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Abstract

We show that in a large class of pairwise strategic interactions, individuals who have

perception biases and update their beliefs in a non Bayesian fashion will not only

survive in the long run, but also prosper and take over the entire population. This

result holds even when the interacting individuals do not always observe their rivals’

types and even when individuals sometimes play against nature. This result suggests

that in general there is no reason to believe that evolution will lead to a population of

rational agents who revise their beliefs using Bayesian updating. To prove our results,

we develop a simple methodology that allows us to study the long run evolution of

types in the population starting from (almost) any initial distribution of types in a

fully dynamic evolutionary context.
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1 Introduction

One of the cornerstones of economic analysis is the assumption that economic agents are

rational. Among other things, the rationality assumption implies that agents form unbiased

forecasts about their prospects and update these forecasts in a Bayesian fashion. This as-

sumption however is at odds with a large body of evidence from the Psychology literature

which shows that in general individuals tend to be overly optimistic or overcon…dent about

their prospects even when faced with evidence to the contrary. For instance, most men-

tally healthy people were found to have somewhat unrealistically positive self-views, while

the less mentally healthy perceive themselves more accurately (Taylor and Brown, 1988).

In peer reviews, self-ratings of non-depressed individuals’ were considerably more favorable

than those given to them by others (Lewinsohn et al., 1980). Non-depressed individuals

exhibited an illusion of control in a dice-throwing experiment (Fleming and Darley, 1986).

Most individuals believe that their driving ability is above average (Svenson, 1981), and most

young Americans know that half of U.S. marriages end in divorce, but they are con…dent that

theirs will not (Lehman and Nisbett, 1985). Experimental work suggests that excess entry

of new businesses that fail within several years may be due to overcon…dence of entrepreneurs

about their own ability in comparison with that of other entrepreneurs (Camerer and Lo-

vallo, 1999). Interviews with new entrepreneurs revealed that their self-assessed chances

of success were uncorrelated with objective predictors like education, prior experience, and

initial capital, and were on average wildly o¤ the mark (Cooper et al., 1988).1 New life

insurance agents who put an optimistic spin on setbacks by seeing them as ‡ukes rather than

viewing them as signs of incompetence sold more policies during their …rst year and were

half as likely to quit (Seligman and Schulman, 1986). And, experimental work suggests

that parties to legal disputes are reluctant to settle out of court because they hold overly

optimistic beliefs about the merits of their case (Babcock and Loewenstein, 1997).

Informally, the rationality assumption is often justi…ed by appealing to evolutionary

arguments: individuals with biased perceptions who fail to maximize their true expected

1Over 80% of the interviewed enrepreneurs estimated their chances to succeed at 70% or better with 33%

estimating them as certain. The same entrepreneurs estimated the mean chances of success for a business

like their at merely 59%.
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payo¤s will not do as well as unbiased individuals and will therefore disappear from the

population in the long run. In this paper we show that these arguments need not be right

and in fact, there is a wide range of circumstances in which biased individuals with unrealistic

beliefs not only survive, but also prosper and take over the entire population.

Our model considers a large population of individuals who are continuously and ran-

domly matched in pairs to interact. The individuals di¤er from one another in the way they

perceive their expected payo¤s from these interactions: optimists overestimate the impact of

their own actions, pessimists underestimate it, and only realists assess it correctly.2 Since

optimists or pessimists have biased perceptions about their own performance, they do not

play a best response against their rivals’ actions and therefore fail to maximize their own

true (expected) payo¤s. On the other hand, being recognized by rivals as having a biased

perception may give individuals a strategic advantage by inducing rivals to alter their be-

havior in a favorable way. For moderate levels of perception biases, this strategic advantage

outweighs the associated loss from failing to maximize the true payo¤. Consequently, in-

dividuals with moderately biased perceptions do better on average than realists, and for a

large class of interactions they take over the entire population in the long run. We show

that this result holds even when the interacting individuals do not always observe their ri-

vals’ perceptions and even when individuals occasionally play against nature instead of being

engaged in strategic interactions.

The idea that a biased objective function may confer a strategic advantage is well

known at least since Schelling (1960) and was used extensively in many areas in economics in-

cluding, Macroeconomics (e.g., Rogo¤, 1985), International Trade (e.g., Brander and Spencer

1985, Eaton and Grossman 1986), Industrial Organization, (e.g., Brander and Lewis 1986,

Fershtman and Judd 1987), and delegation (e.g., Green 1992, Fershtman, Judd and Kalai

2Troughout the paper when we will talk about optimism or pessimism we will only consider the personal

belief about the impact of one’s actions on one’s payo¤ (but not the belief about the state of nature in

general or about the impact of the actions of others on one’s payo¤). In a sense then, what we call optimism

or pessimism can be interpreted as a self-serving bias or overcon…dence (optimism) or de‡ated self-esteem

or lack of self-con…dence (pessimism). It should also be noted that in many ways the distinction between

optimism and pessimism is largely semantic: optimism about the possibility of having a sunny day could

also be viewed as pessimism about raining.
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1991, Fershtman, and Kalai 1997, Katz 1991). In a similar vein, the literature on the

evolution of preferences has shown that a population of “irrational” types who care about

fairness (Güth and Yaari 1992, Huck and Oechssler 1998), are socially minded (Fershtman

andWeiss 1997, 1998), altruistic (Bester and Güth 1998), spiteful (Possajennikov 2000, Bolle

2000), envious (Bergman and Bergman, 2000), concerned with relative success (Koçkesen,

Ok, and Sethi 2000a, 2000b), or overcon…dent in …nancial markets (Kyle and Wang 1997,

Benos 1998), may be evolutionary stable, i.e., immune to the appearance of few rational

“mutants” with unbiased objectives.3

In this paper, we take these ideas one step further by characterizing the conditions

under which biased perceptions would evolve in a full-‡edged, dynamic evolutionary context.

Instead of just showing that biased perceptions are evolutionary stable, we establish the

conditions under which, starting from ”almost” any initial distribution, the distribution of

perception biases in the population will converge over time to a unit mass on some level of a

biased perception.4 To prove our result, we posit an arti…cial preliminary two-players game,

in which the players simultaneously choose their types by committing to a degree of optimism

or pessimism, knowing that subsequently they will play the Nash equilibrium of the game

between the two committed types but will get the true expected payo¤s associated with this

equilibrium. We then prove that if this arti…cial ”types” game is dominance solvable, then

a regular payo¤-monotonic dynamics will wipe out all serially dominated types, implying

that the distribution of types (i.e., perception biases) in the population will converge in

distribution to a unit mass at some unique type. The result that a regular payo¤-monotonic

dynamics wipes out all serially dominated strategies was already proved by Samuelson and

3Related ideas already appear in Frank (1987, 1988). The indirect evolutionary approach, where the pref-

erences rather than strategies evolve over time, is employed also by Dekel and Scotchmer (1999), Dufwenberg

and Güth (1999), Rogers (1994), Robson (1996a,b), Waldman (1994), and Vega-Redondo (1997). See also

further references in the sequel.
4Other fully dynamic models of the evolution of preferences include Huck, Kirchsteiger, and Oechssler

(1997) who deal with the emergence of an endowment e¤ect in bargaining and Sandholm (2001) who deals

with individual dispositions towards particular strategies. Apart from the general context, these papers

di¤er from ours in that the dynamics in Huck, Kirchsteiger, and Oechssler (1997) is not shown to converge

in the long-run, whereas Sandholm only studies 2x2 normal form games.
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Zhang (1992) for the case where there are …nitely many strategies. Since in our model there

is a continuum of perception biases (i.e., strategies in the arti…cial types game), we …rst

extend the Samuelson and Zhang result to the case where the set of strategies is a compact

interval and the payo¤ function of each type is continuous, and then we use this extension to

establish the convergence of the population to a unique perception bias. This methodology

allows us to determine in a relatively straightforward way the long run population dynamics.

Heifetz and Segev (2001) use the same methodology to study the dynamic emergence of

tough characters in a salient class of bargaining mechanisms under asymmetric information.

We believe that this methodology can be potentially useful in studying the evolution of

additional types of individual biases.

Our analysis shows that the unique type of perception bias that emerges in the long

run (optimism or pessimism) depends on two factors. First, it depends on whether the

actions of one individual impose a positive or a negative externality on other individuals.

