
 QEX – JulyAugust 2012 19

Sivan Toledo, 4X6IZ	

School of Computer Science, Tel-Aviv University, Tel-Aviv 69978, Israel; stoledo@tau.ac.il

A High-Performance
Sound-Card AX.25 Modem

The author leads us through the process of fixing several known problems with
AX.25 modems, leading to a new software modem.

I had been running an APRS RF-to-
internet gateway (an iGate) for a few months
using a sound-card modem by Thomas
Sailer, HB9JNX/AE4WA, (soundmo-
dem).1 The software modem caused various
problems and I have not found a suitable
replacement. Eventually, I decided to try to
implement my own sound-card-based soft-
ware modem. The results have been very
good, in spite of the fact that I do not have
much background in digital signal process-
ing.

This article describes the problems with
current AX.25 software modems, the design
methodology I followed in implementing
the new modem, and of course, the resulting
software. The methodology is particularly
important; it has allowed me to design and
implement a high-performance modem with
little background in digital processing and
absolutely no background or experience in
designing digital decoders.

Existing AX.25 Modems: Some
Software, Some Hardware

VHF APRS uses AX.25 packets with
1200 baud audio frequency shift keying
(AFSK) modulation. Binary ones are rep-
resented by a continuous tune, either 1200
or 2200 Hz, and zeros are represented by a
switch from one of these tones to the other.
This modulation scheme is based on the
Bell 202 telephone modem standard from
around 1980.

Three types of modems are in wide use
in APRS systems today. One type uses a
dedicated modem integrated circuit (IC),
the mx614.2 There is not a wide selection of
1200 baud modem ICs in production today.
The IC is only responsible for generating
the tones and for deciding which tone is
present at any given time. In mx614-based

Modems in the third group run on a PC
and rely on a sound card to transfer audio
between the radio and the computer: Thomas
Sailer’s soundmodem and multimon, George
Rossopoylos’s AGWPE, Frank Perkins’
AX.25-SCS, and Andrei Kopanchuk’s recent
modem (which I was not aware of when
I started this project).6, 7, 8, 9, 10

Decoding and Interfacing Problems
with Existing Software Modems

I faced two types of problems with the
sound-card-based software modems that
I tried. I started with AGWPE, connected
through a homebrewed computer/radio
interface to a Yaesu FT-857D. The soft-
ware generated packets that nearby stations 1Notes appear on page 25.

modems, such as John Hansen’s X-TNC and
the OpenTracker series, the modem IC is con-
nected to a microcontroller that determines
the symbol timing, extracts the packet bit
stream, and checks the packet for integrity.
In many APRS systems the same microcon-
troller also performs other functions, such as
converting GPS sentences to APRS messages.

In the second type of modem, the micro-
controller is also used for modulation and
demodulation, using its built-in analog-
to-digital converter and a resistor-network
digital-to-analog converter. Bob Ball’s TNC,
Byon Garrabrant’s TinyTrak series, Scott
Miller’s OpenTracker series, and Robert
Marshall’s Arduino-based TNC all belong to
this group.3, 4, 5

Figure 1 — This graph shows a piece of the audio I recorded from an AX.25 packet I received
from a nearby station. The 2200 Hz tone amplitude is much lower than the 1200 Hz tone
amplitude. Various software modems that I tried were unable to decode these packets.

20 QEX – July/August 2012

were able to decode, but it could not decode
packets from the same stations. I switched
to AX.25-SCS, but the results were similar.
I recorded the audio of several packets from
stations that the modems could not decode
and discovered that the amplitude of the
2200 Hz tone was much lower than the
amplitude of the 1200 Hz tone, as you can
see in Figure 1.

This turned out to be what caused dif-
ficulties to both AGWPE and AX.25-SCS.
I switched to a different sound-card inter-
face, which apparently does not attenuate
high-frequencies as much, and both modems
were able to decode many more packets. You
may say that the first sound-card interface
is simply not good enough, but AX.25 is
modulated using frequency shift keying, so in
theory, the demodulator should not be sensi-
tive to amplitude variations.

