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Abstract. We present a range of new incremental (single-pass stream-
ing) algorithms for incremental principal components analysis (IPCA)
and show that they are more effective than exiting ones. IPCA algo-
rithms process the columns of a matrix A one at a time and attempt
to build a basis for a low-dimensional subspace that spans the dominant
subspace of A. We present a unified framework for IPCA algorithms,
show that many existing ones are parameterizations of it, propose new
sophisticated algorithms, and show that both the new algorithms and
many existing ones can be implemented more efficiently than was previ-
ously known. We also show that many existing algorithms can fail even
in easy cases and we show experimentally that our new algorithms out-
perform existing ones.

Keywords: Principal Components Analysis, Streaming Algorithms, Fre-
quent Directions

1 Introduction

Incremental or streaming algorithms for principal components analysis have
a wide range of big-data applications in machine learning and other applica-
tions [1,9,12,3,4,16]. We are interested in real matrices A ∈ R

m×n in which
columns represent m-dimensional data vectors. We assume that most of the vec-
tors (columns) consist of a component that lies in some k̄ ≪ m dimensional sub-
space and of a noise component, and that noise components have lower norm than
the data components. We also assume that some, but not too many, columns may
be outright outliers (that is, that they are far from the unknown low-dimensional
subspace).

Let A = UmSmV T
m = Umdiag(sm)V T

m be the singular value decomposition
(SVD) of A, let sℓ be the ℓ dominant singular values and let Uℓ and Vℓ be
the corresponding singular vectors. The columns of Uℓ are called the principal
components of A and algorithms that compute or approximate Uℓ and sℓ are
often referred to as principlal components analysis (PCA), and as stated, are
useful in many data analyses; the right singular vectors V are far less useful.

Incremental (or streaming) PCA algorithms, which we refer to as IPCA,
approximate Uk̄ and sk̄ by processing the columns of A one at a time using a
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small data structure of size Θ(mk) for k ≥ k̄ , often just an m-by-k matrix that
we denote by B. The algorithms that we discuss are all single-pass algorithms
that can discard a column once it has been processed. We describe a number
of existing algorithms in the next section, where we show that they can all be
viewed as instantiations of a unified framework.

There are several ways to measure the quality of an approximate PCA. In
this paper, we focus on the reconstruction of the dominant left subspace of the
matrix. That is, we measure the quality primarily by how well the left singular
vectors of B, which we denote by U , span Uk̄. We discuss existing ways to
measure the quality of PCA algorithms, as well as a new metric, in Section 2.
Unfortunately, as we show in Section 3, existing IPCA algorithms do not satisfy
some useful error bounds, which leads us to define new algorithms in Section 4.

The computational cost of many existing (including very recent and highly
regarded) IPCA algorithms is Θ(mk2) operations per column. This is quite as-
tonishing, since total Θ(mk2n) cost of the algorithm is comparable and possi-
bly higher than the cost of block Lanczos or subspace iterations, methods that
can produce very accurate results if the spectral gap σk̄/σk+1 is large. In other
words, these single-pass IPCA methods are efficient mostly in the sense of mem-
ory usage, not in terms of computational effort. To address this issue, we show
in Section 5 that a technique invented by Chahlaoui et al. [3] to reduce the
per-iteration cost in one particular IPCA algorithm actually applies to all the
algorithms in our unified framework. Our result shows that the cost of all of
them can be reduced to Θ(mk) operations per column. We also describe in Sec-
tion 5 another technique from the literature to reduce the total cost of IPCA
algorithms.

To summarize, the main contributions of this paper are: (1) we show that
a wide range of existing IPCA algorithms can be described as parameterized
variants of a single unified framework, (2) we explain the weaknesses of existing
error metrics for IPCA, propose a new one, and show that existing algorithms
perform arbitrarily poorly in it, even in easy cases (huge spectral gaps), (3) we
propose three new sophisticated IPCA algorithms, (4) we show how to implement
them and many existing algorithms in O(mk) operations per column, and (5)
we show experimentally that our new algorithms outperform the best existing
algorithms on both synthetic and real-world data sets.

