# Partial Vertical Integration, Ownership Structure and Foreclosure - Technical Appendix

Nadav Levy, Yossi Spiegel, and David Gilo\*

February 18, 2016

#### Abstract

In this Appendix we develop variants of two of the leading "raising your rivals costs" models of input foreclosure to show that the main implications of our basic setup are robust, and can be also derived from other models of vertical integration. We also show that the results in the main text of the paper generalize to the case where the input prices are determined by a more general bargaining process.

<sup>\*</sup>Levy: School of Economics, Interdisciplinary Center (IDC), Herzliya. Email: nadavl@idc.ac.il. Spiegel: Recanati Graduate School of Business Administration, Tel Aviv University, CEPR, and ZEW. Email: spiegel@post.tau.ac.il, http://www.tau.ac.il/~spiegel; Gilo: The Buchman Faculty of Law, Tel-Aviv University, email: gilod@post.tau.ac.il.

# 1 Introduction

In this Appendix, we first develop variants of Ordover, Salop and Saloner (1990) and Salinger (1988), which are two of the leading "raising your rivals costs" models of input foreclosure. Although these models differ from the one we use in the main text in several respects (e.g., inputs are homogeneous rather than differentiated), they nonetheless give rise to a downstream gain, G, and an upstream loss, L, under foreclosure, just as our model does. The purpose of this analysis is to show that the main implications of our basic setup are robust, and can be also derived from other models of vertical integration.

In the last Section of this Appendix we show that the results in the main text of the paper, where we assume that the upstream suppliers make the two downstream firms take-it-or-leave-it offers, generalize to the case where the input prices are determined by a more general bargaining process.

### 2 A variant of Ordover, Salop and Saloner (1990)

We begin with a variant of the Ordover, Salop and Saloner (1990) model (henceforth OSS): two upstream suppliers,  $U_1$  and  $U_2$ , produce a homogenous input and sell it to two symmetric downstream firms,  $D_1$  and  $D_2$ , which produce substitute products and compete by setting prices. Since  $U_1$  and  $U_2$  sell homogenous inputs, they engage in Bertrand competition in the upstream market, so absent integration their profit is 0. By definition then, an upstream suppliers cannot lose from vertical integration. Clearly the OSS setting is extreme. To make it less extreme and ensure that  $U_1$  and  $U_2$  earn a profit before integration, we will modify the OSS setting slightly by assuming that the upstream costs are random.<sup>1</sup>

Specifically, we assume that the per unit cost of each upstream supplier  $i, c_i$ , is either high,  $\overline{c}$  or low,  $\underline{c}$ , with equal probabilities, independently across the two suppliers (OSS assume that  $U_1$ and  $U_2$  have the same per unit cost, which is deterministic). Given their cost realizations,  $U_1$  and  $U_2$  set the prices of their respective inputs. Then downstream firms,  $D_1$  and  $D_2$ , buy the inputs, convert each unit of input to one unit of the final product, at no additional cost, set their respective prices, and sell to final consumers.

<sup>&</sup>lt;sup>1</sup>Another possibility is to assume that the inputs are imperfect substitutes. However, this modelling approach would require us to specify how the two inputs are combined into a final product, which would add another layer of complication. Our approach avoids this extra complication.

Let  $w_1$  and  $w_2$  be the prices that  $D_1$  and  $D_2$  pay for the input. Since inputs are converted to outputs on a 1:1 basis,  $w_1$  and  $w_2$  are also the marginal costs of  $D_1$  and  $D_2$ . The profit of each downstream firm *i* is then given by

$$\pi_i = \left(p_i - w_i\right) q_i \left(p_i, p_j\right),$$

where  $p_i$  and  $p_j$  are the downstream prices and  $q_i(p_i, p_j)$  is firm *i*'s quantity. Since the products of  $D_1$  and  $D_2$  are (imperfect) substitutes,  $q_i(p_i, p_j)$  decreases with  $p_i$  and increases with  $p_j$ .

The equilibrium price of each downstream firm i is  $p_i(w_i, w_j)$  and its corresponding quantity and profit are  $q_i(w_i, w_j) \equiv q_i(p_i(w_i, w_j), p_j(w_i, w_j))$  and  $\pi_i(w_i, w_j)$ .

**Lemma A1:**  $\pi_i(w_i, w_j)$  decreases with  $w_i$  and assuming that  $p_i$  increases with  $w_j$ ,  $\pi_i(w_i, w_j)$  also increases with  $w_j$ .

