
NEW KRYLOV-SUBSPACE SOLVERS FOR HERMITIAN POSITIVE

DEFINITE MATRICES WITH INDEFINITE PRECONDITIONERS

HAIM AVRON, ANSHUL GUPTA, AND SIVAN TOLEDO

Abstract. Incomplete LDL∗ factorizations sometimes produce an inde�nite preconditioner
even when the input matrix is Hermitian positive de�nite. The two most popular iterative
solvers for Hermitian systems, MINRES and CG, cannot use such preconditioners; they require
a positive de�nite preconditioner. We present two new Krylov-subspace solvers, a variant of
MINRES and a variant of CG, both of which can be preconditioned using any non-singular
Hermitian matrix as long as the original system is positive de�nite. These algorithms allow
the use of incomplete-factorization preconditioners for Hermitian positive de�nite systems, even
when the preconditioner is inde�nite, without resorting to a more expensive non-symmetric
iterative Krylov-subspace solver.

1. Introduction

Preconditioners based on incomplete factorization methods have long been used with Krylov
subspace methods to solve large sparse systems of linear equations [3, 15]. While the Cholesky
factorization LL∗ of a Hermitian positive de�nite matrix is guaranteed to exist, there is no such
guarantee of the existence of an incomplete factorization of this form. The reason is that the
errors introduced due to dropping entries from the factor may result in zero or negative values
at the diagonal.

The traditional approach to address this problem is to force positive de�niteness by modifying
the factorization process. Benzi's survey [3] of these methods notes that the various techniques
tend to fall into two categories: simple and inexpensive �xes that often result in low-quality pre-
conditioners, or sophisticated strategies yielding high-quality preconditioners that are expensive
to compute. Some techniques to circumvent possible breakdown of incomplete Cholesky fac-
torization involve using LDL∗ factorization. One possibility, that has not been researched yet,
is to compute an incomplete LDL∗ factorization and force positive de�niteness by perturbing
tiny or negative entries in D after the factorization. Avron et al. [2] used a similar technique to
solve least-squares problems using perturbed QR factorizations. Gupta and George [11] propose
switching from LL∗ to LDL∗ factorization upon encountering negative diagonals to complete the
factorization without breakdown. Their approach does not require the preconditioner to be pos-
itive de�nite. An inde�nite preconditioner can be problematic, even when the original matrix is
positive de�nite, because it can result in a breakdown of the symmetric Krylov-subspace solvers
like CG [12] (because of possible division by zero if the M−1-norm of the residual becomes zero)
and MINRES [14] (because of possible square root of a negative value when trying to calculate
the M−1-norm of the new basis vector). Furthermore, the correctness proof of both CG and
MINRES rely on the existence of a Cholesky factor of the preconditioner [15].

As a result, alternate Krylov-subspace methods, such as symmetric QMR [6, 7], GMRES [16],
or BiCGStab [19], etc. must be used if the preconditioner is inde�nite. However, using GMRES
is expensive due to the long recurrence (expensive orthogonalization steps and a high memory
requirement), and algorithms like QMR or BiCGStab do not minimize a norm of the residual or
a norm of the error as GMRES, CG, and MINRES do. In general, it is not possible to get both

Date: December 2008.

1



NEW KRYLOV-SUBSPACE SOLVERS WITH INDEFINITE PRECONDITIONERS 2

Algorithm 1 U -Conjugate Arnoldi Iteration

b = arbitrary, q1 = b/‖b‖U
for n = 1, 2, 3, . . .
v = Aqn
for j = 1 to n
hjn = q∗jUv
v = v − hjnqj

end for
hn+1,n = ‖v‖U (the algorithm fails if hn+1,n = 0).
qn+1 = v/hn+1,n

optimality and a short recurrence with a non-symmetric method [5]. To address these issues,
we propose new Krylov-subspace variants of CG and MINRES that guarantee convergence and
allow an inde�nite preconditioner to be used.

The remainder of the paper is organized as follows. Section 2 describes the U -conjugate
Arnoldi Iteration, a tool that we will use to develop the new algorithms. Section 3 presents a
new variant of CG. Section 4 presents a new variant of MINRES. In Section 5, we show how
the U -conjugate Arnoldi Iteration can be used to derive a couple of older algorithms. Extensive
numerical experiments are reported in Section 6. We present our conclusions in Section 7.

2. The U-conjugate Arnoldi Iteration

The main tool that we use is a generalization of the classical Arnoldi iteration. The classical
Arnoldi iteration forms, at step n, matrices Qn+1 and H̃n such that

AQn = Qn+1H̃n,

where H̃n is upper Hessenberg and Qn+1 is unitary. Instead of requiring Qn to be unitary we
require it to be unitary relative to the U -norm, where U is an Hermitian positive de�nite matrix.
That is, we replace the condition

Q∗nQn = In×n

with the condition

Q∗nUQn = In×n .

To do so, all we need to do is replace dot-products with U inner-products, and 2-norms with U -
norms. See Algorithm 1 for the pseudo-code. It is easy to see that the classical Arnoldi iteration
is the U -conjugate iteration with U = IN×N (where N is the number of rows in A).

