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A High-Performance  
Sound-Card AX.25 Modem

The author leads us through the process of fixing several known problems with 
AX.25 modems, leading to a new software modem.

I had been running an APRS RF-to-
internet gateway (an iGate) for a few months 
using a sound-card modem by Thomas 
Sailer, HB9JNX/AE4WA, (soundmo-
dem).1 The software modem caused various 
problems and I have not found a suitable 
replacement. Eventually, I decided to try to 
implement my own sound-card-based soft-
ware modem. The results have been very 
good, in spite of the fact that I do not have 
much background in digital signal process-
ing. 

This article describes the problems with 
current AX.25 software modems, the design 
methodology I followed in implementing 
the new modem, and of course, the resulting 
software. The methodology is particularly 
important; it has allowed me to design and 
implement a high-performance modem with 
little background in digital processing and 
absolutely no background or experience in 
designing digital decoders.

Existing AX.25 Modems: Some 
Software, Some Hardware

VHF APRS uses AX.25 packets with 
1200 baud audio frequency shift keying 
(AFSK) modulation. Binary ones are rep-
resented by a continuous tune, either 1200 
or 2200 Hz, and zeros are represented by a 
switch from one of these tones to the other. 
This modulation scheme is based on the 
Bell 202 telephone modem standard from 
around 1980.

Three types of modems are in wide use 
in APRS systems today. One type uses a 
dedicated modem integrated circuit (IC), 
the mx614.2 There is not a wide selection of 
1200 baud modem ICs in production today. 
The IC is only responsible for generating 
the tones and for deciding which tone is 
present at any given time. In mx614-based 

Modems in the third group run on a PC 
and rely on a sound card to transfer audio 
between the radio and the computer: Thomas 
Sailer’s soundmodem and multimon, George 
Rossopoylos’s AGWPE, Frank Perkins’ 
AX.25-SCS, and Andrei Kopanchuk’s recent 
modem (which I was not aware of when  
I started this project).6, 7, 8, 9, 10

Decoding and Interfacing Problems 
with Existing Software Modems

I faced two types of problems with the 
sound-card-based software modems that 
I tried. I started with AGWPE, connected 
through a homebrewed computer/radio 
interface to a Yaesu FT-857D. The soft-
ware generated packets that nearby stations 1Notes appear on page 25.

modems, such as John Hansen’s X-TNC and 
the OpenTracker series, the modem IC is con-
nected to a microcontroller that determines 
the symbol timing, extracts the packet bit 
stream, and checks the packet for integrity. 
In many APRS systems the same microcon-
troller also performs other functions, such as 
converting GPS sentences to APRS messages.

In the second type of modem, the micro-
controller is also used for modulation and 
demodulation, using its built-in analog-
to-digital converter and a resistor-network 
digital-to-analog converter. Bob Ball’s TNC, 
Byon Garrabrant’s TinyTrak series, Scott 
Miller’s OpenTracker series, and Robert 
Marshall’s Arduino-based TNC all belong to 
this group.3, 4, 5

Figure 1 — This graph shows a piece of the audio I recorded from an AX.25 packet I received 
from a nearby station. The 2200 Hz tone amplitude is much lower than the 1200 Hz tone 
amplitude. Various software modems that I tried were unable to decode these packets.



20   QEX – July/August 2012

were able to decode, but it could not decode 
packets from the same stations. I switched 
to AX.25-SCS, but the results were similar. 
I recorded the audio of several packets from 
stations that the modems could not decode 
and discovered that the amplitude of the 
2200 Hz tone was much lower than the 
amplitude of the 1200 Hz tone, as you can 
see in Figure 1.

This turned out to be what caused dif-
ficulties to both AGWPE and AX.25-SCS. 
I switched to a different sound-card inter-
face, which apparently does not attenuate 
high-frequencies as much, and both modems 
were able to decode many more packets. You 
may say that the first sound-card interface 
is simply not good enough, but AX.25 is 
modulated using frequency shift keying, so in 
theory, the demodulator should not be sensi-
tive to amplitude variations.