2 A Unified Framework for IPCA

Our framework can express a wide range of IPCA algorithms using definitions
of two functions, a filter f : (Rm×k,Rm) −→ R

m and a reweighter g : Rk+1 −→
R

k. The role of f is to filter or modify a new data vector (column) given the
vector and a basis for a k-dimensional subspace that hopefully represents all the
preceding columns of A. The role of g is to assign weights to the singular vectors
of the new basis. Formally, the framework works as follows.

1. Initialization. Let Ut and st be the left singular vectors and the singular
values of A : ,1 : t for some t ≥ k. Set Bt = (Ut) : ,1 : k diag ((st)1 : k).



2. For t+ 1 to n,

(a) Compute w = f(Bt, A : ,t+1).

(b) Let Ut+1 and s̃t+1 be the left singular vectors and the singular values of
[

Bt w
]

, and let Bt+1 = (Ut+1) : ,1 : k diag(g(s̃t+1)).

It is tempting to think that in step 2(b) we need to compute the SVD or PCA
of

[

Bt w
]

, but it turns out that it is often possible to carry out this step without
computing the SVD/PCA explicitly.

We now give a few examples of how to instantiate algorithms from the liter-
ature using our framework. Setting fID(Bt, A : ,t+1) = A : ,t+1 and gID(s) = s1 : k
gives both Basic IPCA [2,16] and QR-IPCA [3]. Setting

fBrand(Bt, A : ,t+1) =

{

UtU
T
t A : ,t+1 rank(Ut) = k

A : ,t+1 otherwise

(an orthonormal projection) and gID(s) = s1 : k gives Brand’s method [2]. Brand
also proposed a variant in which the projection is used only if the projection
error is below some threshold τ ,

ftrancate(Bt, A : ,t+1) =

{

UtU
T
t A : ,t+1 ‖A : ,t+1 − UtU

T
t A : ,t+1‖ < τ

A : ,t+1 otherwise ,

still with the identity reweighter gID. Using the identity filter fID and

geva(s) =
√

s2
1:k − s2k+1

(the eigenvalues of the Gram matrix are shifted down so as to annihilate the
smallest singular value) gives Liberty’s Frequent Directions algorithm [10]. The
identity filter and

gdecay(s) = λs1 : k

(drop the smallest singular value and shrink the rest by a factor 0 < λ < 1 gives
a method suggested by Levey and Lindenbaum [9] (but their algorithm processes
incoming columns in blocks, not one by one).

3 Error Metrics and Impossibility Results

Most of the early work on IPCA was heuristic and provided no provable guar-
antees on the quality of the approximation. One interesting but not particularly
useful exception is the work of Chandrasekaran et el., [5,11]. They show how to
keep track of the error and they propose to increment k whenever necessary to
preserve the bound. However, their method results in very high a-priori bounds
for k; in many interesting cases, their bound is equivalent to maintaining the full
rank.



Liberty et al. [7,10] made a huge step forward. They showed that their Fre-
quent Directions algorithms achieves two useful a-priori bounds, a so-called Gram
reconstruction bound

‖AAT −BBT ‖2 ≤
1

k − k̄
‖A−Ak‖

2
F

and the so-called projection bound

‖A− Ū ŪTA‖2F ≤

(

1 +
1

k − k̄

)

‖A−Ak‖
2
F , (1)

where Ū consists of the k dominant left singular vectors of B. We are interested
in projection bounds and variants of it, which measure the quality of the approx-
imation of the dominant subspace, not the approximation of the Gram matrix
of A.

In extensive experiments, we found that (1) does not provide useful bounds in
high-dimensional noisy problems. The reason is simple: ‖A−Ak‖

2
F =

∑m

k+1
σ2
i , so

if m is large and if the singular values do not decay quickly to insignificant values,
‖A−Ak‖

2
F may be large even for good approximations, say span(B) = span(Ak).

This means that this bound cannot distinguish between good approximations
and bad ones.

One way to address this issue is to replace the Frobenius norm by the 2-norm
in the projection error. No rigorous bounds of this form are known for IPCA
algorithms, but it may still be a good way to assess the quality of approximations.
We advocate and use a slightly different bound, which we call the subspace
reconstruction bound (or just reconstruction bound),

Erecon = Erecon

(

k̄, A, U
)

=
‖Ak̄ − UUTAk̄‖F

‖Ak̄‖F
.

