection of H with D1 changes continuously. Let
us assume that the intersection of H with Dd changes continuously but that the
intersection with Dd+1 does not. This can only happen if for some αi < α < αi+1 two
sections of Dd+1 intersect, which contradicts the previous lemma.

The algorithm2. We construct the algorithm inductively. The induction hypothesis
describes the structure and correctness of the d − 1 dimensional algorithm. We as-
sume that the d dimensional algorithm work by constructing a sequence of cylindrical
decompositions (CADs for short) in IR through IR2d of up to 2d + 1 polynomials, and
tests the sign of one of the polynomials in various cells of the decomposition. The
algorithm returns a maximizer of F . The location of the maximizer is returned as a
specific zero dimensional cell in a d dimensional CAD of up to d polynomials. The
value of the maximizer is returned as a polynomial.

Let us prove that the induction hypothesis holds for the one dimensional para-
metric searching algorithm. The one dimensional algorithm finds the roots of polyno-
mials. Finding the roots of a polynomial is equivalent to computing a CAD invariant
for the sign of it. Then the parametric searching algorithm evaluates the sign of
other polynomials on the roots. Finding the sign of a polynomial q at a root of a
polynomial p can certainly be done by consructing a CAD invariant for the sign of p
and q and evaluating the sign of q at the root of p, which is a cell of the CAD. The
one dimensional algorithm also compares values of F at various roots. The values
of F are all polynomials. Suppose we need to compare the value of q′ at a root α′

of p′ with the value of q′′ at a root α′′ of p′′. In other words, we need to test the
sign of the polynomial q′(α′) − q′′(α′′) at a point (α′, α′′) in which p′(α′) = 0 and
p′′(α′′) = 0. We could certainly do this by constructing the CAD invariant for the
sign of q′(α′) − q′′(α′′), p′(α′) and p′′(α′′), and testing the sign of q′(α′) − q′′(α′′) in

2The notation p′ in this section means some arbitrary polynomial and not the derivative of a
function p.

12

some particular cell. This is a CAD of 3 polynomials in IR2. Finally, we need to
maximize F over two open intervals in which F does not have a breakpoint. This is
done by maximizing two concave polynomials over the intervals, which can be done
be finding the roots of their derivatives, which again amounts to computing CADs.
We now compare the two maxima using the method just described. The higher is the
global maximum. The maximum is returned as a polynomial p at a root α of another
polynomial q.

Let us describe the d dimensional algorithm. The algorithm works by simulating
the d− 1 dimensional algorithm on a hyperplane x1 = x?

1, where x?
1 is a projection of

a maximizer x? = (x?
1, . . . , x

?
d). Suppose the simulated algorithm constructs a CAD

D of n polynomials in IRm and tests the sign of one of the polynomial in some cell of
the CAD. The polynomials are of dimension m+1. We therefore constructs the CAD
D′ in IRm+1 (we consider the additional variable to be x1). Let the critical values
of the decomposition be α1, . . . , αk, the roots of some one dimensional polynomial
p(x1). We locate a slab containing a maximizer αj < x?

1 < αj+1 by performing a
binary search (or a Fibonacci search, which would result in a slightly better constant
in the running time). To determine whether the slab is to the left or to the right
of some critical value αi, we call the d− 1 dimensional algorithm on the hyperplane
x1 = αi. In the called d− 1 dimensional algorithm we add to the CADs constructed
the polynomial p(x1). The number of polynomials and the dimension of each CAD
are increased by one. We compare the values returned from different calls to the d−1
dimensional algorithm, in order to find a slab containing a maximizer. Suppose we
need to compare a value q′(α′, x2, . . . , xd) on a zero dimensional cell in the CAD of

p′1(α
′, x2, . . . , xd), . . . , p

′
d−1(α

′, x2, . . . , xd)

where α′ is some root of p′(x1), with a value q′′(α′′, x2, . . . , xd) on a zero dimensional
cell in the CAD of

p′′1(α
′′, x2, . . . , xd), . . . , p

′′
d−1(α

′′, x2, . . . , xd)

where α′′ is some root of p′′(x1). We construct a CAD invariant for the signs of

q′(α′, x′2, . . . , x
′
d)− q′′(α′′, x′′2, . . . , x

′′
d)

p′1(α
′, x′2, . . . , x

′
d)

...
p′d−1(α

′, x′2, . . . , x
′
d)

p′(x′1)
p′′1(α

′′, x′′2, . . . , x
′′
d)

...
p′′d−1(α

′′, x′′2, . . . , x
′′
d)

p′′(x′′1).