It appears that soundmodem suffers 
from similar problems. When fed by an old 
Kenwood TR-2500, it decoded packets just 
fine, but when I switch to a Motorola radio (a 
PageTrac, in which the radio is the same as in 
the more common MaxTrac radios), it failed 
to decode most packets.

All of these modems need to interface to 
both a sound card and an AX.25 or APRS 
program. I also faced problems in this area. 
AX.25-SCS does not allow you to select 
a sound card, so I could not use it with an 
external high-quality sound card. Both of 
these programs, as well as the new UZ7HO 
modem, are Windows-only programs, so 
I could not use them in my Linux-based
APRS iGate. Soundmodem does work under 
Linux, but interfacing it to Pete Loveall’s 
javAPRSSrvr proved challenging.11 I initially 
tried to interface the two programs using 
a virtual serial port, but javAPRSSrvr kept 
complaining that soundmodem was closing 
the serial port. I then interfaced them using 
the Linux kernel’s support for AX.25 net-
working; this approach is somewhat more 
complicated, but it did work reliably. Either 
way, soundmodem must be started before 
javAPRSSrvr, otherwise javAPRSSrvr fails 
to find the virtual serial port or the AX.25 
kernel interface.

In spite of these problems, I was able 
to find a working reliable configuration. 
A Kenwood TR-2500 fed soundmodem, 
which fed javAPRSSrvr through the Linux 
kernel’s AX.25 support. This setup worked 
fine for a few months, but when I switched 
to the Motorola PageTrac and discovered 
that soundmodem would not decode pack-
ets received by it, I decided to try to design 
and implement a better AX.25 sound-card 
modem. I did not have much experience 
in digital-signal processing (DSP), but I 
decided to learn the necessary tools and to try 
to implement a good modem.

Pre-Emphasis and De-Emphasis
Before describing the modem and how 

I designed it, it is worth explaining why the 
amplitudes of the 1200 Hz and 2200 Hz 
tones in received packets often vary sig-
nificantly. In FM voice communication, the 
transmitter pre-emphasizes high tones by  
6 dB per octave. That is, it amplifies high 
audio frequencies more than it amplifies low 
frequencies, which results in wider deviation 
for high tones. To compensate, the receiver 
de-emphasizes the received audio by the 
same amount, to make the audio sound 
natural. This scheme originated in the use 
of phase modulators rather than frequency 
modulators, but it is still useful today because 
the de-emphasis in the receiver cuts down 
annoying high-frequency noise (hiss).

If all transmitters and receivers adhered 
precisely to the 6 dB/octave curve, and if all 
AX.25 modems were interfaced to the pre/
de-emphasized audio path, we would not 
see any amplitude variations between the 
two tones. But some radios do not adhere 
precisely to the 6 dB/octave curve, and some 
radios interface the AX.25 modem directly 
to the modulator and/or discriminator, 
bypassing the pre/de-emphasis circuits. To 
make things even more complicated, some 
modems pre/de-emphasize the audio too, in 
an attempt to compensate for the radio.

The outcome of all of this is that no matter 
what you do at the receiving end, your AX.25 
demodulator is going to see packets with 
amplitude variations between the tones. It is, 
therefore, important for the demodulator to 
be able to cope with such variations.

A Design and Evaluation 
Methodology

To design the modem and to evaluate how 
well it works, I used a methodology that is 
somewhat different from the methodology 
used in many other amateur projects.

One aspect of the methodology is the 
use of Matlab to do much of the design. 
I intended to write the modem in Java or C 
(I settled on Java), but for the initial proto-
typing I used Matlab, an interactive techni-
cal computing environment with excellent 
support for plotting graphs, for DSP, and for 
reading wav files (sound recordings). Matlab 
has other features, of course, but these three 
were important in this project.