This bound measures how well U spans the dominant subspace of A. Note that
U has rank k and that Ak̄ has rank k̄ ≤ k. We note that if the gap between σk̄

and σk is small, the problem of finding a U with a small reconstruction error
is highly ill conditioned, because small perturbations in A can cause dramatic
changes in Ak̄; we feel that this is acceptable when the sought-after object is the
dominant subspace.

Unfortunately, it turns out that guaranteeing a small reconstruction error is
impossible for all of the existing algorithms, including Frequent Directions, even
in easy cases.

Theorem 1. For any positive real number M , and for any ranks k̄ ≤ k, there
exist a matrix A ∈ R

m×n with σk̄/σk̄+1 > M such that if U is the rank-k basis
found by IPCA with fID and gID, then Erecon

(

k̄, A, U
)

= 1. The same is true
(with different counter example matrices) for (fID, geva) (Frequent Directions),
for (fBrand, gID), (ftruncate, gID), and (fID, gdecay).

We omit the proof, which is available at [8], due to lack of space. This re-
sult is quite dramatic. The counter examples are all easy, in the sense that the



spectral gap can be large, and that the rank of U is allowed to be much larger
than k̄. The fact that this wide range of simple algorithms fails to guarantee a
good approximation leads us to define more sophisticated algorithms in the next
section. Currently, they are all heuristic; we do not have strong reconstruction
bounds for them, but we do have experimental evidence that they work well.

4 New Heuristics

The first heuristic that we propose is Tunable Shrinkage, which is a parameteri-
zation of Frequent Directions [7,10]. A different parameterized shrinkage strategy
was proposed by [6]. Tunable Shrinkage uses a modified reweighter

gr-eva(s) =
√

s2
1:k − s2k+1

/r

for some 1 ≤ r < ∞. The essence of this reweighter is to drop the smallest
singular value, like geva, but to shrink the other singular values by a smaller
amount. Setting r = 1 gives geva and setting r = ∞ gives gID. We can show (proof
is omitted due to lack of space; see [8]) that the degradation in the approximation
bound relative to Frequent Direction depends on r,

Theorem 2. Let U be the basis of the the sketch B ∈ R
m×kbe the sketch pro-

duced by Tunable Shrinkage, for any k̄ < k/r it holds that

‖A− UUTA‖2F ≤

(

1 +
k̄r

k − k̄r

)

‖A−Ak̄‖
2
F .

Next, we propose Boosted IPCA (BIPCA). This method uses the identity
reweighter but with a sophisticated statefull randomized filter. The state that the
filter maintains is the average mass of columns αt = ‖A : ,1 : t‖

2
F/t, the smallest

singular σt value of Bt, and a counter c. We initialize c = 2. The filter starts by
tossing a biased coin with success probability 1/c. If the coin toss is successful,
the filter simply sets w to the projection pt = UtU

T
t A : ,t+1 and it increments

c. Otherwise, the filter sets c = 2 and computes the projection-residual rt =
A : ,t+1 − UtU

T
t A : ,t+1 and its 2-norm ρ. If ρ > σt, we set w = A : ,t+1 and

continue. If the residual is small ρ ≤ σt, we toss another coin with success
probability 1−min(1, ρ2/αt). If the toss is successful, we again set w = A : ,t+1.
If the coin toss is unsuccessful, we boost the residual and set w = pt+βtrt where

βt =

{

σt/ρ+ ǫ pt = 0

min (σt/ρ,
√

(‖A : ,t+1‖2 + σ2
t )/‖A : ,t+1‖2) otherwise,

where ǫ is infinitesimal (not a significant numeric value). The test pt = 0 is done
in a numerically-robust way (small pts are admitted). The ǫ term forces w to be
retained in Bt+1 when pt = 0.

We omit the detailed rationale for these heuristic rules due to lack of space,
but the essence is to use an inexpensive update rule when a more expensive



update is not likely to significantly improve the approximation. they are justified
experimentally below.

