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Abstract

We present a fast algorithm for approxi-
mate Canonical Correlation Analysis (CCA).
Given a pair of tall-and-thin matrices, the
proposed algorithm first employs a random-
ized dimensionality reduction transform to
reduce the size of the input matrices, and
then applies any standard CCA algorithm
to the new pair of matrices. The algorithm
computes an approximate CCA to the orig-
inal pair of matrices with provable guaran-
tees, while requiring asymptotically less op-
erations than the state-of-the-art exact algo-
rithms.

1. Introduction

Canonical Correlation Analysis (CCA), originally due
to Hotelling (1936), is an important technique in
statistics, data analysis, and data mining. CCA has
been successfully applied in many machine learning ap-
plications, e.g. dimensionality reduction (Sun et al.,
2010), clustering (Chaudhuri et al., 2009), learning
of word embeddings (Dhillon et al., 2011), sentiment
classification (Dhillon et al., 2012), discriminant learn-
ing (Su et al., 2012), and object recognition (Kim
et al., 2007). In many ways CCA is analogous to
Principal Component Analysis (PCA), but instead of
analyzing a single dataset (in matrix form), the goal
of CCA is to analyze the relation between a pair of
datasets (each in matrix form). From a statistical
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point of view, PCA extracts the maximum covari-
ance directions between elements in a single matrix,
whereas CCA finds the direction of maximal correla-
tion between a pair of matrices. From a linear alge-
braic point of view, CCA measures the similarities be-
tween two subspaces (those spanned by the columns
of each of the two matrices analyzed). From a geo-
metric point of view, CCA computes the cosine of the
principle angles between the two subspaces.

There are different ways to define the canonical cor-
relations of a pair of matrices, and all these ways are
equivalent (Golub & Zha, 1995). The linear algebraic
formulation of Golub & Zha (1995), which we present
shortly, serves our algorithmic point of view best.

Definition 1. Let A ∈ Rm×n and B ∈ Rm×` , and as-
sume that p = rank(A) ≥ rank(B) = q. The canonical
correlations σ1 (A,B) ≥ σ2 (A,B) ≥ · · · ≥ σq (A,B)
of the matrix pair (A,B) are defined recursively by the
following formula (i = 1, . . . , q):

σi (A,B) = max
x∈Ai,y∈Bi

σ (Ax,By) =: σ (Axi,Byi)

where
• σ (u,v) = |uTv|/ (‖u‖2‖v‖2),

• Ai = {x : Ax 6= 0,Ax ⊥ {Ax1, . . . ,Axi−1}},

• Bi = {y : By 6= 0,By ⊥ {By1, . . . ,Byi−1}}.

The unit vectors Ax1/‖Ax1‖2, . . . ,Axq/‖Axq‖2,
By1/‖By1‖2, . . . ,Byq/‖Byq‖2 are called
the canonical or principal vectors.
The vectors x1/‖Ax1‖2, . . . ,xq/‖Axq‖2,
y1/‖By1‖2, . . . ,yq/‖Byq‖2 are called canonical
weights (or projection vectors). Note that the canoni-
cal weights and the canonical vectors are not uniquely
defined.
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1.1. Main Result

The main contribution of this paper (see Theorem 12)
is a fast algorithm to compute an approximate CCA.
The algorithm computes an additive-error approxima-
tion to all the canonical correlations. It also com-
putes a set of approximate canonical weights with
provable guarantees. We show that the proposed algo-
rithm is asymptotically faster compared to the stan-
dard method of Björck & Golub (1973). To the best
of our knowledge, this is the first sub-cubic time algo-
rithm for approximate CCA that has provable guaran-
tees.

The proposed algorithm is based on dimensionality re-
duction: given a pair of matrices (A,B), we transform

the pair to a new pair (Â, B̂) that has much fewer rows,
and then compute the canonical correlations of the
new pair exactly, alongside a set of canonical weights,
e.g. using the Björck and Golub algorithm. We prove
that with high probability the canonical correlations of
(Â, B̂) are close to the canonical correlations of (A,B),

and that any set of canonical weights of (Â, B̂) can
be used to construct a set of approximately orthogo-
nal canonical vectors of (Â, B̂). The transformation of

(A,B) into (Â, B̂) is done in two steps. First, we apply
the Randomized Walsh-Hadamard Transform (RHT)
to both A and B. This is a unitary transformation,
so the canonical correlations are preserved exactly. On
the other hand, we show that with high probability, the
transformed matrices have their “information” equally
spread among all the input rows, so now the trans-
formed matrices are amenable to uniform sampling.
In the second step, we uniformly sample (without re-
placement) a sufficiently large set of rows and rescale

them to form (Â, B̂). The combination of RHT and
uniform sampling is often called Subsampled Random-
ized Walsh-Hadamard Transform (SRHT) in the lit-
erature (Tropp, 2011). Note that other variants of
dimensionality reduction (Sarlós, 2006) might be ap-
propriate as well, but for concreteness we focus on the
SRHT.