It appears that soundmodem suffers
from similar problems. When fed by an old
Kenwood TR-2500, it decoded packets just
fine, but when I switch to a Motorola radio (a
PageTrac, in which the radio is the same as in
the more common MaxTrac radios), it failed
to decode most packets.

All of these modems need to interface to
both a sound card and an AX.25 or APRS
program. I also faced problems in this area.
AX.25-SCS does not allow you to select
a sound card, so I could not use it with an
external high-quality sound card. Both of
these programs, as well as the new UZ7HO
modem, are Windows-only programs, so
I could not use them in my Linux-based
APRS iGate. Soundmodem does work under
Linux, but interfacing it to Pete Loveall’s
javAPRSSrvr proved challenging.11 I initially
tried to interface the two programs using
a virtual serial port, but javAPRSSrvr kept
complaining that soundmodem was closing
the serial port. I then interfaced them using
the Linux kernel’s support for AX.25 net-
working; this approach is somewhat more
complicated, but it did work reliably. Either
way, soundmodem must be started before
javAPRSSrvr, otherwise javAPRSSrvr fails
to find the virtual serial port or the AX.25
kernel interface.

In spite of these problems, I was able
to find a working reliable configuration.
A Kenwood TR-2500 fed soundmodem,
which fed javAPRSSrvr through the Linux
kernel’s AX.25 support. This setup worked
fine for a few months, but when I switched
to the Motorola PageTrac and discovered
that soundmodem would not decode pack-
ets received by it, I decided to try to design
and implement a better AX.25 sound-card
modem. I did not have much experience
in digital-signal processing (DSP), but I
decided to learn the necessary tools and to try
to implement a good modem.

Pre-Emphasis and De-Emphasis
Before describing the modem and how

I designed it, it is worth explaining why the
amplitudes of the 1200 Hz and 2200 Hz
tones in received packets often vary sig-
nificantly. In FM voice communication, the
transmitter pre-emphasizes high tones by
6 dB per octave. That is, it amplifies high
audio frequencies more than it amplifies low
frequencies, which results in wider deviation
for high tones. To compensate, the receiver
de-emphasizes the received audio by the
same amount, to make the audio sound
natural. This scheme originated in the use
of phase modulators rather than frequency
modulators, but it is still useful today because
the de-emphasis in the receiver cuts down
annoying high-frequency noise (hiss).

If all transmitters and receivers adhered
precisely to the 6 dB/octave curve, and if all
AX.25 modems were interfaced to the pre/
de-emphasized audio path, we would not
see any amplitude variations between the
two tones. But some radios do not adhere
precisely to the 6 dB/octave curve, and some
radios interface the AX.25 modem directly
to the modulator and/or discriminator,
bypassing the pre/de-emphasis circuits. To
make things even more complicated, some
modems pre/de-emphasize the audio too, in
an attempt to compensate for the radio.

The outcome of all of this is that no matter
what you do at the receiving end, your AX.25
demodulator is going to see packets with
amplitude variations between the tones. It is,
therefore, important for the demodulator to
be able to cope with such variations.

A Design and Evaluation
Methodology

To design the modem and to evaluate how
well it works, I used a methodology that is
somewhat different from the methodology
used in many other amateur projects.

One aspect of the methodology is the
use of Matlab to do much of the design.
I intended to write the modem in Java or C
(I settled on Java), but for the initial proto-
typing I used Matlab, an interactive techni-
cal computing environment with excellent
support for plotting graphs, for DSP, and for
reading wav files (sound recordings). Matlab
has other features, of course, but these three
were important in this project.