I started by recording packets off the air, 
some from stations that I knew are hard to 
decode and some from stations that I knew 
were easy to decode. I recorded segments of 
about 5 minutes that I knew were likely to 
contain beacon packets (digipeaters tend to 
beacon at fixed intervals) and trimmed the 
audio using Audacity, a free cross-platform 
sound editor.12

I then started to develop the DSP algo-
rithm, testing it on the recorded packets after 
every modification. The behavior of the code 
on the recorded packets helped me under-
stand the DSP techniques that are used in 
modems, and it eventually showed that my 
demodulator was working. The ability to 
plot signals that are derived within the algo-
rithm from the input audio, in particular, was 
crucial; it really helped me understand what 
works and what does not work. You will see 
some of these plots below, and I hope that you 
will agree that they do indeed provide insight 
as to how the algorithm works. The plots 
shown below are static; you cannot zoom in 
and out, select which time series appear on 
each plot, and so on. In Matlab, the plots are 
interactive, and hence even more useful.

My experience with AGWPE, AX.25-
SCS, and soundmodem taught me that a 
modem that can decode a few packets from 
particular transmitter/receiver combinations 
can still fail on other transmitter/receiver 
combinations.

This brings us to the second aspect of the 
methodology: the use of Stephen Smith’s 
APRS test CD.13 This CD consists of sev-
eral recordings of APRS traffic. The first 
two tracks on the CD are the most useful 
ones for evaluating modems. The first track 
is a recording of about 40 minutes of APRS 
traffic in Los Angeles, consisting of more 
than 900 packets from many different radios 
and modems. This track is a recording of 
the discriminator output of a radio, with no 
de-emphasis. The second track contains the 
same audio, but it is accurately de-empha-
sized by 6 dB/octave. If a modem works well 
on both tracks, it is likely to work well with 
most radios.

The test CD has been critical in opti-
mizing the ability of my modem to decode 
packets. I ran the entire first two tracks 
through variations of my modem many 
times. From each such run, I would note the 
number of decoded packets from each track. 
This allowed me to test different filters and 
algorithms and to understand how different 
parameters of the algorithm affect its per-
formance.

Using a real-world workload (sometimes 
called a benchmark) to monitor the evolu-
tion of a system as it is being optimized, and 
to compare systems is not new, of course. 
Stephen Smith made the test CD available 
precisely for this purpose. I learned of the CD 
from the website of Robert Marshall, who 
used it to compare his microcontroller-based 
AX.25 modem to several existing modems 
(his results, while perhaps not completely 
scientific, show that AGWPE and sound-
modem indeed perform quite poorly).14 The 
fact that the methodology is not new does 
not mean that it is widely used. It is not, usu-
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ally because a suitable large and representa-
tive workload is not available. For example, 
Bob Ball, who designed his AX.25 modem 
before the test CD was available, described 
the performance of his modem in the follow-
ing way: “My units routinely decode packets 
that are less than 1 S unit on my 2 meter radio 
from stations over 75 miles away.” This is 
useful information, but quantitative informa-
tion on a standard workload is much more 
informative.

The Design of the Modem
An AX.25 modem consists of a transmit 

path and a receive path that are almost unrelated 
(apart from decisions as to when to transmit, 
which are based on whether a packet is cor-
rectly being received). The transmit path cur-
rently consistists of an encoder, which encodes 
an AX.25 packet into a bit stream, and a modu-
lator, which turns the bit stream into audio 
samples at a particular sample rate. Similarly, 
the receive part consist of a demodulator that 
transforms audio samples into bits, and a 
decoder that transforms the bits into packets (or 
drops them, if the packet was not received cor-
rectly in its entirety).

The encoder and decoder algorithms are 
completely described by the AX.25 specifica-
tions and they have been explained in many 
articles, so I will not describe them here. All 
that is important here is that the bit sequence 
that makes up a packet is bit-stuffed; if five 
ones appear in a row, a zero is inserted by the 
encoder (and dropped by the decoder) in order 
to ensure that zeros are not too rare. Another 
important piece of information is that flag bytes 
(hexadecimal 7E) surround each packet, and 
they are not bit stuffed, which means that if the 
decoder sees six ones in a row, it must be either 
a flag or just noise.