Like the classical Arnoldi iteration the U -conjugate Arnoldi iteration vectors span the the
Krylov subspace. We omit the proof because it is identical to the proof that the classical Arnoldi
iteration vectors span the Krylov subspace.

Theorem 2.1. Let q1, . . . , qn be n vectors generated by a successful application of n iterations

of Algorithm 1 on matrix A with initial vector b. Then,

span {q1, q2, . . . , qn} = Kn(A, b) .

The following theorem summarizes a few useful properties of the values generated by the
U -conjugate Arnoldi iteration.

Theorem 2.2. Let {qi}and {hji} be the values generated by the successful application of n
iterations of Algorithm 1 on matrix A with initial vector b, where 1 ≤ i, j ≤ n. Let

Qn =
[
q1 q2 · · · qn

]
,



NEW KRYLOV-SUBSPACE SOLVERS WITH INDEFINITE PRECONDITIONERS 3

H̃n =


h11 · · · h1n

h21
...

. . .
...

hn+1

 ,
and

Hn =
(
H̃n

)
1:n,1:n

.

Then,

(1) AQn = Qn+1H̃n,
(2) Q∗nUQn = In×n,
(3) Q∗nUAQn = Hn.

Proof. The �rst two properties follow directly from the algorithm. Multiply the equation in
property 1 by Q∗nU to get

Q∗nUAQn = Q∗nUQn+1H̃n .

It is easy to see that
Q∗nUQn+1 =

[
In×n 0n×1

]
,

so we have Q∗nUAQn = Hn. �

The U -conjugate Arnoldi has a major disadvantage for a general A: the amount of work
required to perform the nth iteration and amount of memory space needed is O(nN + nnz(A)),
where N is the number of rows in A. The classical Arnoldi reduces to a 3-term recurrence,
and Hn is tridiagonal, if A is Hermitian. The U -conjugate Arnoldi iteration reduces to a three
term recurrence, and Hn is tridiagonal, if Hn = Q∗nUAQn is Hermitian. This happens when
UA is Hermitian. When this is the case, we call the resulting iteration the U -Conjugate Lanczos

Iteration and we write Tn instead of Hn.

3. Indefinitely Preconditioned Conjugate Gradients

If A is a Hermitian positive de�nite matrix, then we can use the U -conjugate Lanczos iter-
ation to �nd an optimal A-norm approximate solution to Ax = b. We do so by applying the
iteration on A, selecting U = A. After iteration n we have an A-conjugate basis to the Krylov
subspace Kn(A, b). We can use the Conjugate Directions method to produce an optimal A-norm
approximation (see �7 in Shewchuk's tutorial [17]).

This algorithm can be preconditioned quite easily. Suppose that we have formed an Hermitian
preconditioner M . We can apply the A-conjugate Lanczos iteration to M−1A since AM−1A is
Hermitian. Assuming we start our iteration with M−1b, after the nth iteration we will �nd an
n-dimensional A-conjugate basis to K(M−1A,M−1b). We can use that basis to �nd an optimal
A-norm approximate solution M−1Ax = M−1b. The pseudo-code is listed in Algorithm 2. We
refer to this algorithm as IP-CG from here on.

If both M and A are Hermitian positive de�nite, then the classical CG algorithm produces
an approximate in Kn(M−1A,M−1b) that minmizes the A-norm of the error; i.e., it �nds an
xn ∈ Kn(M−1A,M−1b) such that ‖xn − x‖A is minimized. This minimizer is unique. This
implies that under exact arithmetic, if the preconditioner is de�nite, then both classical CG and
IP-CG will produce the same vectors. Therefore, Algorithm 2 is indeed a di�erent, and more
robust, formulation of CG; it is an �Inde�nitely Preconditioned Conjugate Gradients� method.

IP-CG's advantage over classical CG is its ability to use an inde�nite preconditioner and still
to maintain the minimization properties. This advantage does not come without a price: while
CG needs to store 5 vectors, and do 5 vector operations per iteration, IP-CG needs to store 7
vectors, and do 13 vector operations per iteration.



NEW KRYLOV-SUBSPACE SOLVERS WITH INDEFINITE PRECONDITIONERS 4

Algorithm 2 Inde�nitely Preconditioned CG (IP-CG)

Input: Hermitian positive de�nite A, a right hand side b and an Hermitian preconditioner M
q1 = M−1b
l1 = Aq1
w =

√
q∗1l1

l1 = l1/w
q1 = q1/w

r(0) = b−Ax
x(0) = 0
for t = 1, 2, . . .
γt = q∗t r

(t−1)

x(t) = x(t−1) + γtqt
r(t) = r(t−1) − γtlt
check for convergence
vt+1 = M−1lt
Ht,t = l∗t vt+1

Ht−1,t = Ht,t−1(= l∗t−1vt+1)
qt+1 = vt+1 −Ht,tqt −Ht−1,tqt−1

lt+1 = Aqt+1

Ht+1,t =
√
q∗t+1lt+1

lt+1 = lt+1/Ht+1,t

qt+1 = qt+1/Ht+1,t

end for

IP-CG's advantage over GMRES is the fact that it uses a Lanczos iteration, so it does not need
to store all the bases. Its advantage over QMR and BiCGStab is that it minimizes a real norm
of the error. Another potential advantage of IP-CG over GMRES and QMR is the ability to
base the stopping criteria on an estimate of the A-norm of the error. Indeed, the Hestenes-Stiefel
estimate in classical CG can be easily incorporated in IP-CG. More advanced methods have been
proposed [1, 8], and some of them may be usable in IP-CG.