Our third heuristic, JIT-PCA, is closely related to BIPCA and uses the
same notation, but is a little simpler, often more efficient, but sometimes a little
less accurate. It also uses an identity reweighter and a sophisticated filter. The
filter tosses one coin with probability (1/c)(1 − min(1, ρ2/αt)) (the product of
the probabilities in BIPCA). If the coin toss is successful, we set w = pt and
increment c, otherwise we set w = pt + γtrt and set c = 2, with γt defined as

γt =

{

1 ρ > σt

βt otherwise .

5 Efficient QR-Based Implementations

Naive implementations of step 2(b) of our framework compute the SVD of
[

Bt w
]

. This is expensive, costing Θ(mk2) operations per incoming data vector
(column). Given Ut, st and w, we can update the SVD, but this is still expensive.
The singular values can be updated in Θ(k3) ≪ Θ(mk2), but updating the sin-
gular vectors requires multiplying an m-by-k matrix by a k-by-k matrix, costing
Θ(mk2) operations. Researchers proposed three main mechanisms to reduce this
cost. One, aggressively used by Brand [2] and somewhat less aggressively by our
new heuristics, it to set w = pt. This implies that we do not need to explic-
itly update Ut; instead, we represent it as a product of an m-by-k matrix by a
k-by-k matrix and we update only the k-by-k matrix. Steps of this form only
cost 2mk + Θ(k3). The second mechanism is to batch columns and to update
the basis only every ℓ columns. By setting ℓ ≈ k the amortized per-column cost
drops to Θ(mk) operations. This idea is used in Frequent Directions [7,10], by
Levey, Lindenbaum [9], etc.

A more interesting mechanism was discovered by Chahlaoui, Gallivan, and
Van Dooren [3]. They proposed to represent Bt using its QR factorization,
Bt = QtRt. The singular values of Bt are those of Rt and the smallest sin-
gular value, when needed, can be extracted from Rt. Their method is based on
two clever observations. The first is that the smallest singular pair/triplet of
Rt can be computed inexpensively using Lanczos. The second, and perhaps the
more surprising, is that Qt can be updated using 4mk operations by applying a
single Householder reflection to it. This reduces the total cost of our framework
to 8mk operations per incoming column.

Our key observation is that the QR-based representation can be applied not
only to the simple filter and reweighter choices of Chahlaoui et al., but also to
those of Frequent Directions and our new heuristics (Section 4). This implies
that the cost of all of these heuristics is bounded by 8mk + Θ(k3) operations
per column. More specifically, we perform the QR-IPCA update as originally
proposed and keep σk+1 (Chahlaoui et al. discard it). We then compute the
SVD of Rt = URSRV

T
R . We now apply the reweighter to the diagonal of SR

reconstruct R̃t = URS̃RV
T
R , where S̃R is the reweighted diagonal matrix. The



last step is to perform an RQ decomposition on R̃t to restore its upper triangular
structure. The Q factor is not used.

We note that the paper of Chahlaoui et al. preceded the discovery of Frequent
Directions, and that the researchers who discovered Frequent Directions were not
aware of this but were very much interested in reducing the per-column cost to
O(mk); this led them to the batching technique, which is really not necessary.

6 Experimental Evaluation

We demonstrate the effectiveness of our new methods as well as the weakness
of Frequent Directions with both synthetic data sets and real-world data. The
results also demonstrate that Frequent Directions is not always superior to older
methods, and in particular that Basic IPCA sometimes beats it.

The first family of synthetic matrices were produced as BD + BN where
B is a square random orthonormal matrix of dimension m, D is an m-by-n
matrix with zeros in rows 3, . . . ,m and uniform random entries between −0.5
and 0.5 in the first two rows, and N is an m-by-n matrix with Gaussian entries
with zero mean and standard deviation 0.05. The columns of D are sorted by
norm; this facilitates evaluation of approximations, as we shall see below. The
BD term represents data; its rank is 2, and its column space is spanned by the
first columns of B. The BN term represents noise. We use m = 50 or m = 200
and n = 5000. We then ran IPCA algorithms that each produced an m-by-2
orthonormal approximation U of the dominant left singular vectors of A.

