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Abstract—Mobile devices use low-cost SSDs such as microSD
cards and eMMC devices for persistent data storage. However,
The controllers of low-cost SSDs are optimized for reads and for
sequential writes and they perform poorly under random writes.
In this paper, we show that it is possible to overcome this limi-
tation using a novel device driver on the host. Our driver, called
LSDM, uses design techniques normally used in the firmware
(FTL) of high-end SSD to transform random writes to sequential
ones. Our driver is a generic kernel module that interfaces an
existing file system to the block device that represents the SSD,
transforming the arbitrary read/write request sequence of the
file system to a sequence with long streams of sequential writes;
even low-cost SSDs perform well on such sequences. The use of an
existing unmodified file system allows users and administrators to
benefit from mature, feature-complete file systems. Our prototype
implementation speeds up all filebench workloads used, by up
to a factor of 6. Our experiments show that a flash-friendly file
system that generates long streams of sequential writes delivers
performance that is similar to a conventional file system mounted
on LSDM. The high complexity of a completely new file system,
relative to the simplicity of LSDM, favors our solution.

I. INTRODUCTION

Mobile devices (i.e. smartphones, tablets etc.) use low-
cost flash-based Solid-State Disks (SSDs) , such as eMMCs
(Embedded MultiMediaCards) and microSD cards, to store
data. These storage devices are a major factor determining
the pricing and performance of mobile devices [18]. Vendors
use them due to their low price, combined with their shock-
resistent nature, and low power consumption. However, some
price/performance tradeoff is inevitable. The tradeoff manifests
itself mostly in terms of the device’s IO/s rate (IOs per
second). Sequential write and all read access patterns usually
achieve good performance. However when writing random
blocks performance deteriorates significantly.

The position of a low-cost SSD on the price/performance
spectrum is determined to a large extent by the small amount
of RAM that their controller has. There are other determining
factors, such as the raw performance of the NAND chips
that are used, but the size of the device’s RAM is very
significant [4]. Most importantly, the amount of RAM is
responsible for essentially all the difference between random-
write and sequential write performance.

It has been widely recognized that sector/page-granularity
log-structured mapping structures are key in any solution to
this problem [16], [4], [26], [29], [25]. Table I lists different

ways to apply this technique. The different solutions differ
in the software layer at which they apply the technique (the
SSD’s firmware, the block device driver, or the file system)
and whether and where mappings are cached. The number
and variety of the solutions, some on the market and some
proposed, demonstrates how important this problem is; it must
be solved. However, it is not yet clear which one will win.

In this paper we generalize several such solutions [28],
[24], [21], [20]. We show that our solution is easily applicable
to mainstream operating systems and SSDs and that it performs
well under a variety of workloads.

The key idea in these solutions (and in our system, LSDM)
is to deploy a log-structured address-translation layer between
the file system and the block device driver that manages a
low-cost SSD. This layer transforms the random writes that
the file-system layer emits into long streams of sequential
writes using a log-structured approach. This technique was
originally proposed for magnetic disks [11]; it did not gain
much acceptance on disks, probably because it can hurt spatial
locality, which slows down reads. SSDs usually deliver similar
performance on sequential and random reads, so they are better
candidates for this technique.

Current solutions for low-cost SSDs are specialized; they
either require two storage devices, using a special user space
library, maintaining large data structures in RAM, perform
redundant writes that weare out the device, or they are designed
for a specific application on a platform with an unusual NAND
flash storage. Our paper makes several important contributions.

• A mapping mechanism that works well with only
one NAND storage device (typically a low-cost SSD
whose random write performance can be arbitrarily
bad) without impacting overall system performance.
We demonstrate the mechanism using a Linux device
driver; we expect that similar drivers for other operat-
ing systems should be easy to implement.

• Our mapping mechanism uses an amount of RAM that
is proportional to the capacity of the SSD, and can be
easily reduced even further to improve performance.
This is particularly significant for large SSDs (or for
systems with small RAM, like phones and tablets).