4. Indefinitely Preconditioned MINRES

The MINRES algorithm can be used to solve Ax = b for any Hermitian matrix, and a pre-
conditioner can be used as long as it is Hermitian positive de�nite. In this section we will show
a variant of MINRES that requires the opposite: any Hermitian preconditioner can be used as
long as the matrix is positive de�nite.

Suppose that A is Hermitian positive de�nite, and that the preconditioner M is Hermitian.
Like the algorithm used in Section 3, we use the A-conjugate Lanczos iteration on M−1A and
M−1b. We have found a matrix Tn and a basis Qn to Kn = Kn(M−1A,M−1b) with M−1AQn =
Qn+1T̃n and Q∗nAQn = In×n. A is a Hermitian positive de�nite matrix, so there exists a lower
triangular matrix L such that A = LL∗. We do not need to compute L, we use it only for the
derivation of the algorithm. We will now show how Qn and T̃n can be used to solve the equation
L∗M−1Ax = L∗M−1b, which has exactly the same solution as Ax = b.



NEW KRYLOV-SUBSPACE SOLVERS WITH INDEFINITE PRECONDITIONERS 5

Let Q̂n = L∗Qn. Q
∗
nAQn then reduces to Q̂∗nQ̂n = In×n, so Q̂n is a unitary matrix. Every

x ∈ Kn can be written as x = Qny, so we have

min
x∈Kn

‖L∗M−1Ax− L∗M−1b‖2 = min
y
‖L∗M−1AQny − L∗M−1b‖2

= min
y
‖L∗Qn+1T̃ny − L∗M−1b‖2

= min
y
‖Q̂n+1T̃ny − L∗M−1b‖2

= min
y
‖T̃ny − Q̂∗n+1L

∗M−1b‖2

= min
y
‖T̃ny −Q∗n+1LL

∗M−1b‖2

= min
y
‖T̃ny −Q∗n+1AM

−1b‖2

= min
y
‖T̃ny − ‖M−1b‖Ae1‖2.

We can iteratively �nd solutions yn to miny ‖T̃ny − ‖M−1b‖Ae1‖2 and form xn = Qnyn in the
same way as it is done in MINRES. As we can see we do not have to actually use L. We only
rely on its existence. The pseudo-code is listed in Algorithm 3. We refer to this algorithm as
IP-MINRES from here on.

A di�erent and more technical way to derive IP-MINRES would be to write the equations
for MINRES on L∗M−1Ly = L∗M−1b and multiply all vectors generated by the iteration by
L−∗. The matrix L will disappear from the equations and we will get Algorithm 3. In order to
streamline this paper we do not give the details of this derivation.

5. Reformulation of older methods

The U -conjugate iterations can be used to derive new formulations of older, well-known,
algorithms. The purpose of this section is to show that these algorithms are similar to the ones
presented in the previous sections, and that the framework presented in this paper is useful in
building Krylov-subspace methods.

5.1. Preconditioned MINRES using M−1-Conjugate Lanczos. If A is Hermitian and M
is positive de�nite, then we can use regular MINRES. The MINRES iteration basically does
a U -conjugate Lanczos iteration on AM−1 with U = M−1. The matrix UA = M−1AM−1 is
Hermitian so this is indeed a Lanczos process. We can use the techniques presented in Section 4
to solve the equation Ax = b. This is exactly what preconditioned MINRES does.

5.2. Minimum Residual using A∗A-Conjugate Lanczos and Arnoldi. If A is not Hermit-
ian positive de�nite, then we cannot use U = A. Instead we can use U = A∗A. After iteration
n we will have an A∗A-conjugate basis to the Krylov subspace Kn(A, b). We can use the Con-
jugate Directions method to produce an optimal A∗A-norm approximation, that is ‖en‖A∗A is
minimized. Note that

‖en‖A∗A =
√

(xn − x)∗A∗A(xn − x)
= ‖A(xn − x)‖2
= ‖rn‖2.