The modulator transforms the bit-stuffed 
sequence into audio. This is done using a 
phase-continuous digital resonator that runs 
at either 1200 Hz or 2200 Hz. The resonator 
has one state variable, an angle (between 0 and  
2 π). To produce a sample at 1200 Hz, the reso-
nator outputs sin (α) and advances α by 2 π / 
(fs / 1200), where fs is the sampling frequency. 
To produce a sample at 2200 Hz, the resonator 
outputs sin (α) and advances α by 2 π / (fs / 
2200). This is pretty simple. The demodulator 
is more interesting.

Time-Domain Filtering and 
Emphasizing

The processing of incoming signal sam-
ples starts with a filter that filters out some 
of the energy in frequencies outside the  
1200 to 2200 Hz range. The same filter can also 
emphasize the 2200 Hz tone by 6 dB relative 
to the 1200 Hz tone; this is an option that the 
modem uses sometimes, but not always; more 
on that later. 

Figure 2 — Here is the response of the 900 to 2500 Hz high order (180) bandpass filter  
I created in Matlab. Note the 6 dB ramp up of the response across the passband, 

so  there is no gain or attenuation at 2200 Hz.

Filtering out frequencies below 1200 Hz 
and above 2200 Hz is theoretically useless. 
I say theoretically because the filter is use-
less only if received noise obeys certain 
theoretical assumptions. But this filtering is 
cheap, harmless (even theoretically), and was 
found to be useful in some hardware-based 
modems, so I included it anyway. 

We must not filter away energy in 
between 1200 Hz and 2200 Hz. During tran-
sitions from one tone to the other the signal 
contains energy in intermediate frequencies. 
If we filter these in-between frequencies, the 
filtered signal won’t be able to switch from 
one tone to the other and will get stuck in 
one of the tones. I was initially not aware 
of this and learned this lesson the hard way:  
I produced a filter that essentially passed only 
1200 Hz and 2200 Hz, and discovered that it 
strips away all the information in the signal!

The filter is an FIR filter that the modem 
applies in the time domain, by convolving 
the filter coefficients with incoming samples. 
I construct the filter in Matlab using the firls 
function, which constructs a filter whose fre-
quency response matches a given response 
as well as possible given the filter order. The 
specification I have firls called for a complete 
attenuation of frequencies below 900 Hz and 
above 2500 Hz, with a 6 dB ramp-up from 
1200 Hz to 2200 Hz, with no attenuation and 
no gain at 2200 Hz. Figure 2 shows what the 
frequency response of the filter looks like 
when we specify a high-order filter.

Applying high-order filters is expensive, 
however, and experiments showed that going 
to very high-orders does not improve the 
demodulator’s performance (this is probably 
an outcome of the theoretical result I men-
tioned earlier). In practice, the demodulator 
uses filters whose order is twice the num-
ber of samples per symbol (that is, per 1⁄1200 

samples). The graph of Figure 3 shows the 
response of the actual filter that we use at fs 
= 11,025. Compared to the order-180 filter, 
it looks fairly crude, but it still works well, 
as we’ll see below. The response has a sig-
nificant variation within the 1200 to 2200 Hz 
passband, but it still emphasizes the high tone 
by about 6 dB relative to the low tone.

Figure 4 shows a signal recorded off the 
air before and after this filtering. The sam-
pling rate here is 48,000 samples per second, 
to give a high resolution. What we see is 
the flag (0×7E byte) just before the packet 
and the first data bits of the packet itself. In 
this case the original signal is fairly clean, 
so the filtered version is pretty close to the 
original, except for some attenuation and the 
elimination of dc. The filtering introduces a 
time delay.

Detecting the Tones Using 
Correlations

After filtering the signal, we try to detect 
which of the two tones was transmitted at 
every sample point. We do this by correlating 
the received samples with synthetic signals 
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Figure 4 — Here is a graph of a signal recorded off the air, along with the filtered version  
after applying the bandpass filter of Figure 3. The filter has eliminated a dc component  
of the signal, but is a close representation of the original signal. You can also see that  

the filter has introduced a slight time delay.