Our dimensionality reduction scheme is particularly
effective when the matrices are tall-and-thin, that is
they have much more rows than columns. Targeting
such matrices is natural: in typical CCA applications,
columns typically correspond to features or labels and
rows correspond to samples or training data. By com-
puting the CCA on as many instances as possible (as
much training data as possible), we get the most reli-
able estimates of application-relevant quantities. How-
ever in current algorithms adding instances (rows) is
expensive, e.g. in Björck and Golub algorithm we pay
O(n2 + `2) for each row. Our algorithm allows prac-

titioners to run CCA on huge data sets because we
reduce the cost of an extra row, making it not much
more expensive than O(n+ `).

1.2. Related Work

Dimensionality reduction has been the driving force
behind many recent algorithms for accelerating key
machine learning and linear algebraic tasks. A rep-
resentative example is linear regression, i.e., solve the
least squares problem minx ‖Ax − b‖2, where A ∈
Rm×n and b ∈ Rm. If m � n, then one can use
the SRHT to reduce the dimensions of A and b, to
form Â and b̂, and then solve the small problem
minx ‖Âx − b̂‖2. This process will return an approx-
imate solution to the original problem (Sarlós, 2006;
Boutsidis & Drineas, 2009; Drineas et al., 2011). Al-

ternatively, one can observe that ATA and Â
T
Â are

spectrally close, so Â is an effective preconditioner
for A (Rokhlin & Tygert, 2008; Avron et al., 2010).
Other problems that can be accelerated using dimen-
sionality reduction include: (i) approximate PCA (via
low-rank matrix approximation) (Halko et al., 2011);
(ii) matrix multiplication (Sarlós, 2006); (iii) K-means
clustering (Boutsidis et al., 2010); (iv) approximation
of matrix coherence and statistical leverage (Drineas
et al., 2012); to name only a few.

Our approach uses similar techniques as the algorithms
mentioned above. For example, Lemma 4 in our article
plays a central role in these algorithms as well. How-
ever, our analysis requires the use of advanced ideas
from matrix perturbation theory and it leads to two
new technical lemmas that might be of independent
interest: Lemmas 7 and 8 provide bounds for the sin-
gular values of the product of two different sampled
orthonormal matrices. Previous work only provides
bounds for products of the same matrix (Lemma 4;
see also Sarlós (2006, Corollary 11)).

Dimensionality reduction techniques for accelerating
CCA have been suggested or used in the past. One
common technique is to simply use less samples by uni-
formly sampling the rows. While this technique might
work reasonably well in many instances, it may fail for
others unless all rows are sampled. In fact, Theorem 10
analyzes uniform sampling, and establishes bounds on
the required sample size.

Sun et al. (2010) suggest a two-stage approach which
involves first solving a least-squares problem, and then
using the solution to reduce the problem size. How-
ever, their technique involves explicitly factoring one
of the two matrices, which takes cubic time. Therefore,
their method is especially effective when one of the two



Efficient Dimensionality Reduction for Canonical Correlation Analysis

matrices has significantly less columns than the other.
When the two matrices have about the same number
of columns, there is no asymptotic performance gain.
In contrast, our method is sub-cubic in any case.

Finally, it is worth noting that CCA itself has been
used for dimensionality reduction (Sun et al., 2008;
Chaudhuri et al., 2009; Sun et al., 2010). This is not
the focus of this paper; we suggest a dimensionality
reduction technique to accelerate the computation of
CCA.