**Proof:** Let  $\hat{w}_i > w_i$  and  $\hat{w}_j > w_j$ . Then by revealed preference,

$$\pi_{i} (w_{i}, w_{j}) = (p_{i} (w_{i}, w_{j}) - w_{i}) q_{i} (w_{i}, w_{j})$$

$$\geq (p_{i} (\widehat{w}_{i}, w_{j}) - w_{i}) q_{i} (\widehat{w}_{i}, w_{j})$$

$$> (p_{i} (\widehat{w}_{i}, w_{j}) - \widehat{w}_{i}) q_{i} (\widehat{w}_{i}, w_{j})$$

$$= \pi_{i} (\widehat{w}_{i}, w_{j}).$$

Moreover,

$$\pi_{i} (w_{i}, \widehat{w}_{j}) = (p_{i} (w_{i}, \widehat{w}_{j}) - w_{i}) q_{i} (w_{i}, \widehat{w}_{j})$$

$$> (p_{i} (w_{i}, \widehat{w}_{j}) - w_{i}) q_{i} (w_{i}, w_{j})$$

$$> (p_{i} (w_{i}, w_{j}) - w_{i}) q_{i} (w_{i}, w_{j})$$

$$= \pi_{i} (w_{i}, w_{j}),$$

where the first inequality follows because  $p_j(w_i, \hat{w}_j) > p_j(w_i, w_j)$  and because the two final products are substitutes, so  $p_j(w_i, \hat{w}_j) > p_j(w_i, w_j)$  implies that  $q_i(w_i, \hat{w}_j) > q_i(w_i, w_j)$  and the second inequality follows by revealed preference.

#### 2.1 Nonintegration

Since the input is homogenous, both input prices under nonintegration are equal to  $\underline{c}$  if  $c_1 = c_2 = \underline{c}$ and  $\overline{c}$  if  $c_1 = c_2 = \overline{c}$ . When  $c_i = \underline{c}$  and  $c_j = \overline{c}$ ,  $U_i$  can always undercut  $U_j$  slightly and sell to both  $D_1$  and  $D_2$ , so in equilibrium, only  $U_i$  sells the input. We will assume that the difference between  $\overline{c}$  and  $\underline{c}$  is not too large in the sense that  $U_i$  will prefer to set the input price at  $\overline{c}$ .

Assuming that in case of a tie,  $D_1$  and  $D_2$  buy from the lowest cost supplier (and if costs are the same, they randomize their purchases), it follows that in equilibrium,

$$w_1 = w_2 = \begin{cases} \underline{c} & \text{if } c_1 = c_2 = \underline{c} \\ \overline{c} & \text{otherwise.} \end{cases}$$

Let  $\overline{q} \equiv q_1(\overline{c}, \overline{c}) = q_2(\overline{c}, \overline{c})$  be the equilibrium output levels when  $w_1 = w_2 = \overline{c}$ , and define  $\underline{q}$  similarly. The associated downstream prices are  $\overline{p} \equiv p_1(\overline{c}, \overline{c}) = p_2(\overline{c}, \overline{c})$  and  $\underline{p} = p_1(\underline{c}, \underline{c}) = p_2(\underline{c}, \underline{c})$ . Since the input is converted to output on a 1:1 basis,  $\overline{q}$  and  $\underline{q}$  are also the demands for the input. The expected profit of each supplier is then:

$$V_0^U = \frac{1}{4} \times 2\left(\overline{c} - \underline{c}\right)\overline{q} = \frac{\left(\overline{c} - \underline{c}\right)\overline{q}}{2}$$

This expression reflects the fact that a nonintegrated supplier  $U_i$  earns a positive profit only when  $c_i = \underline{c}$  and  $c_j = \overline{c}$ ; the probability of this event is  $\frac{1}{4}$ . The supplier then sets a price of  $\overline{c}$  and sells  $\overline{q}$  units to each downstream firm. The associated expected profits of  $D_1$  and  $D_2$  is

$$V_0^D = \frac{3}{4}\pi_1\left(\overline{c},\overline{c}\right) + \frac{1}{4}\pi_1\left(\underline{c},\underline{c}\right),$$

where

$$\pi_1(\overline{c},\overline{c}) = \overline{q}(\overline{p}-\overline{c}), \qquad \pi_1(\underline{c},\underline{c}) = \underline{q}(\underline{p}-\underline{c}).$$

#### 2.2 Integration

When  $U_1$  and  $D_1$  integrate,  $U_1$  supplies  $D_1$  at cost, unless  $c_1 = \overline{c}$  and  $c_2 = \underline{c}$ , in which case  $U_2$  sells the input to  $D_1$  at a price equal to  $\overline{c}$ . Hence,  $D_1$  buys the input from  $U_1$  at  $\underline{c}$  if  $c_1 = \underline{c}$  and at  $\overline{c}$  if  $c_1 = c_2 = \overline{c}$ , and buys it from  $U_2$  at  $\overline{c}$  if  $c_1 = \overline{c}$  and  $c_2 = \underline{c}$ . Note that in all cases,  $w_1 = c_1$ .