Thus, the resulting algorithm �nds the minimum residual solution in K(A, b). When viewed that
way, we can see that this is a di�erent formulation of the GMRES algorithm. A left preconditioner
can be added quite easily by applying the iteration on M−1A and M−1b but keeping U = A∗A.
We can carefully avoid the need to apply A∗ and ensure that we do the multiplication by A and
solve for M only once per iteration. Unfortunately, we do need to keep two set of vectors, not



NEW KRYLOV-SUBSPACE SOLVERS WITH INDEFINITE PRECONDITIONERS 6

Algorithm 3 Inde�nitely Preconditioned MINRES (IP-MINRES)

Input: Hermitian positive de�nite A, a right hand side b and an Hermitian preconditioner M
q1 = M−1b
l1 = Aq1
w1 =

√
q∗1l1

l1 = l1/w1

q1 = q1/w1

r(0) = b−Ax
x(0) = 0
s−2 = 0,s−1 = 0
for t = 1, 2, . . . until convergence
vt+1 = M−1lt
Ht,t = l∗t vt+1

Ht−1,t = Ht,t−1(= l∗t−1vt+1)
qt+1 = vt+1 −Ht,tqt −Ht−1,tqt−1

lt+1 = Aqt+1

Ht+1,t =
√
q∗t+1lt+1

lt+1 = lt+1/Ht+1,t

qt+1 = qt+1/Ht+1,t

Ut−2,t = st−2Ht−1,t

if (t > 2) Ut−1,t = ct−2Ht−1,t else Ut−1,t = Ht−1,t

if (t > 1) Ut,t = −st−1Ut−1,t + ct−1Ht,t else Ut,t = Ht,t

Ut−1,t = ct−1Ut−1 + st−1Ht,t

compute Givens rotation factors ct and st on
[
Ut,t Ht+1,t

]T
Ut,t = ctUt,t + stHt+1,t

wt+1 = −stwt
wt = ctwt
mt = (Ut,t)−1(qt − Ut−1,tmt−1 − Ut−2,tmt−2)
x(t) = x(t−1) + wtmt

end for

just one as is required in the classical version of GMRES. Unlike left preconditioned GMRES this
algorithm minimizes the residual of the original system, not the preconditioned system (right
preconditioned GMRES minimizes the residual of the original system as well). Of course, we can
precondition the new formulation of GMRES from the right as well, but in that case we cannot
avoid doing an extra multiplication by A in every iteration.

If A is Hermitian, then UA = A3 which is a Hermitian matrix. In this case we can use the
U -conjugate Lanczos iteration, and our algorithm reduces to a new version of MINRES. This
version is possibly more stable than regular MINRES because we use the basis vectors in a
CG-like process, instead of solving a least-squares problem. The main drawback of this method
is that it cannot be preconditioned easily. Simply applying M−1 will not keep the symmetry
of the iteration. To precondition with M we will need a factorization M = LL∗ and solve the
equation L−1AL−∗(L∗y) = L−1b. There is no way to eliminate L from the iteration. Another
disadvantaged is that we cannot use an inde�nite preconditioner.

6. Numerical experiments and discussion

We have implemented the IP-CG and IP-MINRES compared them to older algorithms (GM-
RES, QMR, BiCGStab, and CG). All the preconditioners (de�nite or inde�nite) were built using



NEW KRYLOV-SUBSPACE SOLVERS WITH INDEFINITE PRECONDITIONERS 7

Table 1. Test matrices

Matrix N NNZ Kind

ROTHBERG/CFD1 70,656 1,825,580 CFD problem

ROTHBERG/CFD2 123,440 3,085,406 CFD problem

GHS_PSDEF/VANBODY 47,072 2,329,056 Structural problem

BOEING/PWTK 217,918 11,524,432 Structural problem

INPRO/MSDOOR 415,863 19,173,163 Structural problem

ND/ND24K 72,000 28,715,634 2D/3D problem

DNVS/X104 108,384 8,713,602 Structural problem

SCHENK_AFE/AF_SHELL7 504,855 17,579,155 Structural problem

GHS_PSDEF/BMWCRA_1 148,770 10,641,602 Structural problem

GHS_PSDEF/LDOOR 952,203 42,493,817 Structural problem

GHS_PSDEF/OILPAN 73,752 2,148,558 Structural problem

WISSGOTT/PARABOLIC_FEM 525,825 3,674,625 CFD problem

DNSV/SHIPSEC5 179,860 4,598,604 Structural problem

DNVS/SHIP_003 121,728 3,777,036 Structural problem

WSMP [10]. We also used the implementation of GMRES, QMR, BiCGStab, and CG in that
library. We stop the iterative method and declare convergence after the relative residual has
dropped below 10−11. We impose a limit of 1000 iterations and declare failure if the relative
residual does not drop below 10−11 in 1000 iterations. Running times were measured on a
2.13 GHz Intel Core 2 Duo computer with 4 GB of main memory, running Linux 2.6. This
computer has 2 processors, but our solver uses only one. All experiments are done in 64-bit
mode.

Table 1 lists the SPD matrices used to test the inde�nitely preconditioned solvers, along with
their kind and sizes in terms of both dimension and the number of nonzeros. The matrices were
obtained from the University of Florida sparse matrix collection [4].