2. Preliminaries

We use i : j to denote the set {i, . . . , j}, and [n] = 1 : n.
We use A,B, . . . to denote matrices and a,b, . . . to
denote column vectors. In is the n×n identity matrix;
0m×n is the m×n matrix of zeros. We denote by R(·)
the column space of its argument matrix. We denote
by [A; B] the matrix obtained by concatenating the
columns of B next to the columns of A. Given a subset
of indices T ⊆ [m], the corresponding sampling matrix
S is the |T |×m matrix obtained by discarding from Im
the rows whose index is not in T . Note that SA is the
matrix obtained by keeping only the rows in A whose
index appears in T . A symmetric matrix A is positive
semi-definite (PSD), denoted by 0 � A, if xTAx ≥ 0
for every vector x. For any two symmetric matrices X
and Y of the same size, X � Y denotes that Y −X
is a PSD matrix.

We denote the compact (or thin) SVD of a matrix A ∈
Rm×n of rank p by A = UAΣAVT

A, with UA ∈ Rm×p,
ΣA ∈ Rp×p, and VT

A ∈ Rp×n. The Moore-Penrose
pseudo-inverse of A is A+ = VAΣ−1A UT

A ∈ Rn×m. We
denote the singular values of A by σ1(A) ≥ σ2(A) ≥
· · · ≥ σp(A).

2.1. The Björck and Golub Algorithm

There are quite a few algorithms to compute the
canonical correlations (Golub & Zha, 1995). One of
the most popular methods is due to Björck & Golub
(1973). It is based on the following observation.

Theorem 2 (Björck & Golub (1973)). Assume that
the columns of Q ∈ Rm×p (m ≥ p) and W ∈ Rm×q

(m ≥ q) form an orthonormal basis for the range of A
and B (respectively). Let QTW = UΣVT be its com-
pact SVD. The diagonal elements of Σ are the canon-
ical correlations of (A,B). The canonical vectors are
given by the first q columns of QU (for A) and WV
(for B).

Theorem 2 implies that once we have a pair of matri-
ces Q and W with orthonormal columns whose column

space spans the same column space of A and B, respec-
tively, then all we need is to compute the singular value
decomposition of QTW. Björck and Golub suggest the
use of QR decompositions, but UA and UB will serve
as well. Both options require O

(
m
(
n2 + `2

))
time.

Corollary 3. Frame Definition 1. Let UT
AUB =

UΣVT be its compact SVD. Then, for i ∈ [q]:
σi(A,B) = Σii. The canonical weights are given by
the columns of VAΣ−1A U (for A) and VBΣ−1B V (for
B).

2.2. Matrix Coherence and Sampling from an
Orthonormal Matrix

Matrix coherence is a fundamental concept in the anal-
ysis of matrix sampling algorithms (e.g. Talwalkar &
Rostamizadeh (2010)). There a quite a few similar
but different ways to define the coherence, however in
this paper we use the following definition. Given a
matrix A with m rows, the coherence of A is defined
as µ(A) = maxi∈[m] ‖e>i UA‖22, where ei is the i-th
standard basis (column) vector of Rm. Note that the
coherence of A is a property of the column space of
A, and does not depend on the actual choice of A.
Therefore, if R(A) = R(B) then µ(A) = µ(B). Fur-
thermore, it is easy to verify that if R(A) ⊆ R(B)
then µ(A) ≤ µ(B). Finally, we mention that for every
matrix A with m rows:

rank(A)/m ≤ µ(A) ≤ 1 .

We focus on tall-and-thin matrices, i.e. matrices with
(much) more rows than columns. We are interested
in dimensionality reduction techniques that (approx-
imately) preserve the singular values of the original
matrix. The simplest idea to do dimensionality re-
duction in tall-and-thin matrices is uniform sampling
of the rows of the matrix. Coherence measures how
susceptible the matrix is to uniform sampling; the fol-
lowing lemma shows that not too many samples are
required when the coherence is small. The bound is
almost tight (Tropp, 2011, Section 3.3).

Lemma 4 (Sampling from Orthonormal Matrix,
Tropp (2011) Corollary to Lemma 3.4). Let Q ∈ Rm×d

have orthonormal columns. Let 0 < ε < 1 and
0 < δ < 1. Let r be an integer such that

6ε−2mµ(Q) log(3d/δ) ≤ r ≤ m.