Second, it depends on whether the actions of individuals are strategic substitutes or strategic

complements. ”Cautious” optimism emerges either when the individual actions impose neg-

ative externalities on others and the actions are strategic substitutes or when the individual

actions impose positive externalities on others and the actions are strategic complements. In

both cases, the aggressive behavior of optimists who overestimate the impact of their actions

on their expected payo¤s induces rivals to change their behavior in a favorable way. On

the other hand, if the individual actions impose negative (positive) externalities on others

and the actions are strategic complements (substitutes), the aggressive behavior of optimists

induces rivals to change their behavior in an unfavorable way so over time the population

converges to some (moderate) level of pessimism. Only when individuals do not engage

in strategic interactions either because there are no externalities or because each individ-

ual has a dominant strategy (i.e., strategies are neither strategic substitutes nor strategic

complements), does the population converges to realism.

Our results have both negative and positive implications. On the negative side, our

results indicate that in the context of strategic interactions, one cannot appeal to evolutionary

arguments to justify the rationality of players. This result stands in sharp contrast with

Sandroni (2000) who shows that a market economy populated by agents who initially di¤er
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in the accuracy of their predictions will nonetheless converge over time to a (competitive)

rational expectations equilibrium as agents who make inaccurate predictions are driven out

of the market. The reason for the di¤erence between our result and Sandroni’s is that in

competitive markets, agents are anonymous and their individual impact on the equilibrium

is negligible; hence, they cannot gain any strategic advantage by being biased. One can

therefore conclude that while competitive markets favor agents who are able to make accurate

predictions, strategic interactions favor individuals who have biased predictions.

On the positive side, our results provide an evolutionary explanation for well-documented

perception biases like the belief perseverance phenomenon, which is the tendency to cling to

one’s beliefs in the face of contrary evidence, or the con…rmation bias, which is the tendency

to seek information that con…rms one’s own views and overlook evidence that discon…rm

these views.5 Individuals who hold biased perceptions about their prospects and fail to up-

date their beliefs in a Bayesian fashion will gain a strategic advantage over rivals and hence,

their frequency in the population will grow over time at the expense of realistic individual

who use Bayesian updating. This suggests in turn that there is no reason to believe that

over time, individuals will learn to update their beliefs in a Bayesian fashion.

The paper is organized as follows. Section 2 considers a simple example that exhibits

most of the properties of the model. Section 3 discusses several interpretational issues and

extensions. Section 4 explores general conditions on the payo¤ functions which are su¢cient

for our results to hold, and elaborates on the dynamic selection process and its properties.

Section 5 concludes.

2 A simple example

In this section we consider a simple example that illustrates the main ideas in this paper.

This example shows that under certain conditions, the evolution of perceptions will be such

5Re‡ecting on many experiments, Wason (1981) reports that once people have a wrong idea they “...evade

facts, become inconsistent, or systematically defend themselves against the threat of new information relevant

to the issue.” For detailed discussion and review of some experimental evidence on the belief perseverance

phenomenon and the con…rmation bias, see for instance Ch. 10 in Myers (1998).
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that over time, the distribution of perceptions in the population will converge in distribution

to a unit mass at some (moderate) level of optimism. That is over time, individuals who

are somewhat (unrealistically) optimistic about their prospects, will grow in number at the

expense of other types of individuals and will eventually take over the entire population. This

result can provide an evolutionary explanation for the large body of evidence mentioned in

the Introduction on the prevalence of optimism and overcon…dence.6

Consider a large population of individuals who are continuously and randomly matched

in pairs to interact with one another. In every pairwise interaction, the matched individuals,

i = 1; 2; choose actions xi 2 R. These actions can be thought of as the degree of e¤ort or
the level of investment the individuals put into the interaction.7 Given a pair of actions

x1; x2; the payo¤s of the individuals are

¦i(xi; xj) = (®¡ bxj ¡ xi)xi; for i = 1; 2 and j 6= i; (2.1)

where ® > 0 and ¡1 < b < 1: Note that ¦ij = ¡bxi and ¦iij = b (subscripts are used to
denote partial derivatives). Since in this example, xi and xj are both positive in the relevant

range, it follows that when b > 0, the individuals impose negative externalities on one another

(the larger is j’s action, the lower is i’s payo¤), and moreover, actions are strategic substitutes

in the sense of Bulow, Geanakoplos and Klemperer (1985) (the best-response functions are

decreasing in the (x1; x2) space). In contrast, when b < 0, the individuals impose positive

externalities on one another, and the actions are strategic complements.

Although the payo¤s of all individuals are symmetric, individuals di¤er from one

another in the way they perceive the interactions between them: Pessimistic types under-

estimate the value of ®; optimistic types overestimate it, and only realistic types assess it

correctly. Speci…cally, individual i conceives the value of ® to be

®i = ®+ ¿ i; ¿ i 2 T = [¿ ; ¿ ]; (2.2)

where ¡® · ¿ < 0 < ®
5
< ¿ . We assume that ¡® < ¿ in order to ensure that ®1 and ®2

are both positive and assume that ®
5
< ¿ in order to ensure that we get interior solutions.

6For an alternative exploration of optimism and self-con…dence based on dynamic inconsistency, see

Benabou and Tirole (1999a,b) and Brocas and Carrillo (1999).
7For some interpretations, it may be suitable to consider only non-negative actions. Our arguments

continue to hold with such a restriction, though the analysis gets more involved.
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The parameter ¿ i is individual i’s perception bias (we will also refer to this parameter as

individual i’s type). We will say that i is an optimist if ¿ i > 0, a pessimist if ¿ i < 0, and

a realist if ¿ i = 0. An optimist overestimates the return to his actions for any given action

taken by the other individual while a pessimist underestimates it. Substituting ®i for ® in

equation (2.1), the conceived payo¤s of the individuals can be written as

U i(xi; xj) = (®¡ bxj ¡ xi)xi + ¿ ixi; for i = 1; 2 and j 6= i: (2.3)

That is, the conceived payo¤ di¤ers from the true payo¤ by an additive term ¿ ixi that

depends on the individual’s type, ¿ i, and the individual’s action, xi. The unique Nash

equilibrium of the game with these utility functions is (bx1; bx2), where
bx1 = 2(®+ ¿ 1)¡ b(®+ ¿ 2)

4¡ b2 ; bx2 = 2(®+ ¿ 2)¡ b(®+ ¿ 1)
4¡ b2 : (2.4)

Substituting bx1 and bx2 into (2.1), the true equilibrium payo¤ of individual i is

f i(¿ i; ¿ j) ´ ¦i(bxi; bxj) = (2(®+ ¿ i)¡ b(®+ ¿ j)) (2®¡ (2¡ b2)¿ i ¡ b(®+ ¿ j))
(4¡ b2)2 : (2.5)

Now imagine that these true payo¤s translate into …tness terms, so the instantaneous

growth rates of the various types are monotonic in their average true payo¤s from interacting

with randomly matched individuals from the population. That is, the proportion of types

with high current average payo¤s tends to increase at the expense of types with low current

average payo¤s. The evolution of types therefore follows a regular, payo¤ monotonic dy-

namics, as shall be formally de…ned in Section 4. The mechanism by which the frequency

of types evolves over time can be seen as either purely biological (types with higher payo¤s

have a higher ability to reproduce), as a process by which parents transmit their attitudes to

life (i.e. their degree of “optimism”) to their children via education or parental in‡uence, or

as a process by which more successful attitudes to life are imitated more often and increase

in popularity.

Given this evolution of attitudes, what kind of perception will perform best and

survive in the long run? To provide an answer, we consider a preliminary, arti…cial two-

player “types game.” In this game, each individual i = 1; 2 chooses a type ¿ i 2 T = [¿ ; ¿ ]
which in turn determines his assessment ®i = ® + ¿ i in the ensuing pairwise interaction.

The payo¤ of individual i in the arti…cial types game is given by equation (2.5) above.
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The best-response functions in the arti…cial types game is

BRi(¿ j) =
b2 ((2¡ b)®¡ b¿ j)

4(2¡ b2) ; for i = 1; 2 and j 6= i: (2.6)

The best-response functions are downward sloping in the (¿1; ¿ 2) space when b > 0; and up-

ward sloping when b < 0: In other words, the types in this arti…cial types game are strategic

substitutes (complements) whenever the actions are strategic substitutes (complements) in

the original pairwise interaction. Moreover, since jbj < 1; the slope of the best-response

functions BRi is less than or equal to 1
4
in absolute value. Therefore, the types game has a

unique Nash equilibrium (b¿ ;b¿); where
b¿ ´ b2

4 + 2b¡ b2®: (2.7)

The assumption that ®
5
< ¿ ensures that b¿ < ¿:

Noting that the strategy set of each player is a one-dimensional compact interval, the

payo¤ function of each player is continuous over the space of outcomes, twice di¤erentiable,

and strictly concave with respect to the player’s strategy, and the slopes of the best-response

functions are less than 1 in absolute value, it follows from Theorem 4 in Moulin (1984)

that the types game can be also solved by an iterative process of elimination of dominated

strategies. The unique outcome that survives this process is the Nash equilibrium, (b¿ ;b¿ ).8
By Theorem 1 below, all other types which are serially dominated (i.e., do not survive iter-

ative elimination process) are wiped out in a regular payo¤-monotonic selection dynamics..