Figure 3 — This graph shows the response of a more practical low order (18) bandpass filter. 
It does not look nearly as good as the 180 order filter, and has a significant variation across 

the passband, it still emphasizes the high tone by about 6 dB.

that the demodulator generates at the two 
tone frequencies over a period of one symbol. 

Let us examine this computation in some 
more details. The demodulator generates  
fs / 1200 samples of a sine and fs / 1200 
samples of a cosine, and stores them in two 
arrays, s and c. When processing a new 
received sample, the demodulator puts it in 
an array together with the previous (fs / 1200) 
– 1 samples, in increasing time order. This is 
done efficiently by using the array as a cyclic 
buffer. Now the demodulator loops over 
the fs / 1200 input samples and multiplies 
each one by the corresponding sine sample 
and the corresponding cosine sample. The 
products for the sine are added up and the 
products for the cosine are added up, the two 
sums are squared, the squares are added, and 
finally the square root of that sum is taken. 
This is the correlation value for the sample 
just received.

Formally, the correlation is an inner prod-
uct of the received signal with a complex 
exponential function, but there is an easy way 
to understand why the correlation detects 
tones without resorting to complex numbers. 
If the incoming signal is at the frequency we 
correlate with and at the same phase as our 
synthetic sine, the sum of squares for the sine 
products will give a high value and the cosine 
will give a zero. If the phase corresponds to 
the cosine, the situation will be reversed, but 
the sum of the two sums of squares will be 
large either way. If the incoming signal’s 
phase is somewhere in between, both the 
sine and the cosine will contribute to the cor-
relation, and the correlation will still be high. 
The use of both a sine and a cosine essen-
tially compensates for the fact that we have 
no idea what the phase of the received signal 
is. If the received signal’s frequency does not 
match closely that of the sine and the cosine, 
the sample-by-sample products will produce 
both positive and negative numbers that will 
tend to cancel out; the overall correlation will 
be low. Figure 5 shows the two correlation 
signals for the signal shown in Figure 4. The 
correlation with 1200 Hz tends to be high 
when the 1200 Hz tone is present and low 
otherwise, and the correlation with 2200 Hz 
behaves just the opposite. They appear quite 
noisy, but nonetheless they contain very use-
ful information.

Decision Making: Which Tone is 
More Dominant?

To decode the AX.25 bit stream, we need 
to find transitions between the two tones. 
This requires us to decide which tone is more 
dominant at every sample. As we can see 
from the computed correlations displayed in 
Figure 5, the correlation signal can be quite 
noisy; it is not easy to decide whether a par-
ticular tone is present or not. (The noisiness 
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Figure 5 — Here we see the filtered signal, centered on the 0 line, along with the correlation 
signals for the 2200 Hz tone (highest when that tone is present and lowest when it is not)  

and the 1200 Hz tone (high when that tone is present, but not as low when it is not).

Figure 6 — This graph shows the filtered signal, centered on the 0 line, and the difference 
between the high and low tone correlation (the noisiest signal). After applying a low  
pass filter to the difference between tone correlations, we get the smoothed signal.

of the correlations is clearly evident in the 
1200 Hz correlation; the 2200 Hz correlation 
is cleaner.) Deciding which tone is stronger 
is easier, however. We simply compare the 
two correlation signals and estimate which 
tone is present by selecting the stronger cor-
relation. In the graph of Figure 6 we show 
the difference between the correlations; a 
positive value means that the 1200 Hz tone 
is stronger and a negative value means the  
2200 Hz tone is stronger.

Like the correlation signals, the corre-
lation-difference signal is also noisy. This 
makes it difficult to find the transitions 
between the two tones, because the high-
frequency noise in the difference signal often 
causes several zero crossings to appear in 
quick succession. Fortunately, we know that 
tone transitions occur at most once every  
1 ⁄ 1200 of a second. Therefore, we can pass 
the correlation-difference signal through a  
1200 Hz low-pass filter. The graph of  
Figure 6 shows that as expected, the low-
pass filtering maintains the overall shape of 
the signal but removes the high-frequency 
noise and the spurious zero crossings that 
they generate.

