Technical Appendix to the paper: Optimal state-contingent regulation under limited liability

Robert Gary-Bobo* and Yossi Spiegel[†]

February 2005

^{*}TEAM, Université Paris 1 Panthéon-Sorbonne, 106-112 Bd. de l'Hôpital, 75647 Paris Cedex 13, France, and CEPR. email: garybobo@univ-paris1.fr

[†]Recanati Graduate School of Business Administration, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel. email: spiegel@post.tau.ac.il.

This technical appendix contains detailed proofs for Lemmas 1-4 (in the paper we just provide sketches of proofs) and the proof of Proposition whose proof was omitted from the paper.

Lemma 1. At the optimum, EIR_{θ} and IC_{θ} , $\theta = \ell$, h cannot be both slack.

Proof: Assume by way of negation that both EIR_{ℓ} and IC_{ℓ} are slack. Since EIR_{ℓ} is slack, either $IR_{\ell g}$ or $IR_{\ell b}$ or both are also slack, so it is possible to slightly lower $t_{\ell g}$ or $t_{\ell b}$ or both. This lowers the right-hand side of IC_h and hence relaxes it, without affecting IR_{hg} and IR_{hb} . At the same time, the value of the regulator's objective function is enhanced since $\alpha < 1$, thereby contradicting the assumption that the solution is optimal. The proof that EIR_h and IC_h cannot be both slack is analogous.

Lemma 2: At the optimum, $t_{\ell b}$ and t_{hg} can be set such that $IR_{\ell b}$ and IR_{hg} , respectively, will be binding while $IR_{\ell g}$ and IR_{hb} are slack.

Proof: Suppose that at the optimum $IR_{\ell b}$ is slack. Now consider an alternative allocation in which $t_{\ell b}$ is lowered by $\varepsilon_{\ell b} > 0$ until $IR_{\ell b}$ is just binding and $t_{\ell g}$ is increased by $\frac{p_{\ell b}\varepsilon_{\ell b}}{p_{\ell g}}$ to ensure that EIR_{ℓ} and IC_{ℓ} remain intact. These changes relax $IR_{\ell g}$ (since $t_{\ell g}$ is increased) but have no effect on EIR_h , IR_{hg} , IR_{hb} , and on the regulator's objective function. At the same time the right-hand side of IC_h changes by

$$p_{hg}\frac{p_{\ell b}\varepsilon_{\ell b}}{p_{\ell g}} - p_{hb}\varepsilon_{\ell b} = p_{hg}\varepsilon_{\ell b} \left[\frac{p_{\ell b}}{p_{\ell g}} - \frac{p_{hb}}{p_{hg}}\right] \le 0,$$

where the inequality follows because the assumption that $J \equiv p_{hb}p_{\ell g} - p_{hg}p_{\ell b} \geq 0$ implies that $\frac{p_{\ell b}}{p_{\ell g}} \leq \frac{p_{hb}}{p_{hg}}$. Hence, IC_h is relaxed. Altogether, this implies that the new allocation also solves the regulator's problem. Since $IR_{\ell b}$ is binding, EIR_{ℓ} implies that $IR_{\ell g}$ must be slack. The proof concerning t_{hg} is completely analogous.

Lemma 3. If the optimal production levels are strictly monotonic with respect to the firm's type in each state of nature, i.e., $q_{\ell s} > q_{hs}$ for s = g, b, then, EIR_{ℓ} and EIR_{h} cannot be both slack.