• Our design writes the data once, and does not require
redundant copies of the data from a staging area on
the device like some other recently-proposed schemes.



Table I.

Storage Device Firmware File System Flash Hardware Random Writes
Low-end SSDs SSD, small RAM no change no change standard slow
High-end SSDs SSD, large RAM no change no change standard fast

FusionIO PCI Express card custom no change custom fast
Specialized File System [25], [18], [1] SSD, small RAM no change custom standard fast

Hinting [5] SSD, small RAM custom no change standard fast
LBS [28] SSD, small RAM no change no change custom fast
Advil [21] SSD, small RAM no change no change custom fast

FlashLite [20] SSD, small RAM no change interface with library standard medium
ReSSD [24] SSD, small RAM no change no change standard medium

LSDM (this paper) SSD, small RAM no change no change standard fast

• Our garbage collection mechanism better matches the
performance characteristics of low-cost SSDs.

• We demonstrate that LSDM improves the performance
of systems that use a low-cost SSD under a variety
of common workloads. The improvements achieved
with LSDM and a mature file system (ext4) currently
used in popular mobile devices, are better than or
similar to the performance improvements obtained by
switching to a log-structured and flash-friendly file
systems. This is important because log-structured and
flash-friendly file systems for mainstream operating
systems are either not available or are immature.

The design of LDSM is described in Section 3; it is driven
by performance measurements summarized in Section 2. Our
prototype is described in Section 4, and its performance in
Section 5; Section 6 reviews related work and Section 7
discusses our results and presents our conclusions.

II. PERFORMANCE CHARACTERISTICS OF LOW-COST
SOLID-STATE DISKS

The performance of random writes on SSDs with small
RAMs is typically three orders of magnitude slower than
sequential writes, and reads (of any pattern). The performance
of repeated aligned write requests (say blocks of 4 KB on 4 KB
boundaries) in an SSD can often be modeled quite accurately
by a simple affine model

twrite = αn+β

where twrite is the time the SSD spends on serving the request,
n is the size of the request in bytes, α is the throughput
of the SSD in seconds/byte on large requests, and β is a
latency parameter. The throughput parameter α is the same
for sequential and random writes, but in low-cost SSDs the β

parameter is small for sequential writes and huge for random
writes. Misaligned writes incur an additional penalty that is
irrelevant to our discussion.

Figure 1 shows the actual write performance and the
predicted performance according to an affine model on typical
low-cost SSDs - 16 GB Kingston USB Data Traveler, 8 GB
Sandisk USB Cruzer, 16 GB Sandisk Extreme SDHC, and
16 GB Patriot LX Pro SDHC. The model was generated using
weighted least-squares, where the weights were chosen in a
way that minimizes the sum of squares of the relative errors.
The figure shows that the model is fairly accurate for the
Sandisk Cruzer; the maximum relative prediction errors were
7% for random writes and 15% for sequential writes. The
throughput α was modeled as 22 MB/s for random writes
and 23 MB/s for sequential; quite similar. The latencies (β ’s)

were dramatically different: 222 ms for random writes but
only 1 ms for sequential writes. The performance of the rest
of the devices is non-monotonic, so it cannot be accurately
modeled by a simple monotone model. The non-monotonicity
manifests itself in better performance for medium-length bursts
of sequential writes (64 KB) than for longer bursts, or bursts of
small 4 KB writes. This is essentially a defect. The maximum
relative prediction errors were 86% for random writes and 80%
for sequential writes for these devices. We demonstrate in the
figures that removing outliers improves the fit of the model.

The latency of sequential writes is determined by the
latency of the interconnect and the latency of raw NAND
program operations.