13

This is a CAD in IR2d of 2(d − 1) + 3 = 2d + 1 polynomials. The space IR2d here
is basically the cartesian product of two d dimensional spaces, so we resolve the
comparison by testing the sign of

q′(α′, x′1, . . . , x
′
d)− q′′(α′′, x′′1, . . . , x

′′
d)

on the zero dimensional cell which is the cartesian product of the two cells in IRd

returned by the d − 1 dimensional algorithm. Now we have a slab in the original
CAD which is known to contain a maximizer of F . In this slab the intersection of
any hyperplane x1 = α with the CAD D′ changes continuously with α, so we can
determine the sign of any of the polynomials in any of the cells. Since the sign is
constant for any x1, the sign equals the sign for x1 = x?

1 which is what we need to
determine in order to continue the simulation of the d − 1 dimensional algorithm.
When the simulation of the d−1 dimension algorithm terminates we end up with two
values, one valid in a slab αa < x1 < αb and the other valid in a slab αb < x1 < αc.
Let us describe how we find the maximum of F in the slab αa < x1 < αb. The
maximum of q(x1, . . . , xd) on some one dimensional cell c of the CAD of

p1(x1, x2, . . . , xd), . . . , pd−1(x1, x2, . . . , xd)

is found using Lagrange multipliers. We need to solve the equations

∇q −
d−1∑
i=1

λi∇pi = 0

and
p1(x1, x2, . . . , xd) = 0, . . . , pd−1(x1, x2, . . . , xd) = 0

for both x1, . . . , xd and λ1, . . . , λd−1. We can do so by constructing a CAD in IR2d−1

with 2d−1 polynomials. The variables are ordered x1, . . . , xd, λ1, . . . , λd−1. The space
IR2d−1 is a cartesian product of two spaces, the x1, . . . , xd space and the λ1, . . . , λd−1

space. Our one dimensional cell c is mapped into a d dimensional manifold cd. If
there is a point on this manifold in which the sign of the polynomials

∇q −
d−1∑
i=1

λi∇pi

is zero, then this is an extremum of q in c. If q is constant on c we are done. Otherwise
there is an extremum point, and points which are not extrema. Suppose there is a
point x′1 which is an extremum, that is, for small enough ε 6= 0, q(x′1 + ε) < q(x′1)
(the notation q(x) here denotes the value of q on a point x1 = x in c). We claim
that in this case, x′1 is one of the critical values in the one dimensional decomposition
which is the base of the CAD. Assume for contradition that it is not. Consider the
intersection of a hyperplane x1 = x′1 + ε with the CAD for small ε. The intersection

14

is a CAD which changes continuously. But we know that at ε = 0 there is a set of
Lagrange multipliers, or a zero for the polynomials in the CAD, where as for any
ε 6= 0, there isn’t, a contradiction. Assuming that αa < x′1 < αb is the root of the
polynomial p(x1), the location of a maximizer of F can be defined by some particular
zero dimensional cell in the CAD of

p(x1), p1(x1, x2, . . . , xd), . . . , pd−1(x1, x2, . . . , xd).

This concludes our inductive proof.

The running time. Let us count the number of CADs constructed by the algo-
rithm. We denote the number of CADs by Cd. If the evaluation algorithm A runs in
time T0, it performs no more then T0 comparisons, so C0 ≤ T0. For each CAD per-
formed by the d − 1 dimensional algorithm, the d dimensional algorithm constructs
the same CAD in dimension one higher. If this CAD has N critical values, the d
dimensional algorithm calls the d− 1 dimensional one log N times during the binary
search. From Theorem 4.1 and from the fact that all CADs constructed contain at
most 2d+1 polynomials, we conclude that N is a function of d, N = N(d). Each call
to the d − 1 dimensional algorithm constructs Cd−1 CADs. To find a slab contain-
ing a maximizer, log N comparisons between returned values need to be performed.
Every comparison is resolved by constructing a CAD. Finally, two sets of Lagrange
multipliers need to be found, which results in the construction of two more CADs.
Therefore we have

Cd ≤ Cd−1(Cd−1 log N(d) + log N(d)) + 2
≤ 2C2

d−1 log N(d) .