Let T be a random subset of [m] of cardinality r, drawn
from a uniform distribution over such subsets, and let
S be the |T | ×m sampling matrix corresponding to T
rescaled by

√
m/r. Then, with probability of at least

1− δ, for i ∈ [d]:
√

1− ε ≤ σi(SQ) ≤
√

1 + ε.
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Proof. Apply Lemma 3.4 from Tropp (2011) with the
following choice of parameters: ` = αM log(k/δ), α =
6/ε2, and δtropp = η = ε. Here, `, α, M , k, η are
the parameters of Lemma 3.4 from Tropp (2011); also
δtropp plays the role of δ, an error parameter, of Lemma
3.4 from Tropp (2011). ε and δ are from our Lemma.

In the above lemma, T is obtained by sampling coor-
dinates from [m] without replacement. Similar results
can be shown for sampling with replacement, or using
Bernoulli variables (Ipsen & Wentworth, 2012).

2.3. Randomized Walsh-Hadamard Transform

Matrices with high coherence pose a problem for al-
gorithms based on uniform row sampling. One way
to circumvent this problem is to use a coherence-
reducing transformation. One popular coherence-
reducing transformation is the Randomized Walsh-
Hadamard Transform (RHT) matrix. We start with
the definition of the deterministic Walsh-Hadamard
Transform matrix.

Fix an integer m = 2h, for h = 1, 2, 3, . . .. The (non-
normalized) m × m matrix of the Walsh-Hadamard
Transform (WHT) is defined recursively as,

Hm =

[
Hm/2 Hm/2

Hm/2 −Hm/2

]
, with H2 =

[
+1 +1
+1 −1

]
.

The m×m normalized matrix of the Walsh-Hadamard
transform is H = m−

1
2 Hm.

The recursive nature of the WHT allows us to compute
HX for an m × n matrix X in time O(mn log(m)).
However, in our case we are interested in SHX where
S is a r-row sampling matrix. To compute SHX
only O(mn log(r)) operations suffice (Ailon & Liberty,
2008, Theorem 2.1).

Definition 5 (Randomized Walsh-Hadamard Trans-
form (RHT)). Let m = 2h for some positive integer h.
A Randomized Walsh-Hadamard Transform (RHT) is
an m×m matrix of the form

Θ = HD

where D is a random diagonal matrix of size m whose
entries are independent random signs, and H is a nor-
malized Walsh-Hadamard matrix of size m.

Lemma 6 (RHT bounds Coherence, Tropp (2011)
Lemma 3.3). Let A be an m × n (m ≥ n, m = 2h

for some positive integer h) matrix, and let Θ be an
RHT. Then, with probability of at least 1− δ,

µ(ΘA) ≤ 1

m

(√
n+

√
8 log(m/δ)

)2
.

3. Perturbation Bounds for Matrix
Products

This section states three new technical lemmas which
analyze the perturbation of the singular values of the
product of a pair of matrices after dimensionality re-
duction. The proofs appear in the full version of the
present article (Avron et al., 2012).

Lemma 7. Let A ∈ Rm×n (m ≥ n) and B ∈ Rm×`

(m ≥ `). Define C := [A; B] ∈ Rm×(n+`), and
suppose C has rank ω, so UC ∈ Rm×ω. Let S ∈
Rr×m be any matrix such that

√
1− ε ≤ σω (SUC) ≤

σ1 (SUC) ≤
√

1 + ε, for some 0 < ε < 1 . Then, for
i = 1, . . . ,min(n, `),

|σi
(
ATB

)
− σi

(
ATSTSB

)
| ≤ ε · ‖A‖2 · ‖B‖2 .

Lemma 8. Let A ∈ Rm×n (m ≥ n) and B ∈ Rm×`

(m ≥ `). Let S ∈ Rr×m be any matrix such that
rank(SA) = rank(A) and rank(SB) = rank(B),
and all singular values of SUA and SUB are inside
[
√

1− ε,
√

1 + ε] for some 0 < ε < 1/2. Then, for
i = 1, . . . ,min(n, `),

|σi
(
UT

ASTSUB

)
− σi

(
UT

SAUSB

)
| ≤ 2ε (1 + ε) .

Lemma 9. Repeat the conditions of Lemma 7. Then,
for all w ∈ Rn and y ∈ R`, we have∣∣∣wTATBy −wTATSTSBy

∣∣∣ ≤ ε · ‖Aw‖2 · ‖By‖2.