Hence,

Proposition 1: For any initial distribution of types whose support is a compact interval that

contains b¿ ; the distribution of types will converge in distribution under a payo¤-monotonic
selection dynamics to a unit mass at b¿ ; the density of all other types will converge to zero:

8For instance, if b = 1 then player i’s best-response function in the “types game” is BRi(¿j) = ®¡¿j
4 :

Since ¿1 ¸ ¡®, it is therefore better for player 2 to be of type ¿2 = 2®
4 = ®

2 than have any higher type.

Understanding this, having type ¿1 = ®¡®
2

4 = ®
8 is better for player 1 than having any lower type. But with

this in mind, player 2 is better o¤ having the type ¿2 = ®¡®
8

4 = 7®
32 than any higher type, and so on. The

only type that survives this iterative elimination process is b¿ = ®
5 ; which is the (unique) Nash equilibrium

type.
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Figure 1 depicts b¿
®
= b2

4+2b¡b2 which is the optimism factor to which the population

converges in the long-run (the percentage of exaggeration of ®). As can be seen, the

perceptions of individuals in the population converge to optimism (i.e., b¿
®
> 0) for any

b 6= 0: At the extreme case where b = 1 (the case of large negative externalities and strong
strategic substitutes), the degree of optimism is 20%. When b = ¡1 (the case of large
positive externalities and strong strategic complements), the degree of optimism reaches

100%. Only in the knife-edge case where b = 0 (there are no strategic interactions between

individuals since the payo¤ of one individual is independent of the actions of others), does

the population converge to realism.

0

0.2

0.4

0.6

0.8

1

-1 1b

Figure 1: The optimism factor b¿
®
at equilibrium as a function of b

The intuition underlying the evolution of optimistic perception in this example is as

follows. Optimistic individuals play more aggressively than realists or pessimists and choose

larger actions as they exaggerate the impact of their actions on their payo¤s. When b > 0;

actions are strategic substitutes, so the aggressive behavior of optimists induces rivals to play

soft. Since b > 0 also implies that the actions of one individual impose a negative externality

on others, the soft behavior of rivals bene…ts the optimistic individual. When b < 0, actions

are strategic complements, so the aggressive behavior of optimists induces rivals to play

aggressively as well. Since the actions of individuals impose positive externalities on others

when b < 0, the aggressive behavior of rivals bene…ts the aggressive individual. Therefore,

optimists gain a strategic advantage over rivals both when b is positive and negative. Of

course, being aggressive is costly because an optimistic individual fails to play a best-response

against his rival’s action. Hence, wildly optimistic individuals do not do as well as more
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moderately optimists, so on average, ”cautiously” optimistic individuals fare better than

individuals with other perceptions and therefore gradually take over the entire population.

3 Discussion

Before continuing with more general results, we sidestep to discuss several interpretational

issues of the model. In addition, we show that our results continue to hold even if individuals

are not always able to recognize each other’s type and even if individuals occasionally play

against nature rather than against other individuals.

3.1 Learning about ® over time

The example in Section 2 immediately raises the following question: How come optimists

do not realize that they have overestimated ® once they observe their true payo¤s? A

possible answer can be due to two common and well-documented perception biases that were

mentioned in the Introduction: the belief perseverance phenomenon, which is the tendency

to cling to one’s beliefs even after the basis on which they were formed has been discredited,

and the con…rmation bias, which is the tendency to seek information that con…rms one’s

own views and overlook evidence that may discon…rm these views. These biases can explain

why individuals can consistently overestimate the value of ® and fail to learn about the true

value of ® over time. Our model can be used to explain why evolution does not eliminate the

belief perseverance phenomenon and the con…rmation bias: Individuals who hold optimistic

beliefs about their prospects and fail to update them in a Bayesian fashion will gain a

strategic advantage over other individuals and hence their frequency in the population will

grow over time at the expense of realistic or pessimistic individuals. This suggests in turn

that there is no reason to believe that individuals will learn over time to update their beliefs

in a Bayesian fashion.9

9It is also worth noting that when two individuals are matched to interact, they ”agree to disagree” about

the value of ®. This is because individuals in our model are fully aware of the con…rmation bias, although

each individual believes that he is not prone to this bias while others are. Therefore, each individual believes

that his own estimate of ® is unbiased, while his rival’s estimates is biased and hence does not provide useful
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In the rest of this subsection we make these arguments more precise. To this end,

suppose that each period, ® could either take on a high value, ®h; with probability p; or a

low value, ®`; with probability 1¡ p; independently across periods. The true mean of ® is
® ´ p®h + (1¡ p)®`. Individuals do not know the value of p, but can use past realizations
of ® (which can be inferred from their payo¤s) to update their beliefs about p: Using pi

to denote individual i’s posterior estimate of p; and noting from equation (2.3) that the

payo¤ of individual i is linear in ®i, the expected perceived payo¤ functions are now given

by equation (2.3) with ®i = pi®h + (1¡ pi)®`:
Initially, individuals have in mind a prior distribution over values of p that contains

the true value p in its support. Realists update their beliefs about p using the Bayes rule,

so by the strong law of large numbers, their posterior distribution will converge over time in

distribution to a point mass on p almost surely. As a result, the value of ®i if i is a realist

will converge almost surely to the true mean ®, so individual i will get closer and closer to

maximizing his true expected payo¤.

In contrast, optimists (pessimists) exhibit a con…rmation bias and do not update

their beliefs about p in a Bayesian fashion: Rather, they discard some constant proportion

of low (high) realizations of ®; attributing them the exceptional, non-systematic bad (good)

circumstances, which render them irrelevant for updating. Consequently, if individual i is

optimistic (pessimistic), his posterior estimate of p will converge almost surely to some point

mass above (below) p. Hence ®i will converge almost surely to a value above (below) ®.

The higher the percentage of discarded realizations, the further ®i will get from ® and the

larger will be the bias of individual i’s perception. Since optimistic individuals who fail

to update their beliefs in a Bayesian fashion gain a strategic advantage over realists and

pessimists, their frequency in the population grows over time. Hence in the long run most

individuals in the population will exhibit a con…rmation bias.

information about the true value of ®:
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3.2 Types are imperfectly observed by opponents

A key assumption in Section 2 is that in every pairwise meeting, players recognize each other’s

type. One justi…cation for this assumption could be that the players’ types, ¿1 and ¿ 2; are

conveyed through body language. Or it could be that each interaction consists of several

rounds, in which the players’ actions converge relatively quickly to the Nash equilibrium

behavior even if at the outset players do not know each other’s type (e.g., both players

play their myopic best responses to each other’s previous action or some average of previous

actions). Clearly, if individual types are never observed before the pairwise interactions

take place, players cannot gain a strategic advantage from being recognized as optimistic,

so realists whose estimates of ® are unbiased, would fare best. Consequently, as Dekel,

Ely and Yilankaya (1998) and Ok and Vega-Redondo (2001) show (see also an example in

Possajenikov 1999), the evolutionary stable distribution of the population is such that all

individuals play their (true) Nash equilibrium strategy.

In this subsection we show that the qualitative results of Section 2 continue to hold

even if players cannot always recognize each other’s type. So long as there is a positive

probability that types will be mutually observed, the population will still converge over time

to a unique level of (”cautious”) optimism, although the resulting perception bias is smaller

than in the case where types are perfectly observed. To establish this result, suppose that

unlike in Section 2, now players can observe each other’s type only with probability (1¡ p):
With probability p, both players cannot observe each other’s types.

When types are mutually observable, the equilibrium is as in Proposition 1. When

types are not observable, we need to look for a Bayesian Nash equilibrium in which each

player forms a belief about his opponent’s action and plays a best-response given this belief.