Solving the recurrence we obtain

Cd ≤ (2 log N(d))2d−1C2d

0 = K(d)C2d

0

where K(d) is some constant depending on d. Therefore the running time of the d
dimensional algorithm is O(C2d

0) = O(T 2d

0).
Let us examine the use of a parallel evaluation algorithm in the construction

of a more efficient optimization algorithm. Let as assume that the d1 dimensional
algorithm computes Cd−1 batches of at most Pd−1 CADs each. If there is an evaluation
algorithm that runs in Tp parallel time and uses P processors, we set C0 = Tp and
P0 = P . The d dimensional algorithm simulates the construction of a batch of CADs
in the following way. Pd−1 CADs are constructed, and the combined list of critical
values of all the CADs is sorted. Sorting is done using a parallel sorting algorithm,
which works in O(log NPd−1) parallel steps. In each step O(NPd−1) pairs of roots
are compared. A comparison between a root of p′(x1) and a root of p′′(x1) is resolved
by constructing the CAD invariant for the signs of p′, p′′ which totally orders all
their roots. Then a binary search is performed over the sorted list. If each CAD

15

generates N critical values, the d dimensional algorithm calls the d− 1 dimensional
algorithm log(NPd−1) times. Otherwise the algorithm is similar to the case of one
CAD per batch (a sequential algorithm). The number of CADs constructed per batch
is therefore unchanged, Pd = Pd−1. The number of batches is

Cd ≤ Cd−1 (Cd−1 log(NPd−1) + log(NPd−1) + O(log(NPd−1))) + 2.

Again, N = N(d), so solving the recurrence we obtain

Cd ≤ K(d) (C0 log P0)
2d−1

= K(d) (Tp log P)2d−1

= O
(
(Tp log P)2d−1

)
.

This concludes the proof of our main result.

Theorem 4.4 Let A be a polynomial algorithm in x with degree δ, where x ∈ IRd.
Let F :P → IR be a concave function, and let P ⊆ IRd be a convex set. Assume that
for any x ∈ P, A(x) = F (x), and for any x 6∈ P, A(x) = px where px is a concave
polynomial such that px(x) < 0, but for any y ∈ P, px(y) ≥ 0. Assume that A runs
in time T0, and that there is an equivalent parallel (in Valiant’s model of parallel
computation [16]) algorithm Ap that runs in time Tp and uses P processors. Then

there is an algorithm Ad that runs in time O(T0(Tp log P)2d−1) and either decides that
P = ∅, or decides that F is unbounded on P, or finds the maximum of F on P.

5 Applications

Convex Programming. Consider the convex programming problem

Minimize y
subject to
y ≥ p1(x1, . . . , xd)
...
y ≥ pn(x1, . . . , xd)
p1, . . . , pn are convex.

The function
F (x1, . . . , xd) = max

i
{pi(x1, . . . , xd)}

can be evaluated at a point in parallel time O(log log n) using n processors [16]. Using
Theorem 4.4 we conclude that the above convex programming problem can be solved
in time O(n(logn log log n)2d−1). Dyer [10, 11] showed how to solve some special cases
in O(n) time, but no efficient algorithm was known for the general case.

16

Functions defined in terms of graphs. Let G = (V, E) be a graph, let s and t be
two vertices of G, and let W be a function mapping edges of G to real numbers. We
use the notation We to denote W (e). Let S ⊂ 2E (for example, the set of all spanning
trees, all minimum s-t cuts etc.). A minimization problem on G is the problem of
finding mins∈S

∑
e∈s We, and usually finding a minimizer is also desirable.

Now assume that W maps edges to concave polynomial functions over some convex
set P ⊆ IRd, instead of to numbers. For every point x ∈ P, we get an induced
minimization problem obtained by mapping every element e ∈ E to a real number
We(x). We define a function F :P → IR by

F (x) = min
s∈S

∑
e∈s

We(x).

Lemma 5.1 The function F is a concave function.

Proof: Since for all e ∈ E, the function We is concave, so is the function
∑

e∈s We for
any subset s of E, and therefore the minimum of such functions is also concave.

Lemma 5.2 If the edge weights W are all polynomial of degree at most δ, then F is
a piecewise polynomial function, and its pieces are of degree at most δ.

Proof: Obvious.