I started by recording packets off the air,
some from stations that I knew are hard to
decode and some from stations that I knew
were easy to decode. I recorded segments of
about 5 minutes that I knew were likely to
contain beacon packets (digipeaters tend to
beacon at fixed intervals) and trimmed the
audio using Audacity, a free cross-platform
sound editor.12

I then started to develop the DSP algo-
rithm, testing it on the recorded packets after
every modification. The behavior of the code
on the recorded packets helped me under-
stand the DSP techniques that are used in
modems, and it eventually showed that my
demodulator was working. The ability to
plot signals that are derived within the algo-
rithm from the input audio, in particular, was
crucial; it really helped me understand what
works and what does not work. You will see
some of these plots below, and I hope that you
will agree that they do indeed provide insight
as to how the algorithm works. The plots
shown below are static; you cannot zoom in
and out, select which time series appear on
each plot, and so on. In Matlab, the plots are
interactive, and hence even more useful.

My experience with AGWPE, AX.25-
SCS, and soundmodem taught me that a
modem that can decode a few packets from
particular transmitter/receiver combinations
can still fail on other transmitter/receiver
combinations.

This brings us to the second aspect of the
methodology: the use of Stephen Smith’s
APRS test CD.13 This CD consists of sev-
eral recordings of APRS traffic. The first
two tracks on the CD are the most useful
ones for evaluating modems. The first track
is a recording of about 40 minutes of APRS
traffic in Los Angeles, consisting of more
than 900 packets from many different radios
and modems. This track is a recording of
the discriminator output of a radio, with no
de-emphasis. The second track contains the
same audio, but it is accurately de-empha-
sized by 6 dB/octave. If a modem works well
on both tracks, it is likely to work well with
most radios.

The test CD has been critical in opti-
mizing the ability of my modem to decode
packets. I ran the entire first two tracks
through variations of my modem many
times. From each such run, I would note the
number of decoded packets from each track.
This allowed me to test different filters and
algorithms and to understand how different
parameters of the algorithm affect its per-
formance.

Using a real-world workload (sometimes
called a benchmark) to monitor the evolu-
tion of a system as it is being optimized, and
to compare systems is not new, of course.
Stephen Smith made the test CD available
precisely for this purpose. I learned of the CD
from the website of Robert Marshall, who
used it to compare his microcontroller-based
AX.25 modem to several existing modems
(his results, while perhaps not completely
scientific, show that AGWPE and sound-
modem indeed perform quite poorly).14 The
fact that the methodology is not new does
not mean that it is widely used. It is not, usu-

 QEX – JulyAugust 2012 21

ally because a suitable large and representa-
tive workload is not available. For example,
Bob Ball, who designed his AX.25 modem
before the test CD was available, described
the performance of his modem in the follow-
ing way: “My units routinely decode packets
that are less than 1 S unit on my 2 meter radio
from stations over 75 miles away.” This is
useful information, but quantitative informa-
tion on a standard workload is much more
informative.

The Design of the Modem
An AX.25 modem consists of a transmit

path and a receive path that are almost unrelated
(apart from decisions as to when to transmit,
which are based on whether a packet is cor-
rectly being received). The transmit path cur-
rently consistists of an encoder, which encodes
an AX.25 packet into a bit stream, and a modu-
lator, which turns the bit stream into audio
samples at a particular sample rate. Similarly,
the receive part consist of a demodulator that
transforms audio samples into bits, and a
decoder that transforms the bits into packets (or
drops them, if the packet was not received cor-
rectly in its entirety).

The encoder and decoder algorithms are
completely described by the AX.25 specifica-
tions and they have been explained in many
articles, so I will not describe them here. All
that is important here is that the bit sequence
that makes up a packet is bit-stuffed; if five
ones appear in a row, a zero is inserted by the
encoder (and dropped by the decoder) in order
to ensure that zeros are not too rare. Another
important piece of information is that flag bytes
(hexadecimal 7E) surround each packet, and
they are not bit stuffed, which means that if the
decoder sees six ones in a row, it must be either
a flag or just noise.

