Supplementary material for the paper

Price and non-price restraints when retailers are vertically differentiated

by

Yossi Spiegel and Yaron Yehezkel¹ December 27, 2002

This note contains the proof of Proposition 3 and presents the numerical solutions of the model in the imperfect customer restrictions case that are reported in Section 5.2.

Proof of Proposition 3: Given a uniform wholesale price, w, and since θ is distributed uniformly on the interval $[0,\overline{\theta}]$, the retailers' profits are:

$$\pi_{H}(w) = \left(1 - \frac{\boldsymbol{\theta}_{H}}{\overline{\boldsymbol{\theta}}}\right) (\boldsymbol{p}_{H} - \boldsymbol{c}_{H} - w), \qquad (B-1)$$

and

$$\pi_{L}(w) = \begin{cases} \left(\frac{\boldsymbol{\Theta}_{H} - \boldsymbol{\Theta}_{L}}{\overline{\boldsymbol{\Theta}}}\right)(\boldsymbol{p}_{L} - \boldsymbol{c}_{L} - w), & \boldsymbol{p}_{H} > \boldsymbol{p}_{L}/\boldsymbol{\gamma}, \\ 0, & \boldsymbol{p}_{H} \leq \boldsymbol{p}_{L}/\boldsymbol{\gamma}. \end{cases}$$
(B-2)

Given w, the two retailers simultaneously choose p_H and p_L to maximize their respective profits. Let the Nash equilibrium prices be $p_H(w)$ and $p_L(w)$.

Now, suppose that both retailers operate in the market, i.e., $p_H(w) > p_L(w)/\gamma$. Then, using equation (3), $p_H(w)$ and $p_L(w)$ are defined by the following best-response functions:

¹ Tel Aviv University, Ramat Aviv, Tel Aviv, 69978, Israel. Emails and web pages: <spiegel@post.tau.ac.il> and http://www.tau.ac.il/~spiegel and <yehezkel@post.tau.ac.il> and http://www.tau.ac.il/~spiegel@post.tau.ac.il> and http://www.tau.ac.il/~spiegel@post.tau.ac.il> and http://www.tau.ac.il/~spiegel@post.tau.ac.il> and http://www.tau.ac.il> and http://www.tau.ac

$$\frac{\partial \pi_{H}(w)}{\partial p_{H}} = \left(1 - \frac{\theta_{H}}{\overline{\theta}}\right) - \frac{1}{(1 - \gamma)\overline{\theta}} \left(p_{H} - c_{H} - w\right) = 0, \quad (B-3)$$

and

$$\frac{\partial \pi_L(w)}{\partial p_L} = \frac{\theta_H - \theta_L}{\overline{\theta}} - \left[\frac{1}{(1 - \gamma)\overline{\theta}} + \frac{1}{\gamma \overline{\theta}}\right] (p_L - c_L - w) = \mathbf{0}.$$
 (B-4)

To facilitate the analysis, we will characterize the Nash equilibrium in terms of θ_H and θ_L that are induced by p_H and p_L rather than directly by p_H and p_L . Equation (3) indicates that whenever $p_H > p_L/\gamma$, then $p_H = \gamma \theta_L + (1-\gamma)\theta_H$ and $p_L = \theta_L \gamma$. Substituting these expressions in (B-3) and (B-4) and solving, yields

$$\boldsymbol{\theta}_{H}(w) = \frac{(2-\gamma)c_{H} - c_{L} + (1-\gamma)(2-\gamma)\overline{\boldsymbol{\theta}} + (1-\gamma)w}{(1-\gamma)(4-\gamma)},$$

$$\boldsymbol{\theta}_{L}(w) = \frac{\gamma c_{H} + 2c_{L} + \gamma(1-\gamma)\overline{\boldsymbol{\theta}} + (2+\gamma)w}{\gamma(4-\gamma)}.$$
(B-5)

Equation (2) implies that both Q_H and Q_L are positive (i.e., both retailers are active) only if $\theta_H(w) > \theta_L(w)$. From (B-5) it follows that $\theta_H(w) > \theta_L(w)$ only if

$$w < w^{**} = \frac{\gamma(1-\gamma)\theta + \gamma c_H - (2-\gamma)c_L}{2(1-\gamma)}.$$
 (B-6)

M sets the wholesale price, w, to maximize his revenue from wholesale:

$$\pi(w) = (Q_H(w) + Q_L(w))w, \qquad (B-7)$$

where $Q_H(w)$ and $Q_L(w)$ are given by (2), evaluated at $\theta_H(w)$ and $\theta_L(w)$. Substituting from (B-5) into (B-7) and rearranging terms, M's profit is

$$\pi(w) = \frac{\left(3\gamma\Theta - \gamma c_H - 2c_L - (2+\gamma)w\right)w}{\gamma(4-\gamma)\overline{\Theta}}.$$
(B-8)

Differentiating this expression and evaluating the derivative at $w = w^{**}$, we obtain:

$$\pi'(w^{**}) = \frac{(2+2\gamma-\gamma^2)c_L - 3\gamma c_H + \gamma(1-\gamma)^2\overline{\theta}}{\gamma(4-\gamma)(1-\gamma)\overline{\theta}}$$