4. CCA of Row Sampled Pairs

Given A and B, one straightforward way to accelerate
CCA is to sample rows uniformly from both matri-
ces, and to compute the CCA of the smaller matri-
ces. In this section we show that if we sample enough
rows, then the canonical correlations of the sampled
pair are close to the canonical correlations of the orig-
inal pair. Furthermore, the canonical weights of the
sampled pair can be used to find approximate canoni-
cal vectors. Not surprisingly, the sample size depends
on the coherence. More specifically, it depends on the
coherence of [A; B].

Theorem 10. Suppose A ∈ Rm×n (m ≥ n) has rank
p and B ∈ Rm×` (m ≥ `) has rank q ≤ p. Let 0 <
ε < 1/2 be an accuracy parameter and 0 < δ < 1 be a
failure probability parameter. Let ω = rank([A; B]) ≤
p+ q. Let r be an integer such that

54ε−2mµ([A; B]) log(12ω/δ) ≤ r ≤ m.

Let T be a random subset of [m] of cardinality r, drawn
from a uniform distribution over such subsets, and let
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S ∈ Rr×m be the sampling matrix corresponding to T
rescaled by

√
m/r. Denote Â = SA and B̂ = SB.

Let σ̂1, . . . , σ̂q be the exact canonical correlations of

(Â, B̂), and let

w1 = x̂1/‖Âx̂1‖2, . . . ,wq = x̂q/‖Âx̂q‖2 ,

and

p1 = ŷ1/‖B̂ŷ1‖2, . . . , pq = ŷq/‖B̂ŷq‖2

be the exact canonical weights of (Â, B̂). With proba-
bility of at least 1− δ all the following hold simultane-
ously:

(a) (Approximation of Canonical Correlations) For
every i = 1, 2, . . . , q: |σi (A,B) − σi (SA,SB) | ≤
ε+ 2ε2/9 = O(ε) .

(b) (Approximate Orthonormal Bases) The vectors
{Awi}i∈[q] form an approximately orthonormal
basis. That is, for any c ∈ [q],

1

1 + ε/3
≤ ‖Awc‖22 ≤

1

1− ε/3
,

and for any i 6= j,

| 〈Awi, Awj〉 | ≤
ε

3− ε
.

Similarly, for the set of {Bpi}i∈[q].

(c) (Approximate Correlation) For every i =
1, 2, . . . , q:

σi(A,B)

1 + ε/3
− ε/3

1− ε/9 ≤ σ(Awi,Bpi) ≤
σi(A,B)

1− ε/3

+
ε/3

(1− ε/3)2
.

Proof. Let C := [UA; UB]. Lemma 4 implies that
each of the following three assertions hold with prob-
ability of at least 1 − δ/3, hence all three hold simul-
taneously with probability of at least 1− δ:

• For every r ∈ [p]:√
1− ε/3 ≤ σr(SUA) ≤

√
1 + ε/3 .

• For every k ∈ [q]:√
1− ε/3 ≤ σk(SUB) ≤

√
1 + ε/3 .

• For every h ∈ [ω]:√
1− ε/3 ≤ σh(SUC) ≤

√
1 + ε/3 .

We now show that if indeed all three hold, then (a)-(c)
hold as well.

Proof of (a). Corollary 3 implies that σi(A,B) =
σi(U

T
AUB) and σi(SA,SB) = σi(U

T
SAUSB). We now

use the triangle inequality to get,

|σi (A,B) − σi (SA,SB) |

= |σi
(
UT

AUB

)
− σi

(
UT

SAUSB

)
|

≤ |σi
(
UT

AUB

)
− σi

(
UT

ASTSUB

)
|

+ |σi
(
UT

ASTSUB

)
− σi

(
UT

SAUSB

)
|.

To conclude the proof, use Lemma 7 and Lemma 8 to
bound these two terms, respectively.

Proof of (b). For any c ∈ [q],

‖Awc‖2 = ‖Awc‖2/‖Âwc‖2

since ‖Âwc‖2 = 1. Now Lemma 9 implies the first
inequality.

For any i 6= j

| 〈Awi, Awj〉 | ≤ |wT
i Â

T
Âwj |+ |wT

i (Â
T
Â−ATA)wj |

= |wT
i (Â

T
Â−ATA)wj |

≤ ε

3
‖Awi‖2‖Awj‖2

≤ ε/3

1− ε/3‖Âwi‖2‖Âwj‖2

=
ε

3− ε .

In the above, we used the triangle inequality, the fact
that the wi’s are the canonical weights of Â, and
Lemma 9.