To characterize this equilibrium, let x be the average action in the population. Then, the

perceived average payo¤ of player i whose type is ¿ i when taking action xi and facing a

player with an unknown type is given by:

U i(xi; x) = (®+ ¿ i ¡ bx¡ xi)xi: (3.1)
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The best-response of player i against x is:

BRi(x) =
®+ ¿ i ¡ bx

2
: (3.2)

On the equilibrium path, player i’s belief about x must be correct. Taking expectations on

both sides of equation (3.2), using µ to denote the average type in the (current) population,

and solving for x yields:

x =
®+ µ

2 + b
: (3.3)

That is, when player i cannot observe his opponent’s type, he (correctly) anticipates that

given µ; his opponent will play on average x: Substituting for x in (3.2) reveals that when

player i meets player j and both cannot observe each other’s types, their respective equilib-

rium actions are ® + ¿ i ¡ b®+µ
2+b

and ® + ¿ j ¡ b®+µ
2+b
. Substituting these actions in equation

(2.1), the true payo¤ of player i in equilibrium is given byÃ
®¡ b®+ ¿

j ¡ b®+µ
2+b

2
¡ ®+ ¿

i ¡ b®+µ
2+b

2

!Ã
®+ ¿ i ¡ b®+µ

2+b

2

!
: (3.4)

To determine the evolution of types in the population, we use the same methodology

as in Section 2. That is, we consider a preliminary, arti…cial two-player “types” game in

which players i and j choose their respective types, ¿ i and ¿ j, where ¿ i; ¿ j ¸ ¡®, and the
expected payo¤ of type ¿ i, given the probability that types will not be mutually observed,

p, and given the current average type in the population, µ, is given by

f i(¿ i; ¿ j; p; µ) = (1¡ p)(2(®+ ¿
i)¡ b(®+ ¿ j)) (2®¡ (2¡ b2)¿ i ¡ b(®+ ¿ j))

(4¡ b2)2 (3.5)

+p

Ã
®¡ b®+ ¿

j ¡ b®+µ
2+b

2
¡ ®+ ¿

i ¡ b®+µ
2+b

2

!Ã
®+ ¿ i ¡ b®+µ

2+b

2

!
:

With probability 1¡p types are observed and individual i’s payo¤ is as in Section 2, whereas
with probability p types are not observed and i’s payo¤ is given by the expression in (3.4).

The best-response function of type ¿ i against type ¿ j in the arti…cial ”types” game is:

BRi(¿ j; p; µ) =
4®b2 (2¡ b) (1¡ p)
2 (16¡ 8b2 + pb4) +

bp (2¡ b) (4b+ 8¡ b3 ¡ 2b2)
2 (16¡ 8b2 + pb4) µ (3.6)

¡b (pb
4 + 4b2 ¡ 12pb2 + 16p)
2 (16¡ 8b2 + pb4) ¿ j:
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In what follows we prove that the population evolves over time to a stable monomor-

phic type. To this end, let Gt be the distribution of types in the population at time t ¸ 0
on the support T = [¿ ; ¿ ] and let

Ã¡¿ = inf
n
¿ > ¿ ¤(p) : 9V¿ 3 ¿ ; V¿ open, s.t. lim

t!1
Gt (V¿ ) = 0

o
; (3.7)

¿¡! = sup
n
¿ < ¿ ¤(p) : 9V¿ 3 ¿ ; V¿ open, s.t. lim

t!1
Gt (V¿ ) = 0

o
:

Then we can prove the following result:

Proposition 2: Suppose that players can observe each other’s type only with probability

(1¡ p): Then under a payo¤-monotonic selection dynamics, the distribution of types in the
population converges in distribution to a unit mass at ¿ ¤(p), such that

Ã¡¿ = ¿¡! = ¿¤(p) = BRi(¿ ¤(p); p; ¿ ¤(p)) =
2b2 (1¡ p)

8 + 4b¡ 2b2 ¡ pb3®:

Proof of Proposition 2: See the Appendix.

The idea behind the proof is as follows. The arti…cial types game played at each point

in time depends on the current average type µ: Hence, we cannot prove the convergence result

as in Section 2 and need to use a more involved methodology. Yet, once it is determined

that, irrespective of the value of µ, types outside an interval [¿ `; ¿h] are serially dominated

and hence asymptotically extinct under a payo¤-monotonic selection dynamics, the average

type µ will eventually settle in the interval [¿ `¡"; ¿h+"]; where " is positive and small.10 The
fact that µ 2 [¿ `¡ "; ¿h + "] enables us to show that even more types are serially dominated
and thus that types outside some smaller interval [¿ 0`; ¿

0
h] ½ [¿ `; ¿h] are also asymptotically

extinct. The crux of the argument is in showing that it is impossible for this iterative

process to halt with an interval [¿ 0`; ¿
0
h] of positive length.

Since ¿ ¤(0) = b¿ , Proposition 2 implies that when p = 0 (full observability), the

population converges to the same type as in Proposition 1. On the other hand, ¿ ¤(1) = 0,

implying that when p = 1 (non-observability), the population converges to realism. This

10In general, µ will settle in the interior of the interval [¿ `; ¿h]: However, a-priori we cannot rule out the

possibility that µ will either approach ¿ ` from below or ¿h from above and will therefore stay outside the

interval [¿ `; ¿h]. Therefore, we show that µ will settle in the (larger) interavl [¿` ¡ "; ¿h + "]:
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is because optimists cannot gain a strategic advantage if types are never observed before

actions are taken. For levels of p between 0 and 1, ¿ ¤(p) decreases continuously from b¿ to
0. That is, the higher is p, the lower is the level of optimism to which the population will

converge over time.

3.3 Individuals occasionally play against nature

The main point of the analysis so far was that in the context of strategic interactions,

individuals with biased perceptions gain a strategic advantage over rivals and as a result, the

population converges over time to a biased monomorphic type. In this subsection we show

that this argument continues to hold even if occasionally, individuals play against nature

instead of being engaged in strategic interactions against other individuals. To capture this

idea in a simple way, we shall assume that with probability 1¡ ½, the situation is exactly as
in Section 2. With probability ½, however, the situation is such that b = 0. In the latter

case, there is no strategic interaction between individuals (the payo¤ of i is independent

of j’s action), so individuals cannot gain a strategic advantage by being optimistic. The

expected payo¤ of type ¿ i when facing type ¿ j and when b = 0 with probability ½ is given

by:

f i(¿ i; ¿ j; ½) = (1¡ ½)(2(®+ ¿
i)¡ b(®+ ¿ j)) (2®¡ (2¡ b2)¿ i ¡ b(®+ ¿ j))

(4¡ b2)2 (3.8)

+½
((2¡ b)®+ 2¿ i) ((2¡ b)®¡ 2¿ i)

42
:

The expression multiplied by 1¡ ½ is the payo¤ in (2.5). The expression multiplied by ½ is
the payo¤ in (2.5) evaluated at b = 0.

The best-response functions in the arti…cial two-players “types game” are given by

BRi(¿ j; ½) =
2(1¡ ½)b2 (2®¡ b(®+ ¿ j))

16¡ 8b2 + ½b4 ; for i = 1; 2 and j 6= i: (3.9)

As before, the best-response functions are downward sloping in the (¿1; ¿ 2) space when b > 0;

and upward sloping when b < 0: Moreover, since jbj < 1; the slope of the best-response

functions is less than or equal to 1
4
in absolute value. Therefore, the arti…cial “types game”

can be solved by a process of iterative elimination of dominated strategies. The unique type
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that survives this process is given by the intersection of BR1(¿ 2; ½) and BR2(¿ 1; ½) in the

(¿1; ¿2) space which is

b¿(½) ´ 2(1¡ ½)b2
2 (4 + 2b¡ b2)¡ ½b3®: (3.10)

The type b¿(½) is strictly decreasing with ½. Hence, the more often individuals have to

play against nature (i.e., the closer is ½ to 1), the smaller is the perception bias to which

the population will converge over time. At the extreme when ½ = 1 (individuals play only

against nature but not against one another), b¿ (1) = 0 so the population converges to realism.
At the other extreme where ½ = 0 (individuals never play against nature), b¿ (0) = b¿ , whereb¿ is given by equation (2.7), so the situation is as in Section 2. The main point however is
that so long as there are strategic interaction between individuals (i.e., ½ < 1) the qualitative

results from Section 2 continue to hold except that now, the degree of bias is smaller sinceb¿(½) < b¿ for all ½ > 0:
Proposition 3: Suppose that players engage in strategic interaction only with probability

(1¡ ½): Then under a payo¤-monotonic selection dynamics, the distribution of types in the
population converges in distribution to a unit mass at b¿(½); where b¿(½) decreases from b¿
when ½ = 0 to 0 when ½ = 1.