When S is the collection of all the edge-cuts separating s from t in G and the
weights We are interpreted as capacities, then the associated minimization problem
is the max flow problem in G, by the Max-Flow Min-Cut Theorem. The parametric
max flow function is hence a concave function on P = ∩e∈E{x : We(x) ≥ 0}. The
definition of P ensures that all the edge capacities are non-negative. Since each We

is concave, the regions {x : We(x) ≥ 0} are convex, and therefore their intersection
P is convex.

When S is the collection of all paths between s and t, the minimization problem
is the problem of finding the minimum s-t distance. In this case the domain of the
parametric function is the convex region P = ∩C{x :

∑
e∈C We(x) ≥ 0} where the

intersection is over all the simple cycles in G. The combinatorial complexity of P
may be super-polynomial, but fortunately there is a separation algorithm for P. The
Bellman-Ford algorithm can be modified so that it either decides that the graph does
not contain a negative cycle and finds the shortest path, or finds a negative cycle
C (see [8]). Summing the weights of the edges of the cycle as polynomials, we find
a concave violated constraint p(x) =

∑
e∈C We(x) < 0 which is not violated for any

y ∈ P. Therefore the conditions of Theorem 4.4 are satisfied, and we can find the
maxi-min s-t distance in strongly polynomial time.

Cohen and Megiddo [4, 6] showed how to solve such problems when the edge
weights are affine functions. Again, an algorithm for the general concave polynomial
case was not known until now.

17

Acknowledgments

Thanks to Pankaj K. Agarwal for reading and commenting on a preliminary version of
this paper. Thanks to Esther Jesurum, Mauricio Karchmer, Nimrod Megiddo, Boaz
Patt-Shamir and Serge Plotkin for helpful discussions. My research was supported in
part by the Defense Advanced Research Projects Agency under Grant N00014–91–J–
1698.

References

[1] P.K. Agarwal, M. Sharir and S. Toledo, Applications of parametric searching in
geometric optimization, Proc. 3nd ACM-SIAM Symp. on Discrete Algorithms ,
1992, 72–82.

[2] A.V. Aho, J.E. Hopcroft and J.D. Ullman, The Design and Analysis of Computer
Algorithms , Addison-Wesley, 1974.

[3] D.S Arnon, G.E. Collins, S. McCallum, Cylindrical algebraic decomposition I: the
basic algorithm, SIAM J. Comput. 13 (1984), 865–877.

[4] E. Cohen and N. Megiddo, Strongly polynomial time and NC algorithms for de-
tecting cycles in dynamic graphs, Proc. 21st ACM Symp. on Theory of Computing ,
1989, 523–534.

[5] E. Cohen and N. Megiddo, Maximizing concave functions in fixed dimension,
Research Report RJ 7656 (71103), IBM Almaden Research Center, San Jose,
1990. (Also in this volume.)

[6] E. Cohen and N. Megiddo, Algorithms and complexity analysis for some flow
problems, Proc. 2nd ACM-SIAM Symp. on Discrete Algorithms , 1991, 120–130.

[7] R. Cole, Parallel merge sort, SIAM J. Comput. 17 (1988), 770–785.

[8] T.H. Cormen, C.E. Leiserson and R.L. Rivest, Introduction to Algorithms , MIT
Press, Cambridge, MA, 1990.

[9] J.H. Davenport, Y. Siret and E. Tournier, Computer Algebra Academic Press,
1988.

[10] M. Dyer, On a multidimensional search procedure and its application to the
Euclidean one-centre problem, SIAM J. Comput. 13 (1984), 31–45.

[11] M. Dyer, A class of convex programs with applications to computational geom-
etry, Proc. 8th ACM Symp. on Computational Geometry, 1992, 9–15.)

18

[12] N. Megiddo, Applying parallel computation in the design of serial algorithms, J.
ACM 30 (1983), 852–865.

[13] N. Megiddo, The weighted Euclidean 1-center problem, Math. of Operations
Research, 8 (1983), 498–504.

[14] C.H. Norton, S.A. Plotkin and É. Tardos, Using separation algorithms in fixed
dimension, J. of Algorithms , 13 (1992), 79–98.

[15] S. Toledo, Maximizing non-linear concave functions in fixed dimension, Proc.
33rd Annual Symp. on Foundations of Computer Science, 1992, 676–685.

[16] L. Valiant, Parallelism in comparison problems, SIAM J. Comput. 4 (1975),
345-348.

19