The low pass filters that the demodula-
tor uses have been constructed using the fir1 
function in Matlab, which uses a Hamming 
window to construct the filter. The filter order 
is the same as that of the time-domain band-
pass and emphasis filter, twice the number of 
samples in a symbol period.

Recovering the Bit Stream
At this point the demodulator can reliably 

determine the timing of transitions between 
the two tones. It is time to recover the AX.25 
bit stream. The first step is to determine how 
many symbol periods separate consecutive 
transitions. The graph in Figure 7 shows the 
lengths of these periods in our signal.

Due to various potential sources of noise, 
the periods between estimated tone-transi-
tion times are not exactly integers, but they 
are close. The number of samples per symbol 
in this signal is 40, so an error of one sample 
is equivalent to an error of 0.025 symbol peri-
ods; we see that the errors in our processing 
of this signal are up to two samples. 

At lower sample rates there are fewer 
samples per symbol. At 9600 samples per 
second, we have only 8 samples per sym-
bol, but the method still works reliably. At 
8000 samples per second, however, rounding 
errors become common and the method often 
fails. To avoid these errors at the 8000 sam-
ples/second rate, we interpolate the signal to 
16000 samples/second and then decode it; 
this works reliably.

Detecting a transition 1 symbol period 
after another means that we have decoded a 
zero bit in the AX.25 bit stream; the modu-
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lator sent a symbol for one period and then 
switched tones to indicate the zero. A tran-
sition after 2 periods means that we have 
decoded a one followed by a zero. Three 
periods decode into 2 ones and a zero, and 
so on up to 5 periods. When we detect a 
transition after 6 periods, we have decoded 
5 ones but without a zero after them; a zero 
was stuffed into the bit stream to generate a 
transition so that the demodulator can stay 
synchronized with the modulator; the zero is 
not part of the AX.25 bit stream. When we 
detect a transition after 7 periods, we have 
decoded a flag byte, which might delineate 
a packet but is not part of a packet; we see 
such a flag in Figure 7 (the 6.925 periods get 
rounded to 7). A transition after more than 
7.5 periods or less than half a period indicates 
a decoding error and causes the decoder to 
abort the current packet and to search for the 
flag that delineates the next packet.

Once we have decoded a supposed packet 
delineated by two flag bytes, the decoder 

Table 1

	                                     Track 1 (No De-emphasis)                 T	rack 2 (6 dB De-emphasis)
	                                 8	        16	       32       64     128	          8	         16  	 32	 64	 128
Flat	 11025	 946	 941	 943	 948	 948	 824	 859	 716	 809	 657
Filter	 44100	 436	 937	 967	 961	 961	 77	 418	 891	 856	 760
Emphasis	 11025	 949	 728	 504	 528	 555	 844	 951	 958	 957	 955
Filter	 44100	 439	 938	 966	 927	 524	 76	 539	 895	 945	 959

Figure 7 — Here is the low pass filtered signal from Figure 6. The symbol periods can easily 
be identified, so we can begin decoding the packet. Note that the longest time  

between transitions corresponds to 7 symbol periods, which represents a flag byte.

checks the checksum value that is transmit-
ted as the last two bytes of the packet. If the 
checksum is correct (it should be a specific 
function of the rest of the packet), the packet 
is considered valid and is passed to the client 
of the modem (typically an APRS program); 
otherwise the packet is discarded.

Optimizing the Demodulator
The demodulator’s performance, both in 

terms of the amount of computation required 
and the ability to decode noisy and/or de-
emphasized packets depends on the design of 
its two filters and on the sampling rate. The 
filters can be designed in many different ways: 
different filter orders, different cutoff and tran-
sition frequencies, and different filter-design 
algorithms. Understanding how all of these 
parameters affect the demodulator and how 
they interact is not easy, certainly not to people 
with limited background in DSP.