As in OSS, we assume that when  $U_1$  and  $D_1$  integrate,  $U_1$  commits not to sell to  $D_2$ .<sup>2</sup> Hence  $U_2$  becomes the sole supplier to  $D_2$  and sets the input price,  $w_2$ , to maximize its profit

$$(w_2 - c_2) q_2 (c_1, w_2).$$

<sup>&</sup>lt;sup>2</sup>As mentioned earlier, there is a debate about how realistic this assumption is. Yet, we choose to follow OSS because our purpose here is to show that (a variant of) their model also predicts that there are cases in which G > L and there are cases in which G < L.

We will assume that this profit is concave in  $w_2$ . This assumption holds for example in the linear demand example shown below. The profit maximizing value of  $w_2$  is defined implicitly by the following first-order condition:

$$q_2(c_1, w_2) + (w_2 - c_2) \frac{\partial q_2(c_1, w_2)}{\partial w_2} = 0.$$
(1)

The solution for the equation,  $w_2(c_1, c_2)$ , determines  $D_2$ 's marginal cost. Clearly,  $w_2(c_1, c_2) > c_2$ for all  $c_2$ . Moreover,  $w_2(\overline{c}, \underline{c}) \geq \overline{c}$  provided that  $q_2(\overline{c}, \overline{c}) + (\overline{c} - \underline{c}) \frac{\partial q_2(\overline{c}, \overline{c})}{\partial w_2} \geq 0$ . Since  $\frac{\partial q_2(\overline{c}, \overline{c})}{\partial w_2}$  is bounded from above and  $q_2(\overline{c}, \overline{c}) > 0$ , this assumption 1 holds when  $\overline{c} - \underline{c}$  is sufficiently small.

The expected profit of  $D_1$  under integration is

$$V_1^D = \frac{1}{4}\pi_1\left(\underline{c}, w_2\left(\underline{c}, \underline{c}\right)\right) + \frac{1}{4}\pi_1\left(\underline{c}, w_2\left(\underline{c}, \overline{c}\right)\right) + \frac{1}{4}\pi_1\left(\overline{c}, w_2\left(\overline{c}, \underline{c}\right)\right) + \frac{1}{4}\pi_1\left(\overline{c}, w_2\left(\overline{c}, \overline{c}\right)\right).$$
(2)

Notice that since  $\pi_i(w_i, \widehat{w}_j) > \pi_i(w_i, w_j)$  for  $\widehat{w}_j > w_j$  and since  $w_2(\overline{c}, \overline{c}) > w_2(\overline{c}, \underline{c}) \ge \overline{c}$  and  $w_2(\underline{c}, \underline{c}) > \underline{c}$ ,

$$V_{1}^{D} = \frac{1}{4}\pi_{1}(\underline{c}, w_{2}(\underline{c}, \underline{c})) + \frac{1}{4} \times \pi_{1}(\underline{c}, w_{2}(\underline{c}, \overline{c})) + \frac{1}{4}\pi_{1}(\overline{c}, w_{2}(\overline{c}, \underline{c})) + \frac{1}{4}\pi_{1}(\overline{c}, w_{2}(\overline{c}, \overline{c}))$$

$$> \frac{1}{4}\pi_{1}(\underline{c}, \underline{c}) + \frac{1}{4}\pi_{1}(\underline{c}, \overline{c}) + \frac{1}{4}\pi_{1}(\overline{c}, \overline{c}) + \frac{1}{4}\pi_{1}(\overline{c}, \overline{c})$$

$$> \frac{1}{4}\pi_{1}(\underline{c}, \underline{c}) + \frac{1}{4}\pi_{1}(\overline{c}, \overline{c}) + \frac{1}{4}\pi_{1}(\overline{c}, \overline{c}) + \frac{1}{4}\pi_{1}(\overline{c}, \overline{c})$$

$$= V_{0}^{D}.$$

That is, vertical integration and the foreclosure of  $D_2$  boost the profit of  $D_1$ . Since  $U_1$  commits not to sell to  $D_2$  and since it transfers the input to  $D_1$  at cost, its profit is  $V_1^U = 0$ . Given that its pre-merger profit is  $V_0^U > 0$ , it follows that integration and the foreclosure of  $D_2$  involve a transfer of profits from  $U_1$  to  $D_1$ .