4 A general analysis

In the example considered in Section 2, the conceived payo¤ of individual i from interacting

with individual j was of the form

U i(xi; xj) = ¦(xi; xj) + ¿ ixi; i = 1; 2; and j 6= i; (4.1)

where ¦(xi; xj) = (®¡ bxj ¡xi)xi, and ¿ i represented individual i’s perception bias or type.
Optimistic types had a positive ¿ i; and thus overestimated their personal bene…t from their

own action, xi, while pessimistic types had a negative ¿ i and thus underestimated their

personal bene…t from their own actions.

In this section we continue to consider additive linear perception biases as in (4.1) but

allow for a much broader class of (true) payo¤ functions ¦i ´ ¦(xi; xj): Throughout we shall
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assume that ¦i is thrice continuously di¤erentiable and will denote its partial derivatives by

¦ii ´
@¦(xi; xj)

@xi
; ¦ij ´

@¦(xi; xj)

@xj
; ¦iii ´

@2¦(xi; xj)

(@xi)2
; and ¦iij ´

@2¦(xi; xj)

@xi@xj
:

In addition, we shall assume that ¦i has the following properties:

Property 1: ¦i is strictly concave in xi, i.e., ¦iii < 0.

Property 2: ¦i is such that
¯̄̄
¦iij
¦iii

¯̄̄
< 1¡ "; for some " > 0.

Property 1 ensures that i’s best-response against j’s action; BRi(xj), is implicitly

de…ned by the …rst order condition

U ii (x
i; xj) = ¦ii + ¿

i = 0: (4.2)

Property 2 ensures that the slope dBRi(xj)
dxj of i’s best-response function is uniformly smaller

than 1 in absolute value. This implies in turn that every pair of best-response functions

intersect exactly once in the actions space, so every pairwise interaction has a unique Nash

equilibrium.11

Let (bxi(¿ i; ¿ j); bxj(¿ i; ¿ j)) be the (unique) Nash equilibrium in the interaction between
individuals i and j given their types. The equilibrium strategies are implicitly de…ned by

the following two equations:

¦i(bxi(¿ i; ¿ j); bxj(¿ i; ¿ j)) + ¿ i = 0; (4.3)

¦j(bxi(¿ i; ¿ j); bxj(¿ i; ¿ j)) + ¿ j = 0:

To study the evolution of perception biases, we once again consider an arti…cial two-

player “types game” in which each player i selects a type ¿ i 2 T = [¿ ; ¿ ]; where ¿ < 0 < ¿ .
The payo¤ of player i in the “types game” is given by

f i(¿ i; ¿ j) ´ ¦(bxi(¿ i; ¿ j); bxj(¿ i; ¿ j)); (4.4)

11The uniformity requirement is needed to guarantee that the best-respone functions are not mutually

asymptotic without intersecting. Actually, property 2 ensures that a myopic best-reply process in a repetition

of the game (in which each individual plays a best reply to the previous action of the opponent) converges to

the unique Nash equilibrium. This may justify the assumption that (when each interaction consists of several

rounds) individuals essentially play the unique Nash equilibrium even if initially they do not recognize each

other’s type.
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which is the true equilibrium payo¤ in the interaction between i and j: The uniqueness

of the Nash equilibrium in every pairwise interaction implies that f i(¿ i; ¿ j) is well-de…ned.

Since all individuals have the same true payo¤ function ¦(¢; ¢) (individuals di¤er only with
respect to the value of ¿), the payo¤s in the types game are symmetric in the sense that

f i(¿ i; ¿ j) = f j(¿ j ; ¿ i). We shall now assume that the payo¤ function f i ´ f i(¿ i; ¿ j) has the
following properties:

Property 3: f i is twice di¤erentiable and strictly concave in ¿ i, i.e., f iii < 0:

Property 4: f i is such that jf iiij <
¯̄
f iij
¯̄
:

Property 3 ensures that the types game is well-behaved. Property 4 ensures that the

types game has a unique Nash equilibrium because it implies that the slope of each player’s

best-response function in the types game is less than 1 in absolute value.12

Remark: The set of action games that satisfy Properties 1-4 constitute an open set in the

space C3(R2+) (the space of thrice continuously di¤erentiable functions ¦ : R
2
+ ! R; with

the minimal topology in which ¦n converges to ¦ if and only if (¦n ¡ ¦) and each of its …rst,
second, and third derivatives converge to zero uniformly on compact sets on R2+), because

they are de…ned using …nitely many strict inequalities which involve continuous functions of

up to third-order derivatives of ¦i:13 Thus, the family of quadratic payo¤ functions studied

in Section 2, which clearly satis…es Properties 1-4, is not exceptional. Other payo¤ functions

whose derivatives up to the third-order are not ”too far” from one of those quadratic functions

will lead to the same kind of evolution of perception biases.

12We state Properties 3 and 4 in terms of the payo¤ function in the types game, f i, because stated in

terms of the payo¤ function in the actions game, ¦i; these properties involve complex expressions that

include third-order derivatives of ¦i; which do not have an intuitive economic interpretation.
13More precisely, for every …xed " > 0 in Property 2 there are …nitely many strict inequalities involved in

the de…nition of this set of payo¤ functions – denote it V" – which is therefore open. The actual set of payo¤

functions ¦ which obey all the properties is the union of these open V" over all the positive ", which is open

as the union of open sets.
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4.1 Optimism and Pessimism

To study the properties of the “types game” further, let bxii and bxij be the partial derivatives
of individual i’s equilibrium action in the interaction with individual j with respect to his

own type, ¿ i, and j’s type, ¿ j. By di¤erentiating (4.3) with respect to ¿ i and ¿ j and using

Cramer’s rule, we obtain the following comparative statics:

bxii = ¡ ¦jjj
det J

; bxij = ¦iji
det J

; (4.5)

where

J =

0@ ¦iii ¦iij

¦jji ¦jjj

1A :
Property 2 implies det J > 0: Hence (4.5) and property 1 imply that bxii > 0 and bxji T 0 as
¦jij T 0: That is, as ¿ i increases and individual i becomes more optimistic, he becomes more
aggressive in the sense that his equilibrium action increases, while his opponent becomes

more aggressive if actions are strategic complements (¦jij > 0) but softer if actions are

strategic substitutes (¦jij < 0).

Given Property 3 and using (4.5), an interior Nash equilibrium in the “types game”

is de…ned implicitly by the following pair of equations:

f ii (¿
i; ¿ j) =

¡¦ii¦jjj +¦ij¦jji
det J

= 0; (4.6)

f jj (¿
i; ¿ j) =

¡¦jj¦iii +¦ji¦iij
det J

= 0;

where the partial derivatives of the actions game are evaluated at the Nash equilibrium

actions (bxi(¿ i; ¿ j); bxj(¿ i; ¿ j)): Since the payo¤ functions in the types game are symmetric,
the Nash equilibrium in the types game is also symmetric and given by (b¿ ;b¿), where b¿ is
de…ned implicitly by the equation f ii (b¿ ;b¿) ´ 0.

To interpret the equilibrium conditions in the types game, note that (4.6) implies

that at an interior Nash equilibrium of the type game we have

¡¦
i
i

¦ij
= ¡¦

j
ji

¦jjj
: (4.7)
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The left side of (4.7) represents the slope of an iso-payo¤ curve of individual i in the un-

derlying actions game in the (xi; xj) space, while the right side of (4.7) represents the slope

of the best response function of individual j in the (xi; xj) space. Thus, equation (4.7)

says that individual i chooses ¿ i optimally in the types game by selecting the ”highest” true

iso-payo¤ curve, taking as given the best response function of the rival in the action game.