To address this issue, I performed many 
systematic experiments in which I tested dif-

ferent parameters on the first two tracks in the 
test CD. Table 1 shows some of the results of 
these experiments (it does not reflect exactly 
the performance of the final demodulator). The 
table shows the number of packets decoded 
from each track in two sample rates (11025 
and 44100), with two types of time-domain 
filters (one with the same magnitude response 
at 1200 and 2200 Hz and the other with 6 dB 
emphasis), and at 5 filter orders (8 to 128).

We learn a lot from this table and from 
others like it. We see that filter orders that 
are much shorter than the number of samples 
per symbol lead to very poor performance. 
Filters of order 8 are fine for 11,025 samples/
second but are terrible for 44,100. We see 
that a filter that is matched to the emphasis 
in the radio helps, but we also see that this is 
particularly true for filters of very high order; 
shorter filters often deliver good results in 
both tracks (for example, filter order 32 or 64 
at 44100 samples/second).

Striking Twice to Hit Once
The realization that a flat filter is best on 

some signals and that an emphasized filter 
is best on others caused me some worries. 
I tried to come up with strategies to choose 
the correct filter; some of them were quite 
complex.

I eventually realized that I can avoid 
the choice altogether. I can feed the audio 
samples to two demodulator algorithms run-
ning in parallel. Sometimes both of them will 
decode a packet (and then a simple duplicate 
removal algorithm discards one of them). At 
other times only one will be able to decode 
a packet.

Running each audio sample through two 
copies of the demodulator is twice as expen-
sive as running only one demodulator. On 
very weak computers (such as smart phones) 
this may be significant, but on desktops, lap-
tops, and servers — even weak ones — the 
demodulator is cheap enough to run two 
copies in parallel. On a 1.6 GHz Intel Atom 
330 computer (a relatively weak and slow 
CPU) running two demodulators in parallel 
on 11,025 samples / second audio uses only 
8% of the CPU power.

Table 2 shows how many test-CD pack-
ets are decoded by the strike-twice-hit-once 
demodulator and by the two single-filter 
demodulators. We can see that using two 
demodulators with different filters is ben-
eficial even compared to using a filter that 
matches the de-emphasis setting in the 
receiver; when there is a mismatch, the ben-
efit is dramatic.

Software Design, Status, and 
Availability

One of the first choices that I made early 
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Proceedings of the 22nd ARRL and TAPR 
Digital Communications Conference, 
Hartford, Connecticut, September 2003, pp 
140-149.

10 Andrei Kopanchuk’s software modem is 
available for download at: http://uz7.ho.ua.

11 For more information about Pete Loveall’s 
javAPRSSrvr software modem see: groups.
yahoo.com/group/javaprssrvr/.

12 You can download Audacity for free at 
audacity.sourceforge.net/

13 For more information about Stephen 
Smith’s test CD, see his website: wa8lmf.
net/TNCtest/index.htm.

14 There is more information about Robert 
Marshall’s microntroller-based modem on 
his website. http://sites.google.com/site/
ki4mcw/Home/arduino-tnc.

15 For more information about Pete Loveall’s 
software modem see: http://groups.yahoo.
com/group/javaprssrvr/.

16 For more information about the APRSISCE  
APRS client program, see: http://groups.
yahoo.com/group/APRSISCE/.

17 Georg Lucas has written an APRS client 
for Android smart phones: http://aprsdroid.
org/.

18 You can download the software for the 
modem described in this article from my 
website: https://github.com/sivantoledo. 
The software version as of the publication 
date of this article is also available for down-
load from the ARRL QEX files website. Go 
to www.arrl.org/qexfiles and look for the 
file 7x12_Toledo.zip.