Proof: Assume by way of negation that at the optimum, EIR_{ℓ} and EIR_h are both slack. Then, Lemma 1 implies that IC_{ℓ} and IC_h must be both binding, while Lemma 2 implies that $\pi_{\ell b} = \pi_{hg} = M$. Hence, we can write IC_{ℓ} and IC_{h} respectively, as

$$p_{\ell g} \pi_{\ell g} + p_{\ell b} M = p_{\ell g} \left[M + \Delta_g(q_{hg}) \right] + p_{\ell b} \left[\pi_{hb} + \Delta_b(q_{hb}) \right], \tag{1}$$

and

$$p_{hg}M + p_{hb}\pi_{hb} = p_{hg}\left[\pi_{\ell g} - \Delta_g(q_{\ell g})\right] + p_{hb}\left[M - \Delta_b(q_{\ell b})\right].$$
 (2)

Dividing equation (1) by $p_{\ell g}$, dividing equation (2) by p_{hg} , and adding the two equations yields,

$$\left[\frac{p_{hb}}{p_{hg}} - \frac{p_{\ell b}}{p_{\ell g}}\right](\pi_{hb} - M) + \left[\Delta_g(q_{\ell g}) - \Delta_g(q_{hg})\right] + \left[\frac{p_{hb}}{p_{hg}}\Delta_b(q_{\ell b}) - \frac{p_{\ell b}}{p_{\ell g}}\Delta_b(q_{hb})\right] = 0.$$
(3)

The first term on the left-hand side of (3) is nonnegative since $J \equiv p_{hb}p_{\ell g} - p_{hg}p_{\ell b} \geq 0$, and since by Lemma 2, IR_{hb} is slack, so that $\pi_{hb} > M$. The second term is strictly positive given the assumption that output is strictly monotonic (recall that $\Delta_s(q)$ is assumed strictly increasing with q). Finally, the third term is strictly positive as $J \geq 0$ implies that $\frac{p_{hb}}{p_{hg}} \geq \frac{p_{\ell b}}{p_{\ell g}}$ and as output is strictly monotonic. The left-hand side of (3) must therefore be strictly positive, a contradiction. We conclude that EIR_{ℓ} and EIR_{h} cannot be both slack.

Lemma 4. If the optimal production levels are strictly monotonic with respect to the firm's type in each state of nature, i.e., $q_{\ell s} > q_{hs}$ for s = g, b, then EIR_h is binding.

Proof: Assume be way of negation that EIR_h is slack. Then IC_h is binding by Lemma 1 and EIR_ℓ is binding by Lemma 3. Since $\pi_{\ell b} = M$ by Lemma 2, EIR_ℓ implies that $\pi_{\ell g} = -\frac{p_{\ell b}}{p_{\ell g}}M$; hence, IC_h can be rewritten as

$$p_{hg}M + p_{hb}\pi_{hb} = p_{hg}\left[\pi_{\ell g} - \Delta_g(q_{\ell g})\right] + p_{hb}\left[M - \Delta_b(q_{\ell b})\right]$$

$$= p_{hg}\left[-\frac{p_{\ell b}}{p_{\ell g}}M - \Delta_g(q_{\ell g})\right] + p_{hb}\left[M - \Delta_b(q_{\ell b})\right]$$

$$= p_{hg}M\left[\frac{p_{hb}}{p_{hg}} - \frac{p_{\ell b}}{p_{\ell g}}\right] - p_{hg}\Delta_g(q_{\ell g}) - p_{hb}\Delta_b(q_{\ell b}).$$
(4)

Since EIR_h is slack, the left-hand side of (4) is strictly positive. The right-hand side is strictly negative since M < 0, since $J \ge 0$ implies $\frac{p_{hb}}{p_{hg}} \ge \frac{p_{\ell b}}{p_{\ell g}}$, and since $\Delta_g(q_{\ell g})$ and $\Delta_b(q_{\ell b})$ are both positive. This contradicts the assumption that at the optimum EIR_h is slack. **Proposition 3.** Suppose that Assumptions 1-3 hold and the conditional hazard rate $\frac{f(\theta|n)}{F(\theta|n)}$ is nonincreasing with θ . Then, for all M, there exists a $\delta > 0$ such that if $|p'_s(\theta)| < \delta$ for all s in $\{1, ..., n\}$, the solution characterized by (22)-(24) (in the paper) satisfies the EIR_{θ} constraints and is globally incentive compatible.