6.1. Inde�nite preconditioner. In this section, we list and analyze the results for instances
where the preconditioner was inde�nite. We compare IP-CG and IP-MINRES to GMRES (with-
out restarts and with restarts after 60 iterations), to the symmetric variant of QMR, and to
BiCGStab. The results appear in Table 2. The results show that our new algorithms converge
when the preconditioner is inde�nite, and that IP-CG is indeed a more robust version of CG.
As long as there are no restarts, in all but one instance, GMRES requires fewer iterations and
converges faster. The comparison between IP-MINRES and GMRES is especially interesting:
theoretically both algorithms are equivalent, but GMRES performs fewer iterations. This sug-
gests that there are stability issues when using a short recurrence. The new algorithms do
less operations-per-iteration than GMRES, but that is negligible when a preconditioner is used
because the running time is dominated by the cost of applying the preconditioner.

IP-CG and IP-MINRES are usually faster than QMR, but only marginally. IP-MINRES is
theoretically superior to QMR since it minimizes the 2-norm of the residual, not a quasi-norm
like QMR does. It should be noted that IP-CG and IP-MINRES are more robust than QMR
since they cannot breakdown (division by zero), like QMR can. A robust implementation of
QMR needs to incorporate look aheads. The implementation of symmetric QMR that we use
does not use look aheads. Both algorithms are faster than BiCGStab in all instances.

The new algorithms also use less memory, so for memory-stressed scenarios (for example:
solving a very large matrix, or solving several matrices concurrently) they allow a denser pre-
conditioner. The �Precond Density� column was added in order to explore this issue. The value
in the density column is the ratio between the number of non-zeros in the incomplete factor



NEW KRYLOV-SUBSPACE SOLVERS WITH INDEFINITE PRECONDITIONERS 8

Table 2. Running time and number of iterations for instances in Table 1 in which
the preconditioner is inde�nite. Preconditioner density is the average number of
non-zeros per column in the incomplete factor.

Matrix Droptol Precond

Density

IP
MINRES

(Alg 3)

IP-CG

(Alg 2)

GMRES(60) GMRES QMR BiCGStab

CFD1 2× 10−3 197 127 its

23 sec

125 its

22 sec

117 its

23 sec

77 its

19 sec

139 its

24 sec

165 its

43 sec

CFD2 2× 10−3 258 161 its

51 sec

160 its

51 sec

87 its

37 sec

64 its

32 sec

174 its

53 sec

237 its

112 sec

VANBODY 2× 10−3 124 84 its

5.7 sec

85 its

5.8 sec

48 its

5.5 sec

48 its

5.5 sec

87 its

5.8 sec

117 its

11.4 sec

PWTK 2× 10−3 177 97 its

38 sec

98 its

38 sec

104 its

41 sec

71 its

34 sec

99 its

38 sec

94 its

57 sec

MSDOOR 8× 10−4 136 327 its

145 sec

336 its

146 sec

358 its

179 sec

108 its

78 sec

338 its

146 sec

610 its

444 sec

MSDOOR 2× 10−4 139 36 its

41 sec

36 its

41 sec

29 its

39 sec

29 its

39 sec

36 its

41 sec

40 its

55 sec

ND24K 4× 10−4 700 218 its

155 sec

217 its

154 sec

179 its

145 sec

83 its

118 sec

270 its

169 sec

592 its

416 sec

X104 2× 10−2 168 67 its

22 sec

66 its

22 sec

45 its

19 sec

45 its

19 sec

64 its

22 sec

90 its

38 sec

X104 2× 10−3 178 20 its

15 sec

20 its

15 sec

18 its

15 sec

18 its

15 sec

20 its

15 sec

15 its

17 sec

LDOOR 2× 10−3 98 59 its

69 sec

62 its

69 sec

59 its

75 sec

59 its

75 sec

66 its

71 sec

39 its

77 sec

and the number of rows in the matrix, that is the number of non-zeros required to store the
incomplete factor is density × #columns. For a restart value of k, GMRES needs to store k
complete vectors, which is equivalent to an additional k × #columns non-zeros. Therefore, if
we wish to compare the amount of memory used to store the preconditioner to the number of
non-zeros to store the vectors in GMRES (and is not needed in IP-CG) we need to compare k
and density. If we examine the results for the two instances of MSDOOR, we see that IP-CG
with the denser preconditioner (droptol = 2×10−4) uses less memory and is faster than GMRES
with any reasonable restart value with a sparser preconditioner (droptol = 8 × 10−4). This is
also true for the two instances of X104.

We explore this issue further in Table 3. In this set of experiments we have taken the largest
matrix in our suite, ND24K, and solve it using di�erent drop-tolerance values. The results show
that GMRES is faster than IP-CG, but if we want to examine what can happen on a memory-
tight situation we should compare the �Precond Density� column to the restart value. From
Table 3, we see that the minimum amount storage by GMRES to solve the system in reasonable
time is 749×#columns (drop-tolerance 5× 10−4). The minimum amount of memory needed by
IP-CG is 631×#columns. The di�erence 118×#columns can be the di�erence between being
able to solve the matrix on a given machine, or not.