Figure 1 presents the output of four algorithms on a problem with m = 50.
We projected the columns of A onto the basis U and plotted the coordinates that
we received. Points are colored sequentially using a color map that spans red to
blue. In this problem, all the approximations are good. The coordinates roughly
span a square, and the color correlates well with the norm, which implies that the
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Fig. 1. Reconstructions of noisy 2-dimensional data embedded in vectors of dimension
50; all the algorithms perform well.
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Fig. 2. Reconstructions of noisy 2-dimensional data embedded in vectors of dimension
200; Frequent Directions performs poorly.
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Fig. 3. Reconstructions of noisy 2-dimensional data with m = 200 using variants of
Frenquent Direction with several levels of shirnakage (decay).

reconstruction is good (recall that the columns of D are ordered by norm). This
visualization mechanism is common in the dimension-reduction literature [13,14].

Figure 2 presents the results of a similar experiment but with m = 200. The
higher dimension causes Frequent Directions to fail; The one-dimensional point
spread implies one column in UFD is in the span of the first two columns of B (in
the subspace that the algorithms are trying to recover) but the other is almost
orthogonal to that subspace. The results of JIT-PCA are also not perfect, but
also not nearly as bad.

Figure 3 shows that the shrikage (decay) is the cause of the failure in this case.
The results show that as we reduce the shrikage, the reconstruction improves.
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Fig. 5. The probability of a full update when a column is processed by JIT-PCA. On
the left the noise ratio is 100 and the amortized coefficient of the mk term in the
number of operations is 2.03. On the right the noise ratio is 10 and the coefficient is
2.45.

The second family of synthetic problems again used matrices of the form
BD+BN with the same structure for B, same structure for N but with standard
deviation 0.1 for its entries. D is now a block matrix, D =

[

D1 D2 D3

]

. The first
and last blocks D1 and D3 have only 3 nonzero rows each with Gaussian entries
with standard deviation 1, and D2 has only 6 nonzero rows with a larger standard
deviation 3. The nonzero rows in each block are different. The row dimension is
m = 50 or m = 350, D1 and D3 have 10000 columns each, and D2 has 200 to
800 columns. We ran the algorithms to produce a basis U with k = 10 columns
and measured Erecon for k̄ = 6. Because D2 has relatively few columns, A6̄ is
spanned by three vectors close to the column basis of BD1 and three more close
to those of BD3.

The graph on the left in Figure 4 shows that for m = 50, all the algorithms
except for the basic IPCA were able to reconstruct the dominant left singular
vectors of A. When we increase m to 350, Frequent Directions also fails, as shown
in the bar chart on the right in Figure 4.

Figure 5 shows how effective JIT-PCA is in avoiding full updates. The input
matrices are 50-by-6000 with the same B

[

D1 D2 D3 D1̃ D2̃ D3̃

]

+BN . The Di

and Dĩ blocks have only 5 nonzero rows, different for different is but the same
for Di and Dĩ . Each block of D has 1000 columns. The noise ratio between the
standard deviation in nonzero entries of D and entries of N is 100 or 10. We
set k̄ = 15 and k = 20. We can see that with relatively low noise, the algorithm
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Fig. 6. The probability that BIPCA boost a column. On the left the noise ratio is 100
and on the right it is 10. The coefficient of the mk term in both cases is 5.45.
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Fig. 7. The singular values of the BIRDS data set (left), with the 20th marked in green,
and the reconstruction error of the Tunable Shrinkage algorithm with k = 30.
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Fig. 8. Reconstruction error on the BIRDS data set for FrequentDirections, Basic
IPCA, BIPCA and JIT-PCA as a function of the approximation rank k.

performs full updates mostly when the subspace of the columns changes and is
new (not a change back to columns in a subspace seen before). With a high level
of noise, the probability of full updates hovers around 10% most of the time, but
is really high only when a new subspace is encountered. Figure 6 shows that the
probability of boosting in BIPCA follows a similar pattern.

Figures 7 and 8 explore the behavior of the algorithms on a real-world data set
called BIRDS, which was also used to demonstrate the effectiveness of Frequent
Directions [7,15]. This data set has 11788 columns of dimension 312. The singular
values flatten out after about 20, so we set k̄ = 20. We can see that Frequent
Direction performs poorly, even with k as high as 45. The other algorithms
perform better and show only little improvement after k = 30. We also see that
shrinkage helps the performance of Frequent Directions.
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