Vertical integration is profitable if the downstream gain exceeds the upstream loss:

$$\underbrace{V_1^D - V_0^D}_G > \underbrace{V_0^U - V_1^U}_L = V_0^U, \tag{3}$$

where G is the downstream benefit from vertical integration and the foreclosure of  $D_2$  and L is the associated upstream loss. The next example shows that G > L for a broad range of parameters.

#### 2.3 Example

Assume that  $q_i = A - p_i + \gamma p_j$ , where  $\gamma \in [0, 1]$  is the degree of product differentiation. The profit of each downstream firm *i* is  $\pi_i = q_i (p_i - w_i)$ . The Nash equilibrium when both firms choose prices

simultaneously is

$$p_1(w_1, w_2) = \frac{(2+\gamma)A + 2w_1 + \gamma w_2}{4-\gamma^2}, \qquad p_2(w_1, w_2) = \frac{(2+\gamma)A + 2w_2 + \gamma w_1}{4-\gamma^2}.$$

The resulting quantities are

$$q_1(w_1, w_2) = \frac{(2+\gamma)A - (2-\gamma^2)w_1 + \gamma w_2}{4-\gamma^2}, \qquad q_2(w_1, w_2) = \frac{(2+\gamma)A - (2-\gamma^2)w_2 + \gamma w_1}{4-\gamma^2}.$$

The equilibrium profits are  $\pi_1(w_1, w_2) = q_1(w_1, w_2)^2$  and  $\pi_2(w_1, w_2) = q_2(w_1, w_2)^2$ . Notice that  $\pi_i(w_i, w_j)$  decreases with  $w_i$  and increases with  $w_j$  as Lemma A1 above states.

Given these expressions, the expected pre-merger profits of D and  $U_1$  are:

$$V_0^D = \frac{3}{4}\pi_1(\bar{c},\bar{c}) + \frac{1}{4}\pi_1(\underline{c},\underline{c}) = \frac{3(A - (1 - \gamma)\bar{c})^2 + (A - (1 - \gamma)\underline{c})^2}{4(2 - \gamma^2)},\tag{4}$$

and

$$V_0^U = \frac{(\overline{c} - \underline{c})}{2} \times \underbrace{\frac{(2+\gamma)A - (2-\gamma^2)\overline{c} + \gamma\overline{c}}{4-\gamma^2}}_{\overline{q}} = \frac{(\overline{c} - \underline{c})(A - (1-\gamma)\overline{c})}{2(2-\gamma)}.$$
(5)

To calculate the price at which  $U_2$  sells to  $D_2$  after  $U_1$  and  $D_1$  integrate, recall that after integration,  $w_1 = c_1$ . Substituting  $q_2(c_1, w_2)$  into (1) and solving for  $w_2$  yields

$$w_2(c_1, c_2) = \frac{(2+\gamma)A + (2-\gamma^2)c_2 + \gamma c_1}{2(2-\gamma^2)}.$$

Hence, the profit of  $D_1$ , given  $c_1$  and  $c_2$ , is

$$\pi_1(c_1, w_2(c_1, c_2)) = q_1(c_1, w_2(c_1, c_2))^2 = \left(\frac{\beta A - c_1(8 - 9\gamma^2 + 2\gamma^4) + \gamma c_2(2 - \gamma^2)}{2(2 - \gamma^2)(4 - \gamma^2)}\right)^2,$$

where  $\beta \equiv 8 + 6\gamma - 3\gamma^2 - 2\gamma^3$ . Substituting into (2) and rearranging,

$$V_{1}^{D} = \frac{1}{4}\pi_{1}(\underline{c}, w_{2}(\underline{c}, \underline{c})) + \frac{1}{4}\pi_{1}(\underline{c}, w_{2}(\underline{c}, \overline{c})) + \frac{1}{4}\pi_{1}(\overline{c}, w_{2}(\overline{c}, \underline{c})) + \frac{1}{4}\pi_{1}(\overline{c}, w_{2}(\overline{c}, \overline{c}))$$

$$= \frac{2\beta^{2}A^{2} + \phi(\underline{c}^{2} + \overline{c}^{2}) - \gamma(32 - 52\gamma^{2} + 26\gamma^{4} - 4\gamma^{6})\underline{c}\overline{c} - 2(1 - \gamma)A\beta^{2}(\underline{c} + \overline{c})}{8(2 + \gamma)^{2}(4 - 2\gamma - 2\gamma^{2} + \gamma^{3})^{2}},$$
(6)

where

$$\phi \equiv 64 - 16\gamma - 140\gamma^2 + 26\gamma^3 + 109\gamma^4 - 13\gamma^5 - 35\gamma^6 + 2\gamma^7 + 4\gamma^8.$$