Proof of (c). We only prove the upper bound. The
lower bound is similar, and we omit it.
σ (Awi,Bpi) =

=
〈Awi, Bpi〉
‖Awi‖2‖Bpi‖2

≤ 1

1− ε/3 · 〈Awi, Bpi〉

=
1

1− ε/3 ·
(〈

Âwi, B̂pi

〉
+ wT

i

(
ATB− Â

T
B̂
)

pi

)

≤
σ
(
Âxi, B̂yi

)
1− ε/3 +

ε/3

1− ε/3 · ‖Awi‖2 · ‖Bpi‖2

≤
σ
(
Âwi, B̂pi

)
1− ε/3 +

ε/3

(1− ε/3)2

In the above, the first equality follows by the definition
of σ(·, ·), the first inequality by using 1 = ‖Âwi‖22 ≤
(1 + ε)‖Awi‖22 (same holds for Bpi), the second in-
equality from Lemma 9, the third inequality by using
(1 − ε)‖Awi‖22 ≤ ‖Âwi‖22 = 1 (same holds for Bpi),
and the last inequality by (a).
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5. Fast Approximate CCA

First, we define what we mean by approximate CCA.

Definition 11 (Approximate CCA). For 0 ≤ η ≤ 1,
an η-approximate CCA of (A,B), is a set of posi-
tive numbers σ̂1, . . . , σ̂q together with a set of vectors
w1, . . . ,wq for A and a set of vectors p1, . . . ,pq for
B, such that

(a) For every i ∈ [q],

|σi(A,B)− σ̂i| ≤ η .

(b) For every i ∈ [q],

|‖Awi‖22 − 1| ≤ η ,

and for i 6= j,

| 〈Awi, Awj〉 | ≤ η .

Similarly, for the set of {Bpi}i∈[q].

(c) For every i ∈ [q],

|σi(A,B)− σ(Awi,Bpi)| ≤ η .

We are now ready to present our fast algorithm for
approximate CCA of a pair of tall-and-thin matrices.
Algorithm 1 gives the pseudo-code description of our
algorithm.

The analysis in the previous section (Theorem 10)
shows that if we sample enough rows, the canonical
correlations and weights of the sampled matrices are
an O(ε)-approximate CCA of (A,B). However, to
turn this observation into a concrete algorithm we need
an upper bound on the coherence of [A; B]. It is con-
ceivable that in certain scenarios such an upper bound
might be known in advance, or that it can be com-
puted quickly (Drineas et al., 2012). However, even if
we know the coherence, it might be as large as one,
which will imply that sampling the entire matrix is
needed.

To circumvent this problem, our algorithm uses the
RHT to reduce the coherence of the matrix pair before
sampling rows from it. That is, instead of sampling
rows from (A,B) we sample rows from (ΘA,ΘB),
where Θ is a RHT matrix (Definition 5). This unitary
transformation bounds the coherence with high proba-
bility, so we can use Theorem 10 to compute the num-
ber of rows required for anO(ε)-approximate CCA. We
now sample the transformed pair (ΘA,ΘB) to obtain

(Â, B̂). Now the canonical correlations and weights of

(Â, B̂) are computed and returned.

Algorithm 1 Fast Approximate CCA

1: Input: A ∈ Rm×n of rank p, B ∈ Rm×` of rank
q, 0 < ε < 1/2, and δ (n ≥ l, p ≥ q).

2: r ←− min(54ε−2
[√

n+ `+
√

8 log(12m/δ)
]2

log(3(n+

`)/δ),m)

3: Let S be the sampling matrix of a random subset
of [m] of cardinality r (uniform distribution).

4: Draw a random diagonal matrix D of size m with
±1 on its diagonal with equal probability.

5: Â←− SH·(DA) using fast subsampled WHT (see
Section 2.3).

6: B̂←− SH·(DB) using fast subsampled WHT (see
Section 2.3).

7: Compute and return the canonical correlations
and the canonical weights of (Â, B̂) (e.g. using
Björck and Golub’s algorithm).

Theorem 12. With probability of at least 1−δ, Algo-
rithm 1 returns an O(ε)-approximate CCA of (A,B).
Assuming Björck and Golub’s algorithm is used in line
7, Algorithm 1 runs in time

O

(
mn logm+ ε−2

[√
n+

√
log(m/δ)

]2
log(n/δ)n2

)
.