The high latency of random writes in low-cost SSDs is
mostly due to a coarse-grained mapping mechanism in the
FTL of the SSD. Coarse-grained mappings map large aligned
consecutive ranges of LBAs to consecutive aligned ranges in
the physical addresses space of the SSD (consisting of NAND
chips or planes, erase units, and pages). The size SFTL of these
ranges is usually an erase unit or constant number of erase
units, depending on how much RAM the SSD uses for the
mapping table.

SSDs with relatively large RAM can use a page-level
mapping, in which any page-size range of LBAs can map
to any flash page. The random-write latency of these SSDs
is much smaller than in low-cost SSDs, on the order of
the sequential-write latency [5], [4]. Such SSDs are typically
expensive.

Some low-cost SSDs utilize both a coarse-level mapping
and a page-level mapping [23], [17], [16]. A coarse-level map-
ping maps most of the address space. A page-level mapping
maps a relatively small amount of storage. Such schemes are
useful when a only a small subset of the address space is
subject to random writes. There are many ways to decide how
to map a particular LBA, but all of them perform poorly when
the random-write access pattern persists for long stretches of
time and covers a significant part of the address space.

The size of individual requests influences performance
significantly, but only up to a point. Figure 2 presents the
throughput of writing random aligned blocks of m bytes,
where each such block is written using m/n I/O requests of
size n each, sequentially. For example, one particular data
point in Figure 2 (Sandisk 8 GB) shows the throughput
achieved when writing 8 MB sequentially in chunks of 64 KB,
jumping to a different, random 8 MB block and filling it using
sequential 64 KB requests, and so on. The data shows that as
long as individual I/O requests transfer 64 KB or more, the
performance is about the same as when each request transfers
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Figure 1. The effect of request size (in blocks) on sequential and random write throughput. Random writes throughput increases as we use larger the request
size, while sequential throughput is almost unaffected. The colored dots are outliers that we removed to improve the fit.
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Figure 2. The throughput of a low-cost SSD when writing chunks of size n sequentially within random blocks of size m, where n (the x axis) ranges from
4 KB to 1 MB and where m ranges from 0.5 MB to 16 MB (the different data series).

the entire block of size m. I/O requests smaller than 64 KB
degrade performance significantly.

This behavior was observed by others, such as Chen [9],
who exploited it in database logging, an application that
generates small sequential write requests.

III. THE DESIGN OF LSDM

LSDM is an address-mapping block device driver. It trans-
lates block addresses presented to it by a file system to block
addresses that it requests from a lower-level block device,
which we assume represents a (low-cost) solid-state disk, as
shown in Figure 3. The performance properties of LSDM
require it to be the sole client of the SSD, so the lower-level
device should normally represent an entire SSD rather than a
partition. Read and write commands to the SSD specify logical
block addresses (LBAs). These are translated again to NAND
flash physical devices by the FTL of the SSD.

LSDM exposes to the kernel a block-device interface. This
device is virtual (in the sense that LSDM performs address
translation and buffering), so we call the addresses that it
exposes virtual addresses1. From the kernel’s perspective,
these addresses are also LBAs (they form the address space of
a block device), but in this paper we reserve the term LBA to
the addresses that the SSD exposes.

Block devices serve read and write requests for blocks
whose size is a multiple of a sector size and that are aligned
on sector-size boundaries. Magnetic disks expose 512-byte
sectors. LSDM also exposes a 512-byte block size, but its
data structures are configured to support efficiently aligned

1The term virtual addresses is used in this paper in a way that has nothing
to do with virtual memory.

NANDnFlash

SSD'snFTL

physicalnflashn
addresses

virt ualnLBAs

SSD
LBAs

SSD

LSDM
blockndevice

Hostfile
system

SSD'snexisting
blockndevice

SSDnLBAs

Figure 3. The role of LSDM in the storage stack.

requests of a block size that matches the file-system’s request
size (4 KB). We refer below to this size as the sector size.