6.2. Positive de�nite preconditioner. In this section, we list and analyze the results for
instances where the preconditioner was de�nite. We compare IP-CG and IP-MINRES to CG
and to GMRES (without restart). Usually, when both the matrix and the preconditioner are
positive de�nite CG is used. Under exact arithmetic IP-CG is identical to CG. The goal of



NEW KRYLOV-SUBSPACE SOLVERS WITH INDEFINITE PRECONDITIONERS 9

Table 3. Detailed results for matrix ND24K.

Droptol Precond

Density

IP-CG

(Alg 2)

GMRES GMRES(120) GMRES(200)

8× 10−4 574 FAIL 439 its

188 sec

FAIL FAIL

7× 10−4 528 FAIL 338 its

146 sec

FAIL 2000 its

569 sec

6× 10−4 553 FAIL 396 its

181 sec

FAIL FAIL

5× 10−4 631 582 its

233 sec

118 its

116 sec

118 its

116 sec

118 its

116 sec

4× 10−4 700 217 its

154 sec

83 its

118 sec

83 its

118 sec

83 its

118 sec

3× 10−4 719 192 its

156 sec

78 its

128 sec

78 its

128 sec

78 its

128 sec

2× 10−4 792 141 its

167 sec

60 its

143 sec

60 its

143 sec

60 its

143 sec

1× 10−4 854 46 its

209 sec

35 its

207 sec

35 its

207 sec

35 its

207 sec

Table 4. Running time and number of iterations for instances in Table 1 where
the preconditioner is de�nite.

Matrix Droptol Precond

Density

IP
MINRES

(Alg 3)

IP-CG

(Alg 2)

CG GMRES

AF_SHELL7 2× 10−3 97 128 its

59 sec

137 its

60 sec

137 its

57 sec

131 its

81 sec

BMWCRA_1 2× 10−3 215 128 its

59 sec

137 its

60 sec

137 its

57 sec

147 its

61 sec

LDOOR 2× 10−4 122 17 its

57 sec

16 its

56 sec

17 its

56 sec

18 its

58 sec

OILPAN 8× 10−4 89 39 its

3.8 sec

39 its

3.7 sec

39 its

3.5 sec

39 its

3.6 sec

PARABOLIC_FEM 2× 10−3 19 68 its

13.7 sec

73 its

13.6 sec

73 its

11.6 sec

70 its

19.3 sec

SHIPSEC5 2× 10−3 95 45 its

11.4 sec

46 its

11.3 sec

45 its

10.7 sec

47 its

12.3 sec

SHIP_003 2× 10−3 108 84 its

13.1 sec

85 its

13.0 sec

89 its

12.7 sec

87 its

15.5 sec

this set of experiments is to check whether IP-CG's performance is similar to CG's under �nite-
accuracy arithmetic. We also wish to check, using the comparison to GMRES, IP-MINRES's
sensitivity to numerical instabilities.

The results appear in Table 4. In all the instances listed in Table 4, the preconditioner is
de�nite. The results show that indeed IP-CG acts very similar to CG and converges at about
the same number of iterations (with cases of slight advantage to both algorithms). CG performs
fewer operations per iteration, so it is a bit faster. Nevertheless, IP-CG is more robust, being



NEW KRYLOV-SUBSPACE SOLVERS WITH INDEFINITE PRECONDITIONERS 10

Table 5. Comparing strategies: using an inde�nite preconditioner or forcing de�niteness.

Matrix Droptol IP-CG

(Alg 2)

CG, run 1

α = 0.01

CG, run 2

α = 0.001

CFD1 2× 10−3 125 its

22 sec

112 its

17 sec

99 its

18 sec

MSDOOR 8× 10−4 336 its

146 sec

FAIL:
res =
1.1× 10−10

after 1000

its

627 its

180 sec

X104 2× 10−3 20 its

15 sec

FAIL:
res =
1.6× 10−10

after 1000

its

FAIL:
res =
5.1× 10−10

after 1000

its

able to handle an inde�nite preconditioner, so the user can trade a few percents of performance
for increased robustness.

The comparison of IP-MINRES and IP-CG to GMRES show that the numerical instabilities
encountered when using an inde�nite preconditioner no longer appear when the preconditioner
is de�nite. In most cases, IP-MINRES requires fewer iterations than GMRES and is faster. We
discuss this issue further in section 6.4.

6.3. Using an inde�nite preconditioner vs. forcing de�niteness. An alternative to using
an inde�nite preconditioner is to somehow force the incomplete factorization to produce a de�nite
preconditioner. A detailed experimental study of which strategy is better is beyond the scope of
this paper. The goal of this set of experiment is to show that there are cases where it would be
preferable to use an inde�nite preconditioner.

There are many methods by which de�niteness can be forced [3]. We have chosen to test one
of these methods. More speci�cally, we tried the method suggested by Manteu�el [13]. This

method tries to �nd a value α such that the incomplete factorization of Â = A + αdiag(A) is
positive de�nite, and uses that factor as a preconditioner. The value of α is found using a trial-
and-error method that can be expensive. Obviously, the quality of the preconditioner depends on
the value of α that was used. For our comparison we decided not to use trial-and-error method
due to its cost. Instead, we chose to try two values for α, a small value and a large value, for all
three matrices in this set of experiments.