The …rst order condition for this constrained maximization problem requires that, holding

¿ j constant, the iso-payo¤ curve of individual i will be tangent to the best response function

of individual j:14

Next, we study the conditions under which the symmetric Nash equilibrium of the

types game is such that b¿ > 0 (i.e., individuals “choose” to become optimistic).
Lemma 1: The Nash equilibrium in the arti…cial “types game” is such that b¿ > 0 if ¦ij and
¦iij have the same sign, b¿ < 0 if ¦ij and ¦iij have the opposite sign, and b¿ = 0 if ¦ij¦jji = 0.
Proof: Substituting from (4.7) into (4.3) and rearranging terms yields

b¿ = ¡¦ij¦jji
¦jjj

; (4.8)

where the right hand side is evaluated at the symmetric Nash equilibrium (bx(b¿ ;b¿); bx(b¿ ;b¿))
in the interaction between two individuals who both have the type b¿ : Since ¦jjj < 0 by

Property 1 and since ¦jji = ¦
i
ij by the symmetry of the actions game, it follows that b¿ > 0

if and only if ¦ij¦
i
ij > 0: ¥

To interpret Lemma 1, note that ¦ij captures the externality that individual j’s action

imposes on individual i’s payo¤ in a pairwise interaction between them (the externality is

positive if ¦ij > 0; and negative if ¦
i
j < 0), and the sign of ¦

i
ij determines whether the actions

are strategic substitutes (¦iij < 0) or strategic of complements (¦
i
ij > 0). Hence Lemma 1

shows that in a Nash equilibrium of the types game, players ”choose” to become optimistic

(pessimistic) either if they impose negative (positive) externalities on one another and their

actions are strategic substitutes (complements) or if they impose positive (negative) external-

14This is exactly like the behavior of a leader in a Stackelberg duopoly model who chooses the level of

output at which its iso-pro…t curve is tangent to the best response function of the follower.
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ities on one another and their actions are strategic complements (substitutes).15 Intuitively,

an optimist who overestimates the return to his actions, behaves more “aggressively” than a

realist and chooses a higher level of action. When actions are strategic substitutes and the

actions of one individual impose a negative externality on the payo¤s of rivals, this aggressive

behavior triggers a favorable soft behavior from the rival. Examples for such interactions

include the tragedy of the commons (the joint use of congested common resources) and some

tournaments.16 When actions are strategic complements and the actions of one individual

impose a positive externality on the payo¤ of rivals, the aggressive behavior of the optimist

triggers a favorable aggressive behavior from rivals. Examples for this kind of interaction

include the Bertrand duopoly model with di¤erentiated products and the Cournot duopoly

model with complementary products. In either case, the aggressive behavior associated

with being an optimist gives individuals a strategic advantage; not surprisingly then, in a

Nash equilibrium of the “types game”, both players will choose to become optimistic. The

reason why the players will only choose a moderate level of optimism is that the strategic

advantage from being “wildly” optimistic is outweighed by the associated loss from having

a biased perception and taking suboptimal actions. The intuition why players ”choose” to

become pessimistic when ¦ij and ¦
i
ij have the opposite signs is exactly the opposite. Games

in which ¦ij and ¦
i
ij have the same sign include arms races and voluntary contribution to

public goods games.17

The following lemma will be useful for the sequel:

15Fershtman and Weiss (1998) show that when ¦ij and ¦
i
ij have the same sign, social mindedness (enjoying

doing what is socialy highly considered) is evolutionary stable.
16For instance, in Lazear and Rosen (1981), two individuals compete for a prize, w. Each individual

expands e¤ort, ¹i (i = 1; 2), to produce an output qi = ¹i + ²i, where ²i is a random shock. The individual

with the higher output wins the prize. If the random shocks are independently drawn from the same

exponential distribution, F (²i) = 1¡ e¡¸²i ; the expected payo¤ of individual i is ¼i = we¡¸(¹j¡¹i)
2 ¡C(¹i);

where C(¹i) is the disutility of e¤ort which is increasing and convex. It can be veri…ed that in this model,

the e¤orts are strategic substitutes and the e¤ort of one individual lowers the expected payo¤ of the other

individual so ¦ij and ¦
i
ij are both negative.

17In a typical arms race game, ¦i = V (xi¡ xj)¡C(xi);with V 0(:) > 0 > V "(:), C0(:) > 0, and C"(:) ¸ 0;
so ¦ij < 0 < ¦iij ; while in typical voluntary contribution to public goods games, ¦

i = V (xi + xj) ¡ C(xi);
with V 0(:) > 0 > V "(:), and C0(:) > 0 and C"(:) ¸ 0; so that ¦ij > 0 > ¦iij :
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Lemma 2: The arti…cial “types game” is strictly dominance solvable. The unique out-

come that survives the process of iterated elimination of strictly dominated strategies is the

symmetric Nash equilibrium (b¿ ;b¿).
Proof: To prove the lemma we invoke Theorem 4 in Moulin (1984) that provides su¢cient

conditions for normal form games to be dominance solvable. In the present context, these

conditions are:

(i) The strategy set of each player is a one-dimensional compact interval.

(ii) The payo¤ function of each player is continuous over the space of outcomes, twice

di¤erentiable, and strictly concave with respect to the player’s strategy.

(iii) The slope of each players’ best-response functions is less than 1 in absolute value.

Condition (i) is satis…ed in the types game because the set of possible types for each

player is a (compact) interval T = [¿ ; ¿ ]. Properties 3 and 4 ensure that conditions (ii) and

(iii) are satis…ed. Hence, the types game is dominance solvable. ¥

4.2 The Evolutionary dynamics of perception biases

We now turn to the way the population of types evolves over time. To this end, let Gt be the

distribution of types in the population at time t ¸ 0 on the support T = [¿ ; ¿ ]: We assume
that Gt evolves according to a payo¤-monotonic selection dynamics, where types with higher

average payo¤s have higher growth rates. Speci…cally, we shall de…ne the growth rate of

types as follows:

De…nition. A continuous growth-rate function g : T £¢(T )! R is payo¤-monotonic and

regular if for every G 2 ¢(T ); the following holds:

(i) Higher payo¤s are associated with higher growth rates:

g(¿ i; G) > g(e¿ i; G) () f(¿ i; G) > f(e¿ i; G): (4.9)
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(ii) g is a mass preserving spread of G (i.e., the densities of the various types of individuals

in the population sum up to 1): Z
T

g(¢; G)dG(¢) = 0: (4.10)

(iii) g can be extended to the domain T £ X; where X is the set of signed measures G

with variational norm smaller than 2, and on this extended domain, g is bounded and

Lipschitz continuous:

sup
¿ i2T;Gt2X

¯̄
g(¿ i; G)

¯̄
<1; (4.11)

sup
¿ i2T

¯̄̄
g(¿ i; G)¡ g(¿ i; eG)¯̄̄ < K °°°Gt ¡ eG°°° ; G; eG 2 X;

for some constant K; where kGk = sup
jhj·1

¯̄R
T
hdG

¯̄
is the variational norm on signed

measures.

Oechssler and Riedel (2001, Lemma 3) prove that property (iii) guarantees that the

mapping G ! R
T
g(¢; G)dG is bounded and Lipschitz continuous in the variational norm,

which implies that the di¤erential equation in the space of distributions ¢(T ) de…ned by

¢
Gt(S) =

Z
S

g(¢; Gt)dGt(¢); S µ T; (4.12)

has a unique solution for any initial distribution G0: A special case of the growth rate that

we consider is the familiar replicator dynamics that was introduced by Taylor and Jonker

(1978) for distributions with a …nite support, and by Oechssler and Riedel (1999) for general

distributions. In the case of the replicator dynamics, the distribution of types at time t, Gt;

evolves according to the di¤erential equation

¢
Gt(S) =

Z
S

£
f(¿ i; Gt)¡ f(Gt; Gt)

¤
dGt(¿ i); S µ T; (4.13)

where

f(¿ i; Gt) ´
Z
T

f i(¿ i; ¿ j)dGt(¿ j); (4.14)

24



is the expected true equilibrium payo¤ of an individual of type ¿ i at time t from an interaction

with individual j drawn at random from the population, and

f(Gt; Gt) ´
Z
T

Z
T

f i(¿ i; ¿ j)dGt(¿ j)dGt(¿ i); (4.15)

is the expected true equilibrium payo¤s when both individuals are drawn at random from the

population at time t. That is, if the average performance of a subset of types S µ T is better
than the average performance in the population, the relative weight in the population of the

types in S increases, at the expense of other sets of types whose performance is below the

average. The more general selection dynamics that we consider may be appropriate when

the reproduction process of types is not purely biological, but rather relies on education or

imitation (see e.g., Weibull 1995, Section 4.4).

Having de…ned the selection dynamics, we are now interested in the following question:

starting from some initial distribution, G0; how will the distribution of types, Gt; evolve over

time with a regular, payo¤-monotonic dynamics? To provide an answer, we …rst establish the

following theorem. This theorem which is of independent interest, generalizes Theorem 1 in

Samuelson and Zhang (1992) to the case of games with in…nitely many strategies (Samuelson

and Zhang, 1992, prove their result for the case of games with …nitely many strategies). For

preserving the coherence with our setting, we state the theorem for symmetric two-players

games with a compact one-dimensional strategy space; the method of proof works however

just as well for more general compact strategy spaces and for asymmetric games.