LSDM maintains an arbitrary mapping of aligned sector-
sized blocks of the virtual address space (virtual sectors)
to aligned sector-sized blocks of the LBA address space
(LBA sectors). To ensure high performance, the mapping is
represented by a flat table in RAM. We also maintain in
RAM a bitmap that specifies whether each LBA sector is
valid or obsolete. The LBAs mapped to virtual sectors are
not overwritten in place. When the mapping of a virtual sector
changes, the LBA sector that used to store it becomes obsolete.

LSDM tries to avoid the performance penalty associated
with small random writes. To avoid this penalty, LSDM
partitions the LBA-sector space into fixed-sized units that
we call garbage-collection units (GC units). Each garbage
collection unit is further partitioned into write units. The size
m of garbage collection units should be large enough that
αm/β is large, where α (throughput) and β (latency) are the



model parameters of random writes. A large m amortizes the
performance penalty of random writes (the large β ). At an
αm/β ≈ 1 we expect LSDM to achieve a throughput of about
50% of peak; higher ratios can yield even higher throughput.
The size n of write units should be larger than the location
of the knee in the graph of Figure 2 for the GC unit size
that was selected (if the graph is non-monotonic, n should be
close to a maximizer in the graph; for our Kingston device,
n should be 64 KB). A large n eliminates the performance
penalty associated with small I/O requests.

Beyond some point, making m and n larger does not
improve the I/O-transfer performance much, but it can degrade
the overall performance in other ways that we explain below.
Therefore, the best performance of LSDM is achieved when m
and n are selected based on estimates of α , β , and the location
of the knee in the throughput graph. A simple utility can test
the SSD and estimate these values.

LSDM serves write requests by appending the data to be
written to a buffer of size n. When the buffer contains n data
bytes minus one sector, LSDM prepends a metadata sector
to the buffer and writes it to the SSD. Obviously, both the
mapping table and the valid-obsolete bitmap of LSDM are
updated accordingly. The metadata sector contains log records
that specify the changes to these two RAM data structures, as
well as a monotonically-increasing sequence number. Taken
together, the metadata sectors in all the write units on the
SSD constitute a log that LSDM can read after a crash to
recover its data structures. By writing these log records to the
beginning of each write unit we avoid the need to support
a secondary stream of small sequential writes (which would
be required if the log was stored separately) and we avoid
the need to checkpoint LSDM’s data structures to the SSD.
During normal shutdown, the data structures are written to a
fixed LBA address; we assume that the SSD performs wear
leveling, so this simple checkpointing scheme does not cause
wear imbalance. A checksum of the entire write unit contents
is stored in the metadata sector; during crash recovery, this
checksum tells LSDM whether the most recently-written unit
was written completely or incompletely.

The client of a block device can instruct it to flush pending
writes to persistent storage. LSDM responds by filling in the
rest of the write buffer with valid sectors from the GC unit
that is currently being garbage collected (see below) and then
flushing the write buffer to the SSD even if it is not full.

Writing the buffer to LBA addresses `i, . . . , `i+k overwrites
the data in these LBA sectors. Therefore, these sectors must
all be obsolete (except if the buffer contains virtual sectors
that are currently mapped to `i, . . . , `i+k). As all log-structured
storage systems must do, LSDM must garbage collect in order
to create obsolete CG-unit sized ranges of LBA sectors (recall
that LSDM uses all the LBAs in a GC unit sequentially, not
only the LBAs within a write unit).

LSDM currently uses a greedy lazy garbage collection
strategy. At any given time one of the GC units is being
garbage collected and another is used for all the writing. We
denote the first one by g and the second by w. LSDM starts
collecting garbage by reading the valid pages in the first write
unit of g into the write buffer. It then waits for write requests
from its client (typically a file system). These requests are

added to the buffer. When the buffer fills, it is appended to w
and LSDM reads the valid pages from the next write unit in
g. After m/n such phases, g is completely obsolete and w has
been written in its entirety. LSDM now sets g to w (data will
now be written to g) and it selects a new g greedily: it selects
the GC unit with the most obsolete pages.