Table 2

	 Track 1 (No De-emphasis)	 Track 2 (6 dB De-emphasis)

	 Flat	 Emphasized	 Both	 Flat	 Emphasized	 Both 	 	
	 Filter	 Filter	 Filters	 Filter	 Filter	 Filters
8000	 960	 939	 966	 854	 950	 954
9600	 964	 686	 966	 854	 957	 958
44100	 961	 917	 962	 881	 959	 964

in this project was to completely decouple 
the signal-processing routines from the 
interface routines, mainly so that the modem 
could be used in different operating systems 
and environments. By interface routine I 
mean both the interface to the sound card and 
the interface to the modem client, typically 
an APRS program. The decision was par-
tially based on an earlier experience trying 
to port parts of soundmodem from the Linux/
Windows environment for which it was writ-
ten to a microcontroller-based tracker. It 
was hard. Soundmodem does use a modular 
architecture, but still the separation between 
the modules was not clean enough to make 
separation easy.

The separation between the DSP routines 
and all the other software routine in the new 
modem is clean, which makes porting the 
DSP routines to new Java platforms and cli-
ent environments easy.

The DSP routines are currently integrated 
into four different software environments. 
Three of these environments were written by 
me and I did the integration; somebody else 
authored the forth and integrated the modem 
into it. These environments are:

1) A command-line program to test the 
modem and to measure its performance. This 
program can generate packets into a sound 
card and can decode packets from either a 
sound card or a wav file.

2) javAPRS, an APRS iGate and dig-
ipeater software written by Pete Loveall.15 

javAPRS comes with interfaces to various 
types of hardware and software modems 
(serial TNCs, Linux kernel AX.25 support 
and AGWPE). I added support for my new 
modem, which can now run as an integral 
part of javAPRS.

3) An AGWPE emulator. This program 
does not implement the entire AGWPE TCP/
IP protocol (which is not publicly docu-
mented, to the best of my knowledge), but 
it implements enough of it to support APRS 
client programs like APRSISCE.16

4) APRSdroid, an APRS client for 
Android phones and tablets written by Georg 
Lucas.17 Georg integrated my modem into 
APRSdroid, reporting that the initial integra-
tion effort was easy and that the interface 
code (which did not include error checking 
at that point) consisted of only 50 lines. The 

audio processing mechanism in Android is 
completely different from the mechanism 
in Java running under Windows, Linux, and 
Mac OS; therefore, the ease of integration 
shows that the DSP routines in the modem 
are indeed well separated from the audio 
processing routines. 

The modem has been running under 
javAPRS around the clock for a few months 
now as both an iGate and as a SatGate; both 
copies of javAPRS and the modem run on 
the same computer using two different sound 
cards (the internal one and an inexpensive 
USB sound card) and two radios. The iGate 
gates packets to and from RF; the SatGate 
only gates packets from RF to the internet. 
The modem has been tested under Linux, 
Windows, and Android.

The new modem is freely available along 
with a user manual under an open-source 
license.18

Sivan Toledo is Professor of Computer 
Science at Tel-Aviv University. He holds BSc 
and MSc degrees from Tel-Aviv University 
and a PhD from the Massachusetts Institute 
of Technology, where he was also Visiting 
Associate Professor in 2007-2009. He was 
licensed in 1982. 

Notes
1 You can find more information and download 

this software at www.baycom.org/~tom/
ham/soundmodem/.

2 James A. Mitrenga, N9ART, “An MX614 
Packet Modem,” QST, Jan 2000, pp 44-46.

3 Bob Ball, WB8WGA, “An Inexpensive 
Terminal Node Controller for Packet Radio,” 
QEX, Mar/Apr 2005, pp 16-25.

4 See the Byonics website for more informa-
tion about Byon Garrabrant’s TinyTrak 
modems: www.byonics.com.

5 Scott Miller’s OpenTracker series of 
modems are available from Argent Data 
Systems: https://www.argentdata.com/.

6 You can download Thomas Sailer’s 
soundmodem software at: www.baycom.
org/~tom/ham/soundmodem/.

7 Thomas Sailer’s multimon modem software 
is available at: www.baycom.org/~tom/
ham/linux/multimon.html.

8 You can find Georg Rossopoylos’ AGWPE 
modem software at: www.sv2agw.com/
ham/agwpe.htm.

9 Frank Perkins, WB5IPM. “DSP Programming 
using DirectSound and MFC/VC++,” 