The results appear in Table 5. As can be seen from this table, forcing positive de�niteness
produced a better preconditioner in some cases, and a worse one in others. This demonstrates
the e�ectiveness of our new methods, in that they provided reasonable results without a tuning
parameter.

6.4. Numerical stability: full conjugation vs. local conjugation. The results in Table 2
indicate that the new solvers often do not ful�ll their theoretical potential when the precondi-
tioner is inde�nite and they tend to require more iterations than GMRES. It seems that this
is not true for a de�nite preconditioner (Table 4). A natural suspect for the gap between the
theoretical behavior and the actual behavior is the Lanczos process, which is known to lose or-
thogonality. Greenbaum [9] (�4) discusses the loss of orthogonality in the Lanczos process and
its e�ect on CG and MINRES in detail.

In order to check this issue, we compared the number of iterations when using a full conjugation
to the number of iterations when using a local conjugation, that is using U -conjugate Arnoldi



NEW KRYLOV-SUBSPACE SOLVERS WITH INDEFINITE PRECONDITIONERS 11

Table 6. Numerical stability: comparing full conjugation to local conjugation.
In the OILPAN (NO PRECOND) instance, the convergence threshold was set to
10−5.

Matrix Droptol Precond

De�nite?

IP-CG FULL

IP-CG

IP-

MINRES

GMRES CG

CFD1 2× 10−3 NO 125 its 77 its 127 its 77 its N/A

CFD1 4.5× 10−4 YES 85 its 69 its 84 its 69 its 85 its

CFD1 2× 10−4 YES 48 its 47 its 48 its 46 its 48 its

OILPAN NO

PRECOND

N/A 783 its 747 its 297 its 242 its 783 its

OILPAN 8× 10−3 NO 441 its 142 its 437 its 130 its N/A

OILPAN 1.5× 10−3 NO 63 its 58 its 64 its 51 its N/A

OILPAN 8× 10−4 YES 39 its 42 its 39 its 36 its 39 its

PWTK 4× 10−3 NO 149 its 103 its 149 its 103 its N/A

PWTK 1× 10−3 NO 77 its 55 its 77 its 55 its N/A

PWTK 8× 10−4 YES 61 its 55 its 61 its 54 its 61 its

instead of U -conjugate Lanczos. Mathematically, U -conjugate Lanczos is su�cient, but the
vectors may lose their U -orthogonality. In Table 6 we compare IP-CG its Arnoldi equivalent
(FULL IP-CG) and IP-MINRES to GMRES (which is theoretically equivalent).

From the results, we see that often a long recurrence needs considerably fewer iterations. Other
times, the short recurrence works equally as well as the long recurrence. This indicates that the
usage of a short recurrence can cause numerical problems. The experiments also show that the
problem is not directly connected to the use of an inde�nite preconditioner: we have cases where
the problem manifests for a de�nite preconditioner (CFD1-4.5×10−4, OILPAN-NO PRECOND)
and cases where manifests very weakly for an inde�nite preconditioner (OILPAN-1.5 × 10−3).
There are cases where CG converges slower than it should even though the preconditioner is
de�nite, so apparently both IP-CG and CG su�er from the same numerical instability. There
seems to be a connection between the quality of the preconditioner and numerical instability
encountered. Inde�nite incomplete factorization tend to be lower quality preconditioners because
the inde�niteness in the incomplete factors indicates that incomplete factorization dropped non-
zeros too aggressively.

7. Conclusions and Open Questions

We have presented new versions of CG and MINRES algorithms for solving Hermitian positive
de�nite systems of linear equations. Unlike classical CG and MINRES, our algorithms accept
a Hermitian inde�nite preconditioner. The motivation for the new algorithm is the possible
failure of incomplete factorization to produce a positive de�nite preconditioners inexpensively.
We have conducted extensive numerical experiments and have compared the new solvers with
CG, GMRES, symmetric QMR, and BiCGStab. We have demonstrated the robustness and the
utility of our new algorithms in many cases. Theoretically, GMRES is the optimal algorithm
since it �nds the minimum residual solution, but it doesn't use a short recurrence. Symmetric
QMR and BiCGStab are sub-optimal (for example, QMR minimizes a quasi-norm and not the
real norm), but they use a short recurrence. Our algorithms bridge the gap: they are theoretically
optimal and they use a short recurrence.

The experiments also demonstrate that the new algorithms do not always ful�ll their full
theoretical potential and GMRES usually converges in fewer iterations. The experiments hint



NEW KRYLOV-SUBSPACE SOLVERS WITH INDEFINITE PRECONDITIONERS 12

that the problem is caused by numerical instabilities in the Lanczos process, and that CG too
su�ers from the same problem. A possible strategy to improve the stability is to reorthogonalize
the vectors periodically, when they lose the A-orthogonality too much. To do so, the intermediate
vectors must be stored (like GMRES does), but if the reorthogonalization process is infrequent
enough, then they can be kept in secondary storage. Finding a method that balances between
keeping stability and avoiding reorthogonalization can be challenging. Such techniques have been
employed in eigensolvers (Stewart [18] addresses this in �5.3). Another technique that might help
is using a coupled two-term recurrence instead of the three-term recurrence that we currently
use. This technique has been used to improve the numerical behavior of QMR [7].