Collecting lazily (one write unit at a time rather than a full
GC unit at once) enhances garbage-collection performance by
giving sectors more time to become obsolete. This strategy
is mostly greedy, but it does trade greed for sequentiality
within GC units. That is, after collecting one write unit, LSDM
does not select the next most obsolete write unit to collect; it
continues sequentially within the GC unit in order to ensure
that writes of entire GC units are sequential. This design
decision is justified by the performance characteristics of low-
cost SSDs, which we have presented in Figure 2.

A. Prototype Implementation

We implemented LSDM as a driver for the Linux 3.X
kernel. The driver processes block IO requests from a simple
IO scheduler. It emits different block IO requests to the
underlying driver of the SSD. The requests that LSDM emits
to the underlying driver do not pass through the kernel’s buffer
cache, so blocks are only cached once, using the LSDM device
and the virtual LBAs.

B. Possible Enhancements

Several known techniques can make LSDM more flexible
or more efficient. These techniques and the tradeoffs that they
entail are mostly well understood and outside the scope of our
research, so we have not implemented them in LSDM and we
do not explore them. We list them here for completeness.

Currently our design requires about 1 MB of RAM per
1 GB of SSD capacity . Most of this RAM is used to store
the virtual-to-LBA mapping. However, the design of LSDM
can be easily modified to store the mapping on flash and to
cache only a subset of the mappings in RAM, using a scheme
similar to that of DFTL [16].

Another issue is booting after a shutdown (whether planned
or unexpected). This requires LSDM to reconstruct its mapping
data structures by reading all metadata sectors from the SSD.
A typical write-unit size is 64 KB, so assuming a sector size
of 4 KB, this means that to recover the entire state from flash
we will have to read 6% of the entire device. If necessary, a
checkpointing mechanism can be added to modify the tradeoff
between write performance and post-crash boot time.

Copying valid pages from GC unit g to unit w eagerly when
no client requests are pending can improve responsiveness
in some settings. It can also be triggered to minimize the
number of write buffers being flushed to the device in response
to synchronous requests. Eager garbage collection tends to
perform more writes than lazy collection, because an eager
collector copies pages that might have become obsolete under
a lazy collector. Background collection is a tradeoff, not a
straightforward enhancement.
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Figure 4. The average latency of file system IO operations under a variety of filebench workloads. The raw performance was measured once when the
ext4 file system was mounted directly on the SSD and again with the nilfs2 file system. The performance of LSDM was measured with ext4 mounted over
LSDM, which was mounted on the SSD’s block device. In LSDM runs the size of garbage-collection units was 16 MB (4 MB for the Patriot device) and its
write buffer size was 64 KB.
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Figure 5. The average file system IO latency of file system IO operations in filebench’s fileserver workload. The setups are the same as in Figure 4, except
that in LSDM runs the size of garbage-collection units was varied from 0.5 MB to 32 MB. The results for the webserver, webproxy and varmail benchmarks
were similar.

IV. EVALUATION

A. Experimental Setup

We performed the experiments on all devices except the
8 GB Sandisk Cruzer2. We used an Intel Atom 330 machine
running at 1.60 GHz and using 2 GB of RAM. The machine
ran Ubuntu Raring Ringtail with a Linux version 3.9.0 kernel.

We evaluated performance using filebench [2], a pop-
ular file system benchmarking tool. filebench measures
several metrics, including average latency, throughput of file
system requests, and CPU cycles. The ones that we presented
here are the the average latency of file system I/O operations,
which is closely related to overall wall-clock time with Fig-
ures 4 and 5). Due to lack of space of omitted throughput
results, though they were similar. To minimize the effects of
the buffer cache the file system was mounted using a commit
time of 1s (the default is 5). We compared the performance of
the workload under three setups:

• An ext4 file system that is mounted directly on the
SSD’s block device. Ext4 is the default file system for
Android-baesed mobile devices [18]. We refer to this
setup as a raw device.