Theorem 1: Let T = [¿ ; ¿ ] µ R be a space of strategies, f : T £T ! R a continuous payo¤

function of a symmetric two-player game, and g : T £ T ! R a regular, payo¤ monotonic

growth-rate function. Let Gt be the population dynamics de…ned by the di¤erential equation

(4.12) with an initial distribution of strategies G0 with support T: Suppose that D µ [¿ ; ¿ ]
is the subset of serially dominated strategies (those that do not survive the process of iterated

elimination of strictly dominated strategies). Then the strategies in D are asymptotically

eliminated from the population: Every iteratively dominated strategy d 2 D has an open

neighborhood Wd for which lim
t!1

Gt(Wd) = 0: In particular, if there is only one serially

undominated strategy u 2 T nD; then Gt converges in distribution to the unit mass probability
at u.
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Proof: See the Appendix.

We are now ready to state our main result:

Theorem 2: Suppose that the payo¤s in the pairwise interactions satisfy Properties 1-

4. Then given any initial distribution of types with support T; the population of types will

converge in distribution to a unit mass on some type b¿ under any regular, payo¤-monotonic
selection dynamics. The type b¿ is optimistic (i.e., b¿ > 0) if ¦ij and ¦iij have the same sign
and pessimistic if ¦ij and ¦

i
ij have the opposite signs.

Proof: From Lemma 2 we know that given properties 1-4, the arti…cial “types game” is

strictly dominance solvable, with the solution being (b¿ ;b¿). Using Theorem 1 it therefore

follows that under a regular, payo¤ monotonic growth-rate function, the population of types

will converge in distribution to a unit mass on b¿ . Finally, Lemma 1 ensures that b¿ > 0 if
¦ij and ¦

i
ij have the same sign, and b¿ < 0 if ¦ij and ¦iij have the opposite signs. ¥

5 Conclusion

We have shown how the pressures of explicit, dynamic evolutionary processes select for

moderate optimism rather than for realism, when …tness is gained through interactions

of either a competitive nature and strategic substitutes or cooperative nature and strategic

complements. According to this insight, the well-documented phenomenon of overcon…dence

and unrealistic high self-esteem of individuals may be due to a bias that “pays” well in many

kinds of strategic settings.

Clearly, the way humans evaluate their environment has evolved along the generations

via con‡icts with both natural hazards and strategic social interactions with other individuals

or groups of individuals. The premises of our model are therefore far from being all-

encompassing. And in practice, society is composed of heterogeneous individuals who

may di¤er from one another in their degree of optimism/pessimism, unlike the long-run

equilibrium in our model where all individuals share the same attitude. Thus, our modest

aim was to point at one possible source for the optimism that is so frequently observed in
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the process of decision making. Searching for competing and complementing evolutionary

insights for this and similar behavioral puzzles is a challenge for future research.

6 Appendix

Proof of Proposition 2: Consider …rst the case where b < 0 (strategic complements).

Let A = [¿ ; ¿¡! ¡ "
2
] [ [Ã¡¿ + "

2
; ¿ ] be a compact subset of the set of types, [¿ ; ¿ ]: Then

fV¿ : ¿ 2 Ag, where V¿ is de…ned in (3.7), is an open cover of the compact set A; and
therefore has a …nite sub-cover V¿1 ; : : : ; V¿n : Since limt!1Gt (V¿k) = 0 for k = 1; : : : ; n,

there exists a time t" such that for t > t" we have Gt (V¿k) <
"

2nM
; k = 1; : : : ; n; where

M = maxf¿ ¡ ¡Ã¡¿ + "
2

¢
;
¡
¿¡!¡ "

2

¢¡ ¿g: Hence, for t > t" we have
Gt(A) ·

nX
k=1

Gt (V¿k) <
"

2M
:

Therefore, the average type in the population, µ; satis…es the following inequalities:

µ <
"

2M
¿ +

³
1¡ "

2M

´³Ã¡¿ + "
2

´
=
³Ã¡¿ + "

2

´
+

"

2M

³
¿ ¡

³Ã¡¿ + "
2

´´
(A.1)

·
³Ã¡¿ + "

2

´
+
"

2
=Ã¡¿ + ";

and

µ >
"

2M
¿ +

³
1¡ "

2M

´³
¿¡!¡ "

2

´
=
³
¿¡!¡ "

2

´
¡ "

2M

³³
¿¡!¡ "

2

´
¡ ¿

´
(A.2)

¸
³
¿¡!¡ "

2

´
¡ "
2
= ¿¡!¡ ":

These inequalities imply that for every " > 0; there exists a time t" such that for every t > t";

the average type µ is in the interval [ ¿¡!¡ ";Ã¡¿ + "]:
Next, note from equation (3.6) that the slope of the best-response function of type ¿ i

in the arti…cial types game in the (¿ i; ¿ j) space is given by

¡2b(4¡ b
2)2(4¡ 3b2)

(16¡ 8b2 + b4p)2 :

Since b < 0, this expression is negative and less than 1 in absolute value. Hence, …xing the

value of µ, there exists a unique symmetric Nash equilibrium in the arti…cial types game.

Moreover, since b < 0, equation (3.6) shows that BRi(¢; p; µ) is decreasing with µ. Hence,
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the ”highest” symmetric Nash equilibrium in the types game is attained when µ = ¿¡!¡" and
the ”lowest” equilibrium is attained when µ =Ã¡¿ + ": Let the highest and lowest symmetric
Nash equilibria be (Ã¡¿ " ;Ã¡¿ " ) and ( ¿ "¡!; ¿ "¡!), respectively. That is,Ã¡¿ " and ¿ "¡! are the solutions

to the equations Ã¡¿ " = BRi(Ã¡¿ " ; p; ¿¡!¡ ") and ¿ "¡! = BRi(¿ "¡!; p;Ã¡¿ + ").
Noting from equation (3.5) that since b < 0, @(f

i)2(¿ i;¿j ;p;µ)
@¿ i@µ

= bp
4
< 0; it follows that if

µ < eµ and ¿ i < e¿ i, then
f i(e¿ i; ¿ j; p; µ)¡ f i(¿ i; ¿ j ; p; µ) ¸ f i(e¿ i; ¿ j; p;eµ)¡ f i(¿ i; ¿ j ; p;eµ):

As a result, f i(e¿ i; ¿ j ; p; µ) < f i(¿ i; ¿ j ; p; µ) implies f i(e¿ i; ¿ j; p;eµ) < f i(¿ i; ¿ j; p;eµ) and f i(e¿ i; ¿ j; p;eµ) >
f i(¿ i; ¿ j; p;eµ) implies f i(e¿ i; ¿ j; p; µ) > f i(¿ i; ¿ j ; p; µ): These inequalities imply in turn that
types aboveÃ¡¿ " are serially dominated in the game played from t" onward, while types below
¿ "¡! are serially dominated from t" onward. By Theorem 1 below, this implies that types

outside [¿ "¡!;Ã¡¿ " ] get asymptotically extinct, implying (by the de…nition of Ã¡¿ and ¿¡!) that
Ã¡¿ · Ã¡¿ " and ¿¡! ¸ ¿ "¡! for every " > 0: Since Ã¡¿ " and ¿ "¡! are continuous functions of "; we

have for " = 0 that

Ã¡¿ · inf
">0
¿ " ´ Ã¡¿0 = BRi(Ã¡¿0 ; p; ¿¡!);

¿¡! ¸ sup
">0

¿ " ´ ¿0¡! = BRi(¿0¡!; p;Ã¡¿ ):

Subtracting the second inequality from the …rst, using equation (3.6), and rearranging terms,

yields:

0 · Ã¡¿ ¡ ¿¡! ·Ã¡¿ 0 ¡ ¿0¡! =
bp (2¡ b) (b+ 2)2

pb4 + 4pb3 + 4b2 ¡ 4pb2 ¡ 8b¡ 8bp¡ 16
¡Ã¡¿ ¡ ¿¡!

¢
: (A.3)

The coe¢cient of Ã¡¿ ¡ ¿¡! on the right side of the inequality is less than 1, implying that

Ã¡¿ = ¿¡! = ¿¤(p) as desired.