Although GMRES usually converges faster than the new algorithms for the same precondi-
tioner, our algorithms often outperform GMRES by using a denser and more accurate incomplete
factorization to compensate for the extra memory that GMRES requires. A more detailed ex-
perimental study is required to compare the combination of a denser preconditioner and short
recurrence solvers with that of a sparser preconditioner and GMRES. Another interesting ques-
tion that arises from this paper is whether it is better to use the incomplete factorization process
as-is, even if the preconditioner turns out to be inde�nite, or to use incomplete factorization
methods that guarantee a positive de�nite preconditioner? A comprehensive experimental study
would be required to answer this question, since there are many di�erent methods to enforce
positive de�niteness [3]. Obviously, improving the stability of the short recurrence algorithms
can a�ect the answer to this question. Such an improvement can a�ect the convergence in both
the de�nite and inde�nite preconditioner cases, but the improvement may not be the same for
both approaches.

References

[1] Mario Arioli. A stopping criterion for the conjugate gradient algorithm in a element method framework.
Technical report, Numerische Mathematik, 2000.

[2] Haim Avron, Esmond Ng, and Sivan Toledo. Using perturbed QR factorizations to solve linear least-squares
problems. Accepted to SIAM Journal on Matrix Analysis and Applications, 22 pages, September 2008.

[3] Michele Benzi. Preconditioning techniques for large linear systems: A survey. Journal of Computational
Physics, 182(2):418�477, 2002.

[4] T. Davis. The University of Florida sparse matrix collection. http://www.cise.u�.edu/research/sparse/matrices.
[5] V. Faber and T.A. Manteu�el. Necessary and su�cient conditions for the existence of a conjugate gradient

method. SIAM J. Numer. Anal., 21(2):352�362, 1984.
[6] Roland W. Freund and Noël M. Nachtigal. QMR: a quasi-minimal residual method for non-Hermitian linear

systems. Numerische Mathematik, 60(1):315�339, Dec 1991.
[7] Roland W. Freund and Noël M. Nachtigal. An implementation of the QMR method based on coupled two-

term recurrences. SIAM J. Sci. Comput., 15(2):313�337, 1994.
[8] Gene H. Golub. Matrices, moments and quadrature II; how to compute the norm of the error in iterative

methods. BIT, 37:687�705, 1997.
[9] Anne Greenbaum. Iterative methods for solving linear systems. Society for Industrial and Applied Mathe-

matics, Philadelphia, PA, USA, 1997.
[10] Anshul Gupta. WSMP: Watson sparse matrix package (Part-III: iterative solution of sparse systems). Tech-

nical Report RC-24398, IBM T.J. Watson Research Center, Yorktown Heights, NY, November 2007.
[11] Anshul Gupta and Thomas George. Adaptive techniques for improving the performance of incomplete fac-

torization preconditioning. Technical Report RC 24598 (W0807-036), IBM T. J. Watson Research Center,
Yorktown Heights, NY, July 7, 2008. To appear in SIAM Journal on Scienti�c Computing.

[12] Magnus R. Hestenes and Eduard Stiefel. Methods of conjugate gradients for solving linear systems. Journal
of Research of the National Bureau of Standards, 49:409�436, Dec 1952.

[13] T. Manteu�el. An incomplete factorization technique for positive de�nite linear systems. Mathematics of
Computation, 34:473�497, 1980.

[14] C. C. Paige and M. A. Saunders. Solution of sparse inde�nite systems of linear equations. SIAM Journal on
Numerical Analysis, 12:617�629, 1975.

[15] Youcef Saad. Iterative Methods for Sparse Linear Systems. Society for Industrial and Applied Mathematics,
Philadelphia, PA, USA, 2003.



NEW KRYLOV-SUBSPACE SOLVERS WITH INDEFINITE PRECONDITIONERS 13

[16] Youcef Saad and Martin H. Schultz. GMRES: A generalized minimal residual algorithm for solving nonsym-
metric linear systems. SIAM Journal on Scienti�c and Statistical Computing, 7(3):856�869, 1986.

[17] J. Shewchuk. An introduction to the conjugate gradient method without the agonizing pain. Technical Report
CMU-CS-94-125, School of Computer Science, Carnegie Mellon University, 1994.

[18] G. W. Stewart. Matrix algorithms. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA,
2001.

[19] H. A. van der Vorst. BI-CGSTAB: a fast and smoothly converging variant of BI-CG for the solution of
nonsymmetric linear systems. SIAM J. Sci. Stat. Comput., 13(2):631�644, 1992.

Current address: Haim Avron: Tel-Aviv University and IBM T.J. Watson Research Center (summer intern),
Sivan Toledo: Tel-Aviv University and MIT, Anshul Gupta: IBM T. J. Watson Research Center