• An f2fs [22], [1] file system that is mounted directly

2The 8 GB SanDisk Cruzer whose out-of-the-box performance was reported
in Figure 1 and 2 was too worn out for the experiments reported here and we
did not find an identical device to test.

on the SSD’s block device. We refer to this setup as a
raw (f2fs) device. This file system is flash friendly; as
such, it generates mostly sequential write requests to
the block device, even if the workload accesses files
and/or locations within files randomly. F2FS is not
completely mature, but it appears to be a promising
alternative to legacy file systems designed for mag-
netic media.

• A nilfs2 [22] file system that is mounted directly on
the SSD’s block device. We refer to this setup as a raw
(nilfs2) device. This file system is log structured; as
such, it generates mostly sequential write requests to
the block device, even if the workload accesses files
and/or locations within files randomly. nilfs2 is not
completely mature and stable, but it is considered to
be more stable and better supported than other log-
structured file systems for Linux (e.g., [3]).

• An ext4 file system that is mounted on an LSDM
block device which uses the SSD as its backing store.

We began each experiment with a priming phase that is
designed to ensure that the file system, LSDM, and the SSD
are in realistic steady states, rather than particularly clean. The
priming phase creates a new file system and then repeatedly
creates and deleted large files. We then create large files that
are never deleted which take up 35% of the file system’s
capacity. At this point we run the workload under test. Every
experiment was repeated 5 times.



In all experiments, LSDM was configured to 25% overpro-
visioning, and to the optimal write-unit and garbage-collection
unit-size for each device (64 KB write-unit size on all devices,
16 MB/4 MB/16 MB garbage-collection unit size for the
Kingston/Patriot/Sandisk devices accordingly). The size of
the garbage-collection units is justified by Figure 1 (and by
Figure 5) and the size of the write units is justified by Figure 2.

Due to the hardware limitations of our machine and the
small capacity of the SSD being used, we modified one of
filebench’s workloads (the file-server workload) in minor
ways. The original workload would not complete without
running out of memory or sufficient storage to run the tests.

B. Results

Figure 4 compares the performance of the three setups
under various filebench workloads that emulate behav-
iors of common applications. LSDM improves performance
significantly in all workloads over the raw setup with ext4,
and delivers comparable performance to that of F2fs and
outperforms it in many of the workloads, especially those that
are more I/O-intensive. nilfs2 could not sustain the stress of
most workloads and crashed, therefore we opted not to include
it in our figures.

Both LSDM and F2fs have the same overall effect on
the access pattern that the SSD sees. In both cases, the SSD
sees long streams of write requests (interspersed perhaps by
read requests). We do not know why the performance of
LSDM differs from that of F2fs; we believe that this is due to
slight variations in the access patterns that they produce, or to
differences in their garbage collection mechanisms.

In some cases F2fs outperforms LSDM on the webserver
and webproxy benchmarks. In these workloads all setups
display a relatively low throughput. These workloads are
dominated by accesses to small files, which are read con-
stantly by “clients” (threads). Due to the small request sizes
these workloads are mostly dominated by open, close, delete
and create operations. These operations result in synchronous
metadata block requests which contribute to the slightly worse
latency.

Figures 5 shows how the size of GC units affects perfor-
mance in the fileserver benchmark. We did not include similar
figures for the webserver, webproxy and varmail benchmarks,
since the results were similar. As evident from the figures,
LSDM outperforms the raw setup even when using only a
0.5 MB GC unit. Performance improves appreciably as the
GC unit size grows from 0.5 MB to the the optimal GC unit
size for every device, but does not improve much beyond that.

This experiment demonstrates the benefit of large GC
units. Small GC units make the greedy collection policy more
effective, but they reduce overall performance because of the
poor mapping strategies of low-cost SSDs. Overall, large GC
units perform better; even 2 MB is clearly too small, and less
is terrible.