We now consider the case where b > 0 (strategic complements). Then, equation (3.5)

implies that @(f
i)2(¿ i;¿j ;p;µ)
@¿ i@µ

= bp
4
> 0; so if µ < eµ and ¿ i < e¿ i, then

f i(e¿ i; ¿ j; p; µ)¡ f i(¿ i; ¿ j ; p; µ) · f i(e¿ i; ¿ j; p;eµ)¡ f i(¿ i; ¿ j ; p;eµ):
As a result, f i(e¿ i; ¿ j ; p; µ) > f i(¿ i; ¿ j ; p; µ) implies f i(e¿ i; ¿ j; p;eµ) > f i(¿ i; ¿ j; p;eµ) and f i(e¿ i; ¿ j; p;eµ) <
f i(¿ i; ¿ j; p;eµ) implies f i(e¿ i; ¿ j ; p; µ) < f i(¿ i; ¿ j ; p; µ): Since b > 0, equation (3.6) implies
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that BRi(¢; p; µ) is upward sloping in the (¿ i; ¿ j) space and moreover it is increasing with
µ. Hence, the highest best-response of i intersects the lowest bets-response of j at (Ã¡¿ " ; ¿ "¡!):
This implies in turn that types above Ã¡¿ " for i and below ¿ "¡! for player j are serially domi-

nated in the game played from t" onward. By Theorem 1 below, types outside [¿ "¡!;Ã¡¿ " ] get
asymptotically extinct, implying (by the de…nition ofÃ¡¿ and ¿¡!) thatÃ¡¿ · Ã¡¿ " and ¿¡! ¸ ¿ "¡!
for every " > 0: Since Ã¡¿ " and ¿ "¡! are continuous functions of "; we have for " = 0:

Ã¡¿ · inf
">0
¿ " ´ Ã¡¿0 = BRi(¿0¡!; p;Ã¡¿ );

¿¡! ¸ sup
">0

¿ " ´ ¿0¡! = BRi(Ã¡¿0 ; p; ¿¡!):

Subtracting the second inequality from the …rst, using equation (3.5), and rearranging terms,

yields:

Ã¡¿ 0 ¡ ¿0¡! =
bp (2¡ b) (4b+ 8¡ b3 ¡ 2b2)

2 (16¡ 8b2 + pb4)
¡Ã¡¿ ¡ ¿¡!

¢
+
b (pb4 + 4b2 ¡ 12pb2 + 16p)

2 (16¡ 8b2 + pb4)
³Ã¡¿0 ¡ ¿ 0¡!´ :

This implies in turn that

0 · Ã¡¿ ¡ ¿¡! ·Ã¡¿0 ¡ ¿ 0¡! =
(¡4 + b2) (2¡ b) bp

pb4 ¡ 4b3p+ 4b2 ¡ 4pb2 + 8b+ 8bp¡ 16
¡Ã¡¿ ¡ ¿¡!

¢
: (A.4)

Except for the extreme case where b = 1 and p = 1; the coe¢cient of Ã¡¿ ¡ ¿¡! is strictly

smaller than 1, implying that Ã¡¿ = ¿¡! = ¿ ¤(p) as desired. ¥

Proof of Theorem 1: Let Dn be the set of strategies that do not survive n or less rounds

of iterated elimination of strictly dominated strategies, so D = [1n=0Dn: Denote also by
Un = T nDn the set of strategies that do survive n rounds of iterated elimination of strictly
dominated strategies. We prove by induction on n that Un is compact, and every eliminated

strategy d 2 Dn has an open neighborhood Wd for which lim
t!1

Gt(Wd) = 0:

Since D0 = ; and U0 = T; the claim holds for n = 0: If D1 is empty as well, i.e. no

strategies are strictly dominated, then the claim holds vacuously. So from now on assume

that D1 6= ;: Suppose, by induction, that the claim holds for n < k:

We …rst prove that Uk is compact. Indeed, let d 2 Dk be round-k dominated by the
strategy x 2 T; that is for every y 2 Uk¡1

f(x; y)¡ f(d; y) > 0:
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Since f is continuous, f(x; y)¡ f(d; y) is continuous in y, and therefore attains its minimum
on Uk¡1; as this set is compact by the induction hypothesis. Hence by (4.9)

½(x; d) ´ min
y2Uk¡1

[f(x; y)¡ f(d; y)] > 0: (A.5)

Furthermore, the function ½(x; d) is continuous since [f(x; y)¡ f(d; y)] is. Therefore, for
every " > 0; the set of strategies which are dominated by x by a payo¤ di¤erence of at least

"; fd : ½(x; d) > "g, is open. Consequently, the set of strategies dominated up to round k

Dk = Dk¡1 [
[

x2Uk¡1

[
">0

fd : ½(x; d) > "g ;

is open as a union of open sets, and Uk = T nDk is compact, as required.
We now turn to complete the inductive step, and prove that every eliminated strategy

d 2 Dk has an open neighborhoodWd for which lim
t!1

Gt(Wd) = 0: Indeed, let d be dominated

by x in one of the rounds up to k: Then if k > 1; not only does x perform better than d

against strategies in Uk¡1; but it also does so against some strategies in an open subset of

Dk¡1: Since f is continuous, the set

B = fy 2 T : f(x; y)¡ f(d; y) · 0g ;

is a compact subset of the open set Dk¡1: Hence B is a proper subset of Dk¡1; as Dk¡1 is

open by the induction hypothesis (except when k = 1; in which case Dk¡1 = ;; and B = ;).
This implies that for some positive number s; we have

lim
t!1

Gt(C) = 0;

where

C = fy 2 Dk¡1 : f(x; y)¡ f(d; y) · sg :

Indeed, for k = 1; Dk¡1 = D0 = ;; so for whatever positive s chosen we have Gt(C) = 0; so
lim
t!1

Gt(C) = 0. For k > 1; let

s =
1

2
sup

y2Dk¡1
[f(x; y)¡ f(d; y)] ; (A.6)
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which is positive since as explained above, B ( Dk¡1:With this s; the set C is a closed subset

of Dk¡1 (because f(x; y)¡ f(d; y) is continuous in y); and hence compact. By the induction
hypothesis, every y 2 Dk¡1 has an open neighborhood Wy 3 y such that lim

t!1
Gt(Wy) = 0.

Since C µ Sy2CWy , the compactness of C implies that there exist y1; : : : ym 2 C such that
C µ Sm

i=1Wyi: Therefore, Gt(C) ·
Pm

i=1Gt(Wyi) and hence lim
t!1

Gt(C) = 0; as claimed.

Observe now the following considerations. The continuity of f and ½ imply that there

are open neighborhoods Vx 3 x and Wd 3 d such that for every x0 2 V x, d0 2W d

inf
y2Dk¡1nC

[f(x0; y)¡ f(d0; y)] ¸ s

2
> 0; (A.7)

and

min
y2Uk¡1

[f(x0; y)¡ f(d0; y)] = ½(x0; d0) ¸ ½(x; d)

2
> 0: (A.8)

Thus, against any strategy y =2 C; every strategy x0 2 V x outperforms every d0 2 W d by at

least

" = min

½
s

2
;
½(x; d)

2
;
1

2

¾
> 0; (A.9)

i.e.,

inf
y2TnC

[f(x0; y)¡ f(d0; y)] ¸ ": (A.10)

At the same time, since f is continuous on the compact domain T , there exists a

bound M such that jf j ·M ; and by (A.6), there exists a time t such that for t ¸ t we have
Gt(C) <

"
8M

and Gt(T n C) > 1¡ ": Altogether this implies that for x0 2 V x; d0 2 W d and

t ¸ t

f(x0; Gt)¡ f(d0; Gt) =
Z
T

[f(x0; ¢)¡ f(d0; ¢)] dGt =Z
C

[f(x0; ¢)¡ f(d0; ¢)] dGt +
Z
TnC

[f(x0; ¢)¡ f(d0; ¢)] dGt > (A.11)

(¡2M) "

8M
+ "(1¡ ") ¸ ¡"

4
+ "(1¡ 1

2
) =

"

4
:

By the continuity of f; (A.11) holds also when Gt is replaced by any probability measure
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¹ 2 A ´ fGtgt¸t; the closure of fGtgt¸t in the topology of weak convergence of probability
measures.

Now, by the payo¤ monotonicity of the growth-rate function g; for every ¹ 2 A;

x0 2 V x and d0 2W d

g(x0; ¹)¡ g(d0; ¹) > 0:

The continuous function [g(x0; ¹)¡ g(d0; ¹)] attains its minimum on the compact set V x £
W d£ A: Therefore, there is in fact ± > 0 for which

g(x0; Gt)¡ g(d0; Gt) ¸ ±; for x0 2 V x; d0 2W d, and t ¸ t: (A.12)

A fortiori, (A.12) holds also if we replace g(x0; Gt) and g(d0; Gt) by their averages in V x and

W d; respectively. Thus for t ¸ tR
V x
g(¢; Gt)dGt
Gt(V x)

¡
R
Wd
g(¢; Gt)dGt
Gt(W d)

¸ ±: (A.13)

Hence, by (4.12), for t ¸ t,
Gt(V x)

Gt(W d)
¸ Gt(V x)

Gt(W d)
exp[±(t¡ t)]!t!1 1: (A.14)

Therefore, lim
t!1

Gt(Wd) = 0; as required. ¥
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