Proof of Proposition 3. We begin with the EIR_{θ} constraints. The proof of Lemma 6 shows that $\sum_{s} r_{s}(\overline{\theta})\pi_{s}(\overline{\theta}) = 0$. Hence, $EIR_{\overline{\theta}}$ is binding. To show that EIR_{θ} holds for $\theta < \overline{\theta}$, note from equation (24) in the paper that the profit of type $\theta < \overline{\theta}$ in state *n* is

$$\pi_n^{**}(\theta) = t_n^{**}(\theta) - c_n(\theta)q_n^{**}(\theta)$$

=
$$\int_{\theta}^{\overline{\theta}} \sum_s r_s(x)c_s'(x)q_s^{**}(x)dx - \frac{M(1-p_n(\overline{\theta}))}{p_n(\overline{\theta})}.$$

Since by Lemma 6, $\pi_s^{**}(\theta) = M$, $\forall s \neq n$, and recalling that $r_s(x) \equiv \frac{p_s(x)}{p_n(x)}$, the expected profit of type $\theta < \overline{\theta}$ is

$$\sum_{s} p_{s}(\theta) \pi_{s}^{**}(\theta) = (1 - p_{n}(\theta)) M + p_{n}(\theta) \left[\int_{\theta}^{\overline{\theta}} \sum_{s} r_{s}(x) c_{s}'(x) q_{s}^{**}(x) dx - \frac{M(1 - p_{n}(\overline{\theta}))}{p_{n}(\overline{\theta})} \right]$$
$$= \left(1 - \frac{p_{n}(\theta)}{p_{n}(\overline{\theta})} \right) M + p_{n}(\theta) \int_{\theta}^{\overline{\theta}} \frac{B^{**}(x)}{p_{n}(x)} dx,$$

where $B^{**}(x) \equiv \sum_{s} p_s(x) c'_s(x) q^{**}_s(x)$. Differentiating the expected profit expression, we get

$$\frac{d}{d\theta}\left(\sum_{s} p_{s}(\theta)\pi_{s}^{**}(\theta)\right) = -\frac{p_{n}^{\prime}(\theta)}{p_{n}(\overline{\theta})}M + p_{n}^{\prime}(\theta)\int_{\theta}^{\overline{\theta}}\frac{B^{**}(x)}{p_{n}(x)}dx - B^{**}(\theta).$$
(5)

Since $EIR_{\overline{\theta}}$ is binding (so $\sum_{s} p_{s}(\overline{\theta}) \pi_{s}^{**}(\overline{\theta}) = 0$), it is sufficient to show that the derivative in (5) is negative in order to establish that the EIR_{θ} constraints are satisfied for all $\theta \in \Theta$. Our strategy will be to show that the right-hand side of (5) is bounded from above and its upper bound is negative for small enough δ .

To find an upper bound for the right-hand side of (5), note from the proof of Lemma 6 that,

$$\frac{F(\theta \mid n)}{f(\theta \mid n)} = \frac{\int_{\underline{\theta}}^{\theta} p_n(x) f(x) dx}{p_n(\theta) f(\theta)}.$$

But since by Assumption 1, $p_n(\theta)$ is increasing with θ ,

$$\frac{F(\theta \mid n)}{f(\theta \mid n)} \le \frac{\int_{\underline{\theta}}^{\theta} p_n(\theta) f(x) dx}{p_n(\theta) f(\theta)} = \frac{F(\theta)}{f(\theta)}.$$

On the other hand, since by Assumption 1, $p_s(\theta) \ge \epsilon > 0$ for all $s \in \{1, ..., n\}$ and all $\theta \in \Theta$,

$$\frac{F(\theta \mid n)}{f(\theta \mid n)} \ge \frac{\int_{\underline{\theta}}^{\theta} \epsilon f(x) dx}{f(\theta)} = \frac{\epsilon F(\theta)}{f(\theta)}.$$