V. RELATED WORK

Various other solutions have been suggested to improve
the random-write performance of SSDs. High-end SSDs have
a large built-in RAM that allows them to use a page-level

translation layer (FTL) [4], [16] that performs a log-structured
or write-anywhere mapping and delivers high performance. A
large RAM can also improve performance through caching and
de-duplication [8], [19]. SSDs connected to the host’s memory
bus, such as Fusion-io’s PCI Express devices (e.g. [14]),
can use the host’s RAM for their translation layer, but they
are typically even more expensive than high-end SSDs with
storage interconnects (SATA, SCSI, FC, etc).

The host’s RAM can be used to accelerate page-level ad-
dress translation in SSDs with little RAM and with relatively-
slow storage interconnects by having the host attach mapping
hints to IO requests [5]. This solution, however, requires
modifying both the SSDs firmware and the host’s device driver.

Log-structured file systems [27], [22] have been shown to
deliver high performance on SSDs [25], [26]. However, given
the enormous investment in existing mature file systems such
as NTFS [10] and ext4 [6], it is unclear whether log-structured
file systems would actually replace them.

LLD [11] proposed to put the log-structured address trans-
lation in a new layer in the storage stack, below the file system
but above the disk. LLD was aimed at magnetic disks and
the motivation for it was the same as for LFS, the original
log-structured file system [27]. All log-structured mapping
structures improve the spatial locality of write requests (they
are mostly sequential), but they can hurt the spatial locality
of read requests. On magnetic disks, any random request is
expensive, whether it is a read or a write request. This appears
to be the main reason that neither LFS nor LLD became
popular; they hurt read performance too often.

On SSDs, the spatial locality of writes is important, be-
cause erase blocks are larger than pages (the write unit), but
the spatial locality of reads is not a significant performance
determinant. Therefore, several solutions using log-structured
mapping structures above the storage stack were suggested.

LBS [28] was conceived as a solution to a rather specialized
problem, that of running multiple virtual machines on a
smartphone or tablet running Android. Android devices have
two non-volatile flash devices, a so called internal storage and
a so-called external SD card (the external card is removable
but fits within the device’s enclosure). The authors of LBS
assumed that VM images would be stored on the external
storage. They designed LBS to improve the performance of
random writes to this device. Because they also had access
to a second flash device, the internal one, they used it to
store the mapping metadata of LBS, thereby avoiding several
complications. LBS does not run on computers with only flash
storage device. Even on computers with more than one flash
device, users would probably not want to dedicate one to the
metadata of another one, so LBS is not a general purpose
solution.

A commercial solution called Managed Flash Technol-
ogy [12] has also been suggested to improve the random write
performance of SSDs. However, there are no details about
its architecture and garbage collection mechanism, and the
problem of sync commands. It is also known to have a strict
requirement of about 1 MB of kernel memory for every 1 GB
of capacity, probably for its large non-flexible mapping data
structures.



FlashLite [20] is a user-level library designed to eliminate
random writes generated when downloading large files through
P2P protocols. Writes to the file are remapped and written
sequentially to temporary files. FlashLite maintains mapping
information in memory for the original locations of these
writes. When the download is complete the data is re-written
sequentially to its original location.

ReSSD [24] partitions the address space of the SSD to
a large area dedicated for data and sequential writes, and a
small “reserved” staging area used as a sequential log for small
random writes. ReSSD remaps these writes, and occasionally
writes them back to their original location. This approach
eliminates most small random writes and would perform well
for large SSDs with multiple chips, but not as well for low-
cost SSDs since it generates repeated writes to various random
locations on the device.

Advil [21] is an improvement on ReSSD which also takes
into account the temporal locality of data. Advil is aimed at
low-cost SSDs on mobile devices by placing the so-called
“reserved” area on the external memory of a mobile device,
and the data area on the so-called “internal” memory card.