The modulator transforms the bit-stuffed
sequence into audio. This is done using a
phase-continuous digital resonator that runs
at either 1200 Hz or 2200 Hz. The resonator
has one state variable, an angle (between 0 and
2 π). To produce a sample at 1200 Hz, the reso-
nator outputs sin (α) and advances α by 2 π /
(fs / 1200), where fs is the sampling frequency.
To produce a sample at 2200 Hz, the resonator
outputs sin (α) and advances α by 2 π / (fs /
2200). This is pretty simple. The demodulator
is more interesting.

Time-Domain Filtering and
Emphasizing

The processing of incoming signal sam-
ples starts with a filter that filters out some
of the energy in frequencies outside the
1200 to 2200 Hz range. The same filter can also
emphasize the 2200 Hz tone by 6 dB relative
to the 1200 Hz tone; this is an option that the
modem uses sometimes, but not always; more
on that later.

Figure 2 — Here is the response of the 900 to 2500 Hz high order (180) bandpass filter
I created in Matlab. Note the 6 dB ramp up of the response across the passband,

so there is no gain or attenuation at 2200 Hz.

Filtering out frequencies below 1200 Hz
and above 2200 Hz is theoretically useless.
I say theoretically because the filter is use-
less only if received noise obeys certain
theoretical assumptions. But this filtering is
cheap, harmless (even theoretically), and was
found to be useful in some hardware-based
modems, so I included it anyway.

We must not filter away energy in
between 1200 Hz and 2200 Hz. During tran-
sitions from one tone to the other the signal
contains energy in intermediate frequencies.
If we filter these in-between frequencies, the
filtered signal won’t be able to switch from
one tone to the other and will get stuck in
one of the tones. I was initially not aware
of this and learned this lesson the hard way:
I produced a filter that essentially passed only
1200 Hz and 2200 Hz, and discovered that it
strips away all the information in the signal!

The filter is an FIR filter that the modem
applies in the time domain, by convolving
the filter coefficients with incoming samples.
I construct the filter in Matlab using the firls
function, which constructs a filter whose fre-
quency response matches a given response
as well as possible given the filter order. The
specification I have firls called for a complete
attenuation of frequencies below 900 Hz and
above 2500 Hz, with a 6 dB ramp-up from
1200 Hz to 2200 Hz, with no attenuation and
no gain at 2200 Hz. Figure 2 shows what the
frequency response of the filter looks like
when we specify a high-order filter.

Applying high-order filters is expensive,
however, and experiments showed that going
to very high-orders does not improve the
demodulator’s performance (this is probably
an outcome of the theoretical result I men-
tioned earlier). In practice, the demodulator
uses filters whose order is twice the num-
ber of samples per symbol (that is, per 1⁄1200

samples). The graph of Figure 3 shows the
response of the actual filter that we use at fs
= 11,025. Compared to the order-180 filter,
it looks fairly crude, but it still works well,
as we’ll see below. The response has a sig-
nificant variation within the 1200 to 2200 Hz
passband, but it still emphasizes the high tone
by about 6 dB relative to the low tone.

Figure 4 shows a signal recorded off the
air before and after this filtering. The sam-
pling rate here is 48,000 samples per second,
to give a high resolution. What we see is
the flag (0×7E byte) just before the packet
and the first data bits of the packet itself. In
this case the original signal is fairly clean,
so the filtered version is pretty close to the
original, except for some attenuation and the
elimination of dc. The filtering introduces a
time delay.

Detecting the Tones Using
Correlations

After filtering the signal, we try to detect
which of the two tones was transmitted at
every sample point. We do this by correlating
the received samples with synthetic signals

22 QEX – July/August 2012

Figure 4 — Here is a graph of a signal recorded off the air, along with the filtered version
after applying the bandpass filter of Figure 3. The filter has eliminated a dc component
of the signal, but is a close representation of the original signal. You can also see that

the filter has introduced a slight time delay.