Proof. Lemma 6 ensures that with probability of at
least 1− δ/2,

µ([ΘA; ΘB]) ≤ 1

m

(√
n+ `+

√
8 log(3m/δ)

)2
.

Assuming that the last inequality holds, Theorem 10
ensures that with probability of at least 1 − δ/2, the

canonical correlations and weights of (Â, B̂) form an
O(ε)-approximate CCA of (ΘA,ΘB). By the union
bound, both events hold together with probability of
at least 1− δ. The RHT transforms applied to A and
B are unitary, so for every η, an η-approximate CCA
of (ΘA,ΘB) is also an η-approximate CCA of (A,B)
(and vice versa).

Running time analysis. Step 2 takes O(1) opera-
tions. Step 3 requires O(r) operations. Step 4 requires
O(m) operations. Step 5 involves the multiplication of
A with SHD from the left. Computing DA requires
O(mn) time. Multiplying SH by DA using fast sub-
sampled WHT requires O(mn log r) time, as explained
in Section 2.3. Similarly, step 6 requires O(m` log r)
operations. Finally, step 7 takes O(rn` + r(n2 + `2))
time. Assuming that n ≥ `, the total running time is
O(rn2 +mn log(r)). Plugging the value for r, and us-
ing the fact that r ≤ m, established our running time
bound.
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From a practical point of view, our algorithm is use-
ful for measuring the size of the correlated subspace,
and obtaining the principal vectors of it. A reasonable
value for ε is 0.1, or perhaps 0.01. So for reasonably
high correlations, say above 0.2, we get some useful
information. However, for lower correlations we get
no information at all. Furthermore, it is too expen-
sive to compute all the principal vectors, but once we
know the size of the correlated subspace we can use
the approximate weights to compute the vectors for
that subspace.

6. Relative vs. Additive Error

Now, we demonstrate that, unless r ≈ m, it is not pos-
sible to replace the additive error guarantees of Theo-
rem 12 with relative error guarantees.

Lemma 13. Assume that given any matrix pair (A,
B) and any constant 0 < ε < 1, Algorithm 1 computes

a pair (Â, B̂) by setting a sufficient large value for r in
Step 2 so that the canonical correlations are relatively
preserved with constant probability, i.e., with constant
probability (i = 1, . . . , q):

(1− ε)σi(A,B) ≤ σi(Â, B̂) ≤ (1 + ε)σi(A,B)

Then, it follows that r = Ω(m/ log(m)).

The proof of this lemma appears in the full version of
the present article (Avron et al., 2012).

7. Experiments

We now report the results of a few small-scale experi-
ments. Our experiments are not meant to be exhaus-
tive; however, they do show that our algorithm can be
modified slightly to achieve very good performance in
practice while still producing acceptable errors.

Our implementation of Algorithm 1 differs from the
pseudo-code description in two ways. First, we use

r ←− min(ε−2
[√

n+ `+
√

log(m/δ)
]2

log(n+`)/δ),m)

for setting the sample size, i.e. we keep the same
asymptotic behavior, but drop the constants. The con-
stants in Algorithm 1 are rather large, so they preclude
the possibility of beating Björck and Golub’s algorithm
for reasonable matrix sizes. Our implementation also
differs in the choice of underlying mixing matrix. Algo-
rithm 1, and the analysis, uses the WHT. However, it
is possible to show that other Fourier-type transforms
will work as well (the bounds remain unchanged), and
that some of these alternative transforms have certain
advantages that make them better suited for an actual

implementation (Avron et al., 2010). Specifically, we
use the implementation of randomized Discrete Hart-
ley Transform in the Blendenpik library1.

We report the results of three experiments. In each
experiment we run our code five times on a fixed pair
of pair of matrices (datasets) A and B, and compared
the different outputs to the true canonical correlations.
The first two experiments involved synthetic data-sets,
for which we set ε = 0.25 and δ = 0.05. The last
experiment was conducted on a real-life dataset, and
we used ε = 0.5 and δ = 0.2. All experiments were
conducted in a 64-bit version of MATLAB 7.8. We
used a two quad-core Intel E5410 computer running at
2.33 GHz, with 32GB DDR2 800 MHz RAM, running
Linux 2.6, but we use a single core only.