Our paper takes the approach of eliminating small random
writes by using a remapping layer above the storage stack, but
takes it one step further and generalizes this solution to the
more common single-SSD setup. LSDM also fixes two other
problems not addressed in previous solutions; we explain this
in the next section.

VI. DISCUSSION AND CONCLUSIONS

Low-cost SSDs are a major factor in the performance and
pricing of mobile devices. However they perform poorly under
a random-write access pattern. The literature already describes
several techniques to address this challenge; some are already
on the market. In this paper, we show that an address mapping
device driver on the host can solve the problem, without
requiring hardware or firmware changes and without replacing
the file system.

Our driver, LSDM, improves performance by up to a factor
of 6 when coupled with a low-cost SSD and a mature industrial
strength file system (ext4) used by default in Android-based
mobile devices, when compared to a setup in which the file
system is mounted directly on top of the SSD. Switching
from ext4 to a log-structured file system (nilfs2) resulted in
numerous crashes; this does not imply that the ideas behind
nilfs2 are flawed, of course, but it does show that implementing
a complete file system is a major engineering challenge.
Switching to a flash-friendly file system (F2fs) mounted di-
rectly on top of the SSD also improves performance, but not
as much for IO-intensive workloads. F2fs appears to be more
mature than nilfs2, but replacing the file system remains a
significant engineering and system administration concern.

We claim that LSDM improves performance significantly
over conventional file systems mounted on top of low-cost
SSDs. It has an inherent performance advantage over log-
structured file systems, and it has proven stable and on par with
the performance of a new flash friendly file system. LSDM is
a driver that is significantly simpler than file systems, making
our solution more usable than F2fs and similar efforts.

LSDM has several important advantages over similar de-
signs. First, it runs on a single SSD, so it targets a much
wider range of systems than LBS [28] and Advil [21] which
require using a secondary storage device. Second, LSDM’s
garbage collection mechanism leads to very long stretches of
sequential writes (many MB), which helps the SSD deliver
high performance; in comparison, other designs occasionally
jump to random write locations [28], [21] which may degrade
performance significantly, or they perform redundant copies
of all data from a staging area to their actual location [24].
Third, LBS [28] uses about 12 MB of metadata for each 1 GB
of SSD capacity, whereas LSDM uses only about 1 MB of
RAM for each GB of flash. This is not a lot to pay for
a 2x to 6x performance improvement on realistic workloads
and makes LSDM much more memory efficient, which is
particularly important on systems with small RAM or with
large SSDs. Lastly LSDM is implemented as a generic kernel
driver without any modification to existing applications and
file systems. In contrast, FlashLite [20] requires applications
to use a special user-space library and also suffers from any
underlying file system fragmentation.

The utility of a log-structured page-level mapping to
achieve high performance in flash storage has already been
widely recognized. Do we want to have enough RAM in
each SSD to store the page-level mapping? Judging from the
measured cost/performance characteristics of existing low-cost
SSDs used for mobile storage, the answer is no; SSDs with
enough RAM are expensive. Do we want to switch to log-
structured or flash-friendly file systems? Probably not yet. Our
investment in mature and stable file systems may be too high to
forgo. This may be particularly important since flash devices
for mobile devices will not be the only non-volatile storage
systems that we will need to deploy in the next few years.
Despite many predictions in the past, magnetic disks are still
the mainstream choice for primary storage, and many predict
they will continue to be useful in the near future [15]. Magnetic
disks do not deliver high performance when log-structured file
systems are mounted on them, and are agnostic to of flash-
friendly file-systems. Moreover, emerging technologies such
as PCM-based disks [13] and/or shingled magnetic disks [7]
may become prevalent, and log-structured or flash-friendly file
systems may not be appropriate for them either. We better
stay with our current file system and adapt the software stack
below it. Solutions such as LSDM may emerge as the most
appropriate solutions.
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