Figure 3 — This graph shows the response of a more practical low order (18) bandpass filter.
It does not look nearly as good as the 180 order filter, and has a significant variation across

the passband, it still emphasizes the high tone by about 6 dB.

that the demodulator generates at the two
tone frequencies over a period of one symbol.

Let us examine this computation in some
more details. The demodulator generates
fs / 1200 samples of a sine and fs / 1200
samples of a cosine, and stores them in two
arrays, s and c. When processing a new
received sample, the demodulator puts it in
an array together with the previous (fs / 1200)
– 1 samples, in increasing time order. This is
done efficiently by using the array as a cyclic
buffer. Now the demodulator loops over
the fs / 1200 input samples and multiplies
each one by the corresponding sine sample
and the corresponding cosine sample. The
products for the sine are added up and the
products for the cosine are added up, the two
sums are squared, the squares are added, and
finally the square root of that sum is taken.
This is the correlation value for the sample
just received.

Formally, the correlation is an inner prod-
uct of the received signal with a complex
exponential function, but there is an easy way
to understand why the correlation detects
tones without resorting to complex numbers.
If the incoming signal is at the frequency we
correlate with and at the same phase as our
synthetic sine, the sum of squares for the sine
products will give a high value and the cosine
will give a zero. If the phase corresponds to
the cosine, the situation will be reversed, but
the sum of the two sums of squares will be
large either way. If the incoming signal’s
phase is somewhere in between, both the
sine and the cosine will contribute to the cor-
relation, and the correlation will still be high.
The use of both a sine and a cosine essen-
tially compensates for the fact that we have
no idea what the phase of the received signal
is. If the received signal’s frequency does not
match closely that of the sine and the cosine,
the sample-by-sample products will produce
both positive and negative numbers that will
tend to cancel out; the overall correlation will
be low. Figure 5 shows the two correlation
signals for the signal shown in Figure 4. The
correlation with 1200 Hz tends to be high
when the 1200 Hz tone is present and low
otherwise, and the correlation with 2200 Hz
behaves just the opposite. They appear quite
noisy, but nonetheless they contain very use-
ful information.

Decision Making: Which Tone is
More Dominant?

To decode the AX.25 bit stream, we need
to find transitions between the two tones.
This requires us to decide which tone is more
dominant at every sample. As we can see
from the computed correlations displayed in
Figure 5, the correlation signal can be quite
noisy; it is not easy to decide whether a par-
ticular tone is present or not. (The noisiness

 QEX – JulyAugust 2012 23

Figure 5 — Here we see the filtered signal, centered on the 0 line, along with the correlation
signals for the 2200 Hz tone (highest when that tone is present and lowest when it is not)

and the 1200 Hz tone (high when that tone is present, but not as low when it is not).

Figure 6 — This graph shows the filtered signal, centered on the 0 line, and the difference
between the high and low tone correlation (the noisiest signal). After applying a low
pass filter to the difference between tone correlations, we get the smoothed signal.

of the correlations is clearly evident in the
1200 Hz correlation; the 2200 Hz correlation
is cleaner.) Deciding which tone is stronger
is easier, however. We simply compare the
two correlation signals and estimate which
tone is present by selecting the stronger cor-
relation. In the graph of Figure 6 we show
the difference between the correlations; a
positive value means that the 1200 Hz tone
is stronger and a negative value means the
2200 Hz tone is stronger.

Like the correlation signals, the corre-
lation-difference signal is also noisy. This
makes it difficult to find the transitions
between the two tones, because the high-
frequency noise in the difference signal often
causes several zero crossings to appear in
quick succession. Fortunately, we know that
tone transitions occur at most once every
1 ⁄ 1200 of a second. Therefore, we can pass
the correlation-difference signal through a
1200 Hz low-pass filter. The graph of
Figure 6 shows that as expected, the low-
pass filtering maintains the overall shape of
the signal but removes the high-frequency
noise and the spurious zero crossings that
they generate.