Synthetic Experiment 1. In this experiment
we first draw five random matrices: three matrices
G,W,Z ∈ Rm×n with independent entries from the
normal distribution, and two matrices X,Y ∈ Rn×n

with independent entries from the uniform distribu-
tion on [0, 1]. We now set A = GX + 0.1 ·W and
B = GY + 0.1 · Z. We use the sizes m = 120, 000
and n = 60. Conceptually, we first take a random ba-
sis (the columns of G), and linearly transform it in
two different ways (by multiplying by X and Y). The
transformation does not change the space spanned by
the bases. We now add to each base some random
noise (0.1 ·W and 0.1 ·Z). Since both A and B essen-
tially span the same column space, only polluted by
different noise, we expect (A,B) to have mostly large
canonical correlations (close to 1), but also a few small
ones. Indeed, Figure 1(a), which plots the canonical
correlations of this pair, shows that this is the case.

Figure 2(a) shows the (signed) error in approximating
the correlations, in five different runs. The actual error
is always an order of magnitude smaller than the input
ε; the maximum absolute error is only 0.011. For large
canonical correlations the error is much smaller, and
the approximated value is very accurate. For smaller
correlations, the error starts to get larger, but it is still
an order of magnitude smaller than the actual value
for the smallest correlation. As for the running time,
the proposed algorithm takes about 40% less time than
Björck and Golub’s algorithm (3 sec vs. 5 sec).

Synthetic Experiment 2. In this experiment we
first draw three random matrices. The first matrix,
X ∈ Rm×n has independent entries from the normal
distribution. The second matrix Y ∈ Rm×k has inde-
pendent entries which take value ±1 with equal proba-
bility, and the third matrix Z ∈ Rk×n has independent

1Available at http://www.mathworks.com/matlabcentral
/fileexchange/25241-blendenpik.
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Figure 1. The exact canonical correlations.
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Figure 2. Error in approximation of the canonical correlations.

entries from the uniform distribution on [0, 1]. We now
set A = X + 0.1 ·Y · (1k×n + Z) and B = Y, where
1k×n is the k × n all-ones matrix. We use the sizes
m = 80, 000, n = 80 and k = 60. Here we basically
have noise (B) and a matrix polluted with that noise
(A). So there is some correlation, but really the two
subspaces are different; there is one large correlation
(almost 1) and all the rest are small (Figure 1(b)).

Figure 2(b) shows the (signed) error in approximating
the correlations, in five different runs. The actual error
is an order of magnitude smaller than the target ε;
the maximum absolute error is only 0.02. Again, for
the largest canonical correlation (which is close to 1)
the result is very accurate, with tiny errors. For the
other correlations it is larger. For tiny correlations
the error is about the same magnitude as the actual
value. Interestingly, we observe a bias towards over-
estimating the correlations. As for the running time,
the proposed algorithm takes about 30% less time than
Björck and Golub’s algorithm (3.1 sec vs. 4.5 sec).

Real-life dataset: Mediamill. We also tested the
proposed algorithm on the annotated video dataset
from the Mediamill Challenge (Snoek et al., 2006)2.
Combining the training set and the challenge set,
43907 images are provided, each image is a represen-
tative keyframe image of a video shot. The dataset
provides 120 features for each image, and the set is
annotated with 101 labels. Figure 1(c) shows the ex-
act canonical correlations. We see there is a few high
correlations, with very strong decay afterwards.

2The dataset is publicly available at
http://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets
/multilabel.html##mediamill.

Figure 2(c) shows the (signed) error in approximating
the correlations, in five different runs. The maximum
absolute error is rather small (only 0.055). For the
large correlations, which are the more interesting ones
in this context, the error is much smaller, so we have a
relatively high accuracy approximation. Again, there
is an interesting bias towards over-estimating the cor-
relations. As for the running time, the proposed algo-
rithm is considerably faster than Björck and Golub’s
algorithm (2.05 sec vs. 5.84 sec).

Summary. The experiments are not exhaustive, but
they do suggest the following. First, it appears that
the sampling size bounds are rather loose. The al-
gorithm achieves much better approximation errors.
Second, there seems to be a connection between the
canonical correlation value and the error: for larger
correlations the error is smaller. Our bounds fail to
capture these phenomena. Finally, the experiments
show that the proposed is faster than Björck and
Golub’s algorithm in practice on both synthetic and
real-life datasets, even if they are fairly small.
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