To simplify the computations, we will use the normalizations A = 1 and  $\underline{c} = 0$ . To ensure that  $w_2(\overline{c}, \underline{c}) \geq \overline{c}$ , we will also assume

$$\overline{c} \le \frac{2+\gamma}{4-\gamma-2\gamma^2}.\tag{7}$$

Substituting from (4), (5), and (6) into (3) and using the normalizations, we get

$$\underbrace{V_1^D - V_0^D}_G - \underbrace{V_0^U}_L = \frac{2\beta^2 + \phi \overline{c}^2 - 2(1-\gamma)\beta^2 \overline{c}}{8(2+\gamma)^2 (4-2\gamma-2\gamma^2+\gamma^3)^2} - \frac{4-2(1-2\gamma)\overline{c} - (1-\gamma^2)\overline{c}^2}{4(2-\gamma)^2}.$$
 (8)

This expression depends only on the degree of product differentiation,  $\gamma$ , and on  $\bar{c}$ . Figure 2 shows that the combinations of  $\gamma$  and  $\bar{c}$  for which (8) holds. The relevant range of parameters which satisfy (7) are those below the  $\frac{2+\gamma}{4-\gamma-2\gamma^2}$  curve. The figure shows that the downstream benefit from vertical integration and the foreclosure of  $D_2$ , G, exceeds the associated upstream loss, L, when  $\gamma$ is sufficiently large, i.e., the downstream products are sufficiently close substitutes. When  $\gamma$  is low, L exceeds G (note in particular that when  $\gamma = 0$ ,  $D_1$  and  $D_2$  do not compete with each other, so G = 0, implying that L > G; by continuity this is also true when  $\gamma$  is positive but small).



Figure 2: The profitability of vertical integration in a variant of the OSS model

## **3** A variant of Salinger (1988)

This example shows that our basic setup is also consistent with Salinger (1988). In his model, there are  $N \geq 2$  symmetric upstream suppliers  $U_1, ..., U_N$ , which is produce a homogenous input at a cost c per unit (again, in the main text we consider differentiated inputs). The upstream firms compete by setting quantities and the input price, w, clears the input market. For simplicity, we will assume here only two downstream firms,  $D_1$  and  $D_2$ , which convert the input to a final product on a 1:1 basis at no additional cost.  $D_1$  and  $D_2$  also compete by setting their respective quantities,  $q_1$  and  $q_2$ . The demand for the final good is given by p = A - Q, where  $Q = q_1 + q_2$ .

#### 3.1 Nonintegration

Since  $D_1$  and  $D_2$  convert the input to a final product on a 1:1 basis at no additional cost, their marginal costs are equal to the input price w. Noting that  $D_1$  and  $D_2$  engage in Cournot competition, the output of each firm is  $\frac{A-w}{3}$ . Hence, the total demand for the input is  $Q = \frac{2(A-w)}{3}$ , so the inverse demand for the input is  $w = A - \frac{3Q}{2}$ .

Each upstream supplier *i* chooses  $q_i$  to maximize its profit  $q_i(w-c)$ . The resulting Nash equilibrium output of each upstream firm is

$$q^* = \frac{2(A-c)}{3(N+1)},$$

and the equilibrium price of the input is

$$w^* = A - \frac{3Nq^*}{2} = \frac{A + Nc}{N+1}.$$

The equilibrium profit of each upstream firm then is

$$V_0^U = q^* \left( w^* - c \right) = \frac{2}{3} \left( \frac{A - c}{N + 1} \right)^2, \tag{9}$$

and the equilibrium profit of each downstream firm is

$$V_0^D = \left(\frac{A - w^*}{3}\right)^2 = \left(\frac{N(A - c)}{3(N+1)}\right)^2.$$
 (10)

#### 3.2 Integration

As Salinger argues, when  $U_1$  and  $D_1$  integrate,  $U_1$  finds it optimal to withdraw from the input market and supply only  $D_1$ , who buys the input at a cost c. Hence,  $V_1^U = 0$ , implying that the upstream loss from vertical integration is  $L = V_0^U$ .