The low pass filters that the demodula-
tor uses have been constructed using the fir1
function in Matlab, which uses a Hamming
window to construct the filter. The filter order
is the same as that of the time-domain band-
pass and emphasis filter, twice the number of
samples in a symbol period.

Recovering the Bit Stream
At this point the demodulator can reliably

determine the timing of transitions between
the two tones. It is time to recover the AX.25
bit stream. The first step is to determine how
many symbol periods separate consecutive
transitions. The graph in Figure 7 shows the
lengths of these periods in our signal.

Due to various potential sources of noise,
the periods between estimated tone-transi-
tion times are not exactly integers, but they
are close. The number of samples per symbol
in this signal is 40, so an error of one sample
is equivalent to an error of 0.025 symbol peri-
ods; we see that the errors in our processing
of this signal are up to two samples.

At lower sample rates there are fewer
samples per symbol. At 9600 samples per
second, we have only 8 samples per sym-
bol, but the method still works reliably. At
8000 samples per second, however, rounding
errors become common and the method often
fails. To avoid these errors at the 8000 sam-
ples/second rate, we interpolate the signal to
16000 samples/second and then decode it;
this works reliably.

Detecting a transition 1 symbol period
after another means that we have decoded a
zero bit in the AX.25 bit stream; the modu-

24 QEX – July/August 2012

lator sent a symbol for one period and then
switched tones to indicate the zero. A tran-
sition after 2 periods means that we have
decoded a one followed by a zero. Three
periods decode into 2 ones and a zero, and
so on up to 5 periods. When we detect a
transition after 6 periods, we have decoded
5 ones but without a zero after them; a zero
was stuffed into the bit stream to generate a
transition so that the demodulator can stay
synchronized with the modulator; the zero is
not part of the AX.25 bit stream. When we
detect a transition after 7 periods, we have
decoded a flag byte, which might delineate
a packet but is not part of a packet; we see
such a flag in Figure 7 (the 6.925 periods get
rounded to 7). A transition after more than
7.5 periods or less than half a period indicates
a decoding error and causes the decoder to
abort the current packet and to search for the
flag that delineates the next packet.

Once we have decoded a supposed packet
delineated by two flag bytes, the decoder

Table 1

	 Track 1 (No De-emphasis) T	rack 2 (6 dB De-emphasis)
	 8	 16	 32 64 128	 8	 16 	 32	 64	 128
Flat	 11025	 946	 941	 943	 948	 948	 824	 859	 716	 809	 657
Filter	 44100	 436	 937	 967	 961	 961	 77	 418	 891	 856	 760
Emphasis	 11025	 949	 728	 504	 528	 555	 844	 951	 958	 957	 955
Filter	 44100	 439	 938	 966	 927	 524	 76	 539	 895	 945	 959

Figure 7 — Here is the low pass filtered signal from Figure 6. The symbol periods can easily
be identified, so we can begin decoding the packet. Note that the longest time

between transitions corresponds to 7 symbol periods, which represents a flag byte.

checks the checksum value that is transmit-
ted as the last two bytes of the packet. If the
checksum is correct (it should be a specific
function of the rest of the packet), the packet
is considered valid and is passed to the client
of the modem (typically an APRS program);
otherwise the packet is discarded.

Optimizing the Demodulator
The demodulator’s performance, both in

terms of the amount of computation required
and the ability to decode noisy and/or de-
emphasized packets depends on the design of
its two filters and on the sampling rate. The
filters can be designed in many different ways:
different filter orders, different cutoff and tran-
sition frequencies, and different filter-design
algorithms. Understanding how all of these
parameters affect the demodulator and how
they interact is not easy, certainly not to people
with limited background in DSP.