>
$$\frac{(2+2\gamma-\gamma^2)\gamma c_H - 3\gamma c_H + \gamma(1-\gamma)^2\overline{\theta}}{\gamma(4-\gamma)(1-\gamma)\overline{\theta}}$$

=
$$\frac{(1-\gamma)(\overline{\theta} - c_H)}{(4-\gamma)\overline{\theta}} > 0,$$

(B-9)

where the first inequality follows because by assumption, $c_L > \gamma c_H$, and the last inequality follows because by assumption $\bar{\theta} > c_H$. Noting from (B-8) that $\pi(w)$ is strictly concave, it follows that it is never optimal to set $w \le w^{**}$, so in equilibrium L is effectively foreclosed.

When H is the sole provider of M's product, its profit is given by (B-1) with $p_H = \theta_H$. The optimal choice of H is given by

$$\boldsymbol{\theta}_{H}(w) = \frac{\overline{\boldsymbol{\theta}} + c_{H} + w}{2}. \tag{B-10}$$

Since M deals only with H, M's profit is

$$\pi(w) = \left(1 - \frac{\Theta_H(w)}{\overline{\Theta}}\right)w = \frac{\left(\overline{\Theta} - c_H - w\right)w}{2\overline{\Theta}}.$$
 (B-11)

This expression is maximized at $w^* = (\bar{\theta} - c_H)/2$. The assumptions that $\gamma < 1$ and $c_H < c_L/\gamma$, ensure that $w^* > w^{**}$. Given w^* , the lowest type that is served is $\theta_H = \theta_H(w^*) = (3\bar{\theta} + c_H)/4$. Since $F(\theta)$ is uniform on the interval $[0,\bar{\theta}]$, Lemma 1 shows that under vertical integration, the lowest type that is served is $\theta^* = (\bar{\theta} + c_H)/2$ which is above $(3\bar{\theta} + c_H)/4$ since $c_H < \bar{\theta}$. Hence M sells less than in vertical integration case.

4

Numerical solution of the model under imperfect customer restrictions:

The numerical solution is based on the following assumptions:

- (i) The distribution of θ is uniform on the interval [0,1]
- (ii) The distribution of $\tilde{\varepsilon}$ is uniform on the interval [- ε , ε]

Figure 3 presents M's profit, $\pi(z_{CR})$, for $c_L = 1/8$, $c_H = 1/4$, $\gamma = 3/8$, and 4 different values of ε : 0, 0.05, 0.1, and 0.15.¹ When $\varepsilon = 0$, we are back in the perfect CR case, so $z_{CR}^* = \theta_{CR}$. The horizontal line, marked π_H^* , represents M's profit when H is an exclusive distributor. The Figure shows that although $\pi(z_{CR}^*)$ is always above π_H^* , $\pi(z_{CR}^*)$ decreases with ε . Moreover, z_{CR}^* also decreases with ε . Hence, as the signal z becomes less informative about θ , CR become less profitable and M gives H a larger segment of the market. Consequently, Figure 4 shows that as ε increases, H's sales increase and L's sales and M's aggregate sales decrease. The figure also compares the sales of H, L, and M with their corresponding sales when M deals exclusively with H (this case is denoted by *). The figure shows that even when CR are imperfect, H sells less, L sells more, and M sells more than they do in the case where H is an exclusive distributor.

The effect of imperfect CR on consumers and on welfare is shown in Figures 5 and 6. These figures present consumers' surplus and social welfare as functions of ε for $c_L = 1/8$, $c_H = 1/4$, $\gamma = 3/8$ and were obtained by raising θ from 0 to 0.15 in steps of 0.0001 and solving the model numerically each time. The perfect CR case corresponds to $\varepsilon = 0$. In each figure we also show consumers' surplus and welfare when M deals exclusively with H (again, this case is denoted by *). Figure 5 shows that under imperfect CR, consumers are better off than under perfect CR although they are worse off than in the case where L is foreclosed. Moreover, consumers' surplus is increasing with ε , so although M's aggregate sales fall with ε , the fact that more consumers are served by H who provides more customer services than L, imply that overall consumers become better-off. Figure 6 shows that relative to the case where H is an exclusive distributor, CR is welfare enhancing when ε is small but welfare decreasing otherwise. This

¹ Qualitatively, the picture does not change when we use other values of c_L , c_H , γ , and ϵ , such that $c_L < c_H < c_L/\gamma < 1$ and $c_L/\gamma < \theta^*$.

supports the conclusion from Proposition 7 that CR may or may not be socially desirable and therefore should be considered under the rule of reason.

Figure 3: The manufacturer's profit under imperfect CR, as a

Figure 4: $Q_L,\,Q_H,$ and the total quantity, Q, as functions of ϵ

Figure 5: Consumers' surplus as a function of $\boldsymbol{\epsilon}$

Figure 6: Social welfare as a function of $\boldsymbol{\epsilon}$