Now,  $D_2$  buys the input at w, while  $D_1$  buys it at c. In a Nash equilibrium in the downstream market, the output of  $D_1$  is  $\frac{A-2c+w}{3}$  and the output of  $D_2$  is  $\frac{A-2w+c}{3}$ . Since only  $D_2$  buys the input in the upstream market ( $D_1$  is supplied by  $U_1$  at marginal cost), the inverse demand for the input is  $w = \frac{A+c-3Q}{2}$ .

The profit of each nonintegrated upstream supplier i is given by  $q_i (w - c)$ . Each upstream supplier i chooses  $q_i$  to maximize his profit. The resulting Nash equilibrium output of each upstream firm is

$$q^{**} = \frac{A-c}{3N},$$

and the equilibrium price of the input is

$$w^{**} = \frac{A + c - 3(N - 1)q^{*}}{2} = \frac{A + (2N - 1)c}{2N}.$$

Consequently, the equilibrium profit of  ${\cal D}_1$  is

$$V_1^D = \left(\frac{A - 2c + w^{**}}{3}\right)^2 = \left(\frac{(2N+1)(A-c)}{6N}\right)^2.$$
 (11)

Using (9)-(11), we obtain

$$\begin{split} \underbrace{V_1^D - V_0^D}_G - \underbrace{V_0^U}_L &= \left(\frac{(2N+1)(A-c)}{6N}\right)^2 - \left(\frac{N(A-c)}{3(N+1)}\right)^2 - \frac{2}{3}\left(\frac{A-c}{N+1}\right)^2 \\ &= \left(\frac{A-c}{6N(N+1)}\right)^2 \left(1 + 6N - 11N^2 + 12N^3\right), \end{split}$$

which is positive for all N. Hence, vertical integration is always profitable in the Salinger model.

# 4 Relaxing the assumption that the upstream suppliers make the downstream firms take-it-or-leave-offers

Throughout the paper we assume that the upstream suppliers make the two downstream firms take-it-or-leave-it offers. We now show that our results generalize to the case where the input prices are determined by a more general bargaining process. To this end, suppose that each  $D_i$  pays each upstream supplier a price of  $\mu\Delta_1(k,l)$  for the input, where  $\mu \in \left[\frac{c}{\Delta_1(N,N)}, 1\right]$  measures the bargaining power of upstream suppliers,<sup>3</sup> then the post-acquisition values of  $D_1$  and  $U_1$  are

$$V_1^D = \pi (N, N-1) - N\mu \Delta_1 (N, N-1), \qquad V_1^U = \mu \Delta_1 (N, N-1) - c,$$

while their pre-acquisition values are

$$V_0^D = \pi (N, N) - N\mu \Delta_1 (N, N), \qquad V_0^U = 2 \left[\mu \Delta_1 (N, N) - c\right].$$

As a result, the upstream loss from foreclosure becomes

$$L_{\mu} \equiv V_{0}^{U} - V_{1}^{U} = \mu \Delta_{1} (N, N) - c + \mu \Delta_{12} (N, N) ,$$

and the downstream gain from foreclosure becomes

$$G_{\mu} \equiv V_1^D - V_0^D = -\Delta_2(N, N) + N\mu\Delta_{12}(N, N) \,.$$

By Assumptions A3 and A4,  $L_{\mu}$  is increasing, while  $G_{\mu}$  is decreasing with  $\mu$ . Hence, an increase in the bargaining power of upstream suppliers,  $\mu$ , expands the range of parameters for which  $D_2$ is foreclosed. Intuitively, an increase in  $\mu$  boosts upstream profits and lowers downstream profits and hence makes input foreclosure, which shifts profits from the upstream firm to the downstream firm, more attractive.

Hence, if input prices are determined by some bargaining process rather than by take-it-orleave-it offers,  $G_{\mu}$  and  $L_{\mu}$  replace G and L.

<sup>&</sup>lt;sup>3</sup>We assume that  $\mu \geq \frac{c}{\Delta_1(N,N)}$  to ensure that the marginal willingness of  $D_i$  to pay for inputs exceeds their cost.

# **5** References

- Ordover J., G. Saloner and S. Salop (1990), "Equilibrium Vertical Foreclosure," American Economic Review, 80, 127-142.
- Salinger M. (1988), "Vertical Mergers and Market Foreclosure," Quarterly Journal of Economics, 103(2), 345-356.