To address this issue, I performed many
systematic experiments in which I tested dif-

ferent parameters on the first two tracks in the
test CD. Table 1 shows some of the results of
these experiments (it does not reflect exactly
the performance of the final demodulator). The
table shows the number of packets decoded
from each track in two sample rates (11025
and 44100), with two types of time-domain
filters (one with the same magnitude response
at 1200 and 2200 Hz and the other with 6 dB
emphasis), and at 5 filter orders (8 to 128).

We learn a lot from this table and from
others like it. We see that filter orders that
are much shorter than the number of samples
per symbol lead to very poor performance.
Filters of order 8 are fine for 11,025 samples/
second but are terrible for 44,100. We see
that a filter that is matched to the emphasis
in the radio helps, but we also see that this is
particularly true for filters of very high order;
shorter filters often deliver good results in
both tracks (for example, filter order 32 or 64
at 44100 samples/second).

Striking Twice to Hit Once
The realization that a flat filter is best on

some signals and that an emphasized filter
is best on others caused me some worries.
I tried to come up with strategies to choose
the correct filter; some of them were quite
complex.

I eventually realized that I can avoid
the choice altogether. I can feed the audio
samples to two demodulator algorithms run-
ning in parallel. Sometimes both of them will
decode a packet (and then a simple duplicate
removal algorithm discards one of them). At
other times only one will be able to decode
a packet.

Running each audio sample through two
copies of the demodulator is twice as expen-
sive as running only one demodulator. On
very weak computers (such as smart phones)
this may be significant, but on desktops, lap-
tops, and servers — even weak ones — the
demodulator is cheap enough to run two
copies in parallel. On a 1.6 GHz Intel Atom
330 computer (a relatively weak and slow
CPU) running two demodulators in parallel
on 11,025 samples / second audio uses only
8% of the CPU power.

Table 2 shows how many test-CD pack-
ets are decoded by the strike-twice-hit-once
demodulator and by the two single-filter
demodulators. We can see that using two
demodulators with different filters is ben-
eficial even compared to using a filter that
matches the de-emphasis setting in the
receiver; when there is a mismatch, the ben-
efit is dramatic.

Software Design, Status, and
Availability

One of the first choices that I made early

 QEX – JulyAugust 2012 25

Proceedings of the 22nd ARRL and TAPR
Digital Communications Conference,
Hartford, Connecticut, September 2003, pp
140-149.

10 Andrei Kopanchuk’s software modem is
available for download at: http://uz7.ho.ua.

11 For more information about Pete Loveall’s
javAPRSSrvr software modem see: groups.
yahoo.com/group/javaprssrvr/.

12 You can download Audacity for free at
audacity.sourceforge.net/

13 For more information about Stephen
Smith’s test CD, see his website: wa8lmf.
net/TNCtest/index.htm.

14 There is more information about Robert
Marshall’s microntroller-based modem on
his website. http://sites.google.com/site/
ki4mcw/Home/arduino-tnc.

15 For more information about Pete Loveall’s
software modem see: http://groups.yahoo.
com/group/javaprssrvr/.

16 For more information about the APRSISCE
APRS client program, see: http://groups.
yahoo.com/group/APRSISCE/.

17 Georg Lucas has written an APRS client
for Android smart phones: http://aprsdroid.
org/.

18 You can download the software for the
modem described in this article from my
website: https://github.com/sivantoledo.
The software version as of the publication
date of this article is also available for down-
load from the ARRL QEX files website. Go
to www.arrl.org/qexfiles and look for the
file 7x12_Toledo.zip.

Table 2

	 Track 1 (No De-emphasis)	 Track 2 (6 dB De-emphasis)

	 Flat	 Emphasized	 Both	 Flat	 Emphasized	 Both 	 	
	 Filter	 Filter	 Filters	 Filter	 Filter	 Filters
8000	 960	 939	 966	 854	 950	 954
9600	 964	 686	 966	 854	 957	 958
44100	 961	 917	 962	 881	 959	 964

in this project was to completely decouple
the signal-processing routines from the
interface routines, mainly so that the modem
could be used in different operating systems
and environments. By interface routine I
mean both the interface to the sound card and
the interface to the modem client, typically
an APRS program. The decision was par-
tially based on an earlier experience trying
to port parts of soundmodem from the Linux/
Windows environment for which it was writ-
ten to a microcontroller-based tracker. It
was hard. Soundmodem does use a modular
architecture, but still the separation between
the modules was not clean enough to make
separation easy.

The separation between the DSP routines
and all the other software routine in the new
modem is clean, which makes porting the
DSP routines to new Java platforms and cli-
ent environments easy.

The DSP routines are currently integrated
into four different software environments.
Three of these environments were written by
me and I did the integration; somebody else
authored the forth and integrated the modem
into it. These environments are:

1) A command-line program to test the
modem and to measure its performance. This
program can generate packets into a sound
card and can decode packets from either a
sound card or a wav file.

2) javAPRS, an APRS iGate and dig-
ipeater software written by Pete Loveall.15

javAPRS comes with interfaces to various
types of hardware and software modems
(serial TNCs, Linux kernel AX.25 support
and AGWPE). I added support for my new
modem, which can now run as an integral
part of javAPRS.

3) An AGWPE emulator. This program
does not implement the entire AGWPE TCP/
IP protocol (which is not publicly docu-
mented, to the best of my knowledge), but
it implements enough of it to support APRS
client programs like APRSISCE.16

4) APRSdroid, an APRS client for
Android phones and tablets written by Georg
Lucas.17 Georg integrated my modem into
APRSdroid, reporting that the initial integra-
tion effort was easy and that the interface
code (which did not include error checking
at that point) consisted of only 50 lines. The

audio processing mechanism in Android is
completely different from the mechanism
in Java running under Windows, Linux, and
Mac OS; therefore, the ease of integration
shows that the DSP routines in the modem
are indeed well separated from the audio
processing routines.

The modem has been running under
javAPRS around the clock for a few months
now as both an iGate and as a SatGate; both
copies of javAPRS and the modem run on
the same computer using two different sound
cards (the internal one and an inexpensive
USB sound card) and two radios. The iGate
gates packets to and from RF; the SatGate
only gates packets from RF to the internet.
The modem has been tested under Linux,
Windows, and Android.

The new modem is freely available along
with a user manual under an open-source
license.18

Sivan Toledo is Professor of Computer
Science at Tel-Aviv University. He holds BSc
and MSc degrees from Tel-Aviv University
and a PhD from the Massachusetts Institute
of Technology, where he was also Visiting
Associate Professor in 2007-2009. He was
licensed in 1982.

Notes
1 You can find more information and download

this software at www.baycom.org/~tom/
ham/soundmodem/.

2 James A. Mitrenga, N9ART, “An MX614
Packet Modem,” QST, Jan 2000, pp 44-46.

3 Bob Ball, WB8WGA, “An Inexpensive
Terminal Node Controller for Packet Radio,”
QEX, Mar/Apr 2005, pp 16-25.

4 See the Byonics website for more informa-
tion about Byon Garrabrant’s TinyTrak
modems: www.byonics.com.

5 Scott Miller’s OpenTracker series of
modems are available from Argent Data
Systems: https://www.argentdata.com/.

6 You can download Thomas Sailer’s
soundmodem software at: www.baycom.
org/~tom/ham/soundmodem/.

7 Thomas Sailer’s multimon modem software
is available at: www.baycom.org/~tom/
ham/linux/multimon.html.

8 You can find Georg Rossopoylos’ AGWPE
modem software at: www.sv2agw.com/
ham/agwpe.htm.

9 Frank Perkins, WB5IPM. “DSP Programming
using DirectSound and MFC/VC++,”