Therefore, equation (22) in the paper implies that for all $s \in \{1, ..., n\}$ and all $\theta \in \Theta$, $\underline{q}_{s}^{**}(\theta) \leq \overline{q}_{s}^{**}(\theta)$, where $\underline{q}_{s}^{**}(\theta)$ and $\overline{q}_{s}^{**}(\theta)$ are defined implicitly by

$$S'\left(\underline{q}_{s}^{**}(\theta)\right) = c_{s}(\theta) + (1-\alpha) c'_{s}(\theta) \frac{F(\theta)}{f(\theta)},$$

and

$$S'(\overline{q}_s^{**}(\theta)) = c_s(\theta) + (1 - \alpha) c'_s(\theta) \frac{\epsilon F(\theta)}{f(\theta)}$$

Using these expressions, the definition of $B^{**}(\cdot)$, and the assumption that $p'_n(\theta) < \delta$ for all $\theta \in \Theta$, we get

$$\frac{d}{d\theta} \left(\sum_{s} p_{s}(\theta) \pi_{s}^{**}(\theta) \right) < \delta \left[\frac{-M}{p_{n}(\overline{\theta})} + \int_{\theta}^{\overline{\theta}} \frac{\sum_{s} p_{s}(x) c_{s}'(x) \overline{q}_{s}^{**}(x)}{p_{n}(x)} dx \right] - \sum_{s} p_{s}(x) c_{s}'(x) \underline{q}_{s}^{**}(x) \leq \delta \left[\frac{-M}{\epsilon} + \int_{\theta}^{\overline{\theta}} \frac{\sum_{s} c_{s}'(x) \overline{q}_{s}^{**}(x)}{\epsilon} dx \right] - \sum_{s} \epsilon c_{s}'(x) \underline{q}_{s}^{**}(x), \quad (6)$$

where the second line follows because $\epsilon \leq p_s(\theta) \leq 1$ for all $s \in \{1, ..., n\}$ and all $\theta \in \Theta$. For sufficiently low δ , the right-hand side of (6) is negative, so $\frac{d}{d\theta} \left(\sum_s p_s(\theta) \pi_s^{**}(\theta) \right) < 0$. Hence, for sufficiently low δ , the EIR_{θ} constraints are satisfied for all $\theta \in \Theta$.

It now remains to check that the solution to the regulator's relaxed problem satisfies $IC_{\theta,\hat{\theta}}$ for all $\theta, \hat{\theta} \in \Theta$. Substituting the transfers defined by equations (23) and (24) in the paper into the $IC_{\theta,\hat{\theta}}$, recalling that $r_s(\theta) \equiv \frac{p_s(\theta)}{p_n(\theta)}$ and simplifying, the constraint becomes

$$\int_{\theta}^{\overline{\theta}} \sum_{s} r_{s}(x) c_{s}'(x) q_{s}^{**}(x) dx - \int_{\widehat{\theta}}^{\overline{\theta}} \sum_{s} r_{s}(x) c_{s}'(x) q_{s}^{**}(x) dx$$

$$\geq \sum_{s} r_{s}(\theta) \left[c_{s}(\widehat{\theta}) - c_{s}(\theta) \right] q_{s}^{**}(\widehat{\theta}), \qquad \forall \theta, \widehat{\theta} \in \Theta.$$

$$(7)$$

Now suppose that $\hat{\theta} \neq \theta$. Then, (7) becomes

$$\int_{\theta}^{\theta} \sum_{s} r_{s}(x) c_{s}'(x) q_{s}^{**}(x) dx \geq \sum_{s} r_{s}(\theta) \left[c_{s}(\widehat{\theta}) - c_{s}(\theta) \right] q_{s}^{**}(\widehat{\theta}), \qquad \forall \theta, \widehat{\theta} \in \Theta$$

Integrating the left-hand side by parts, we get

$$\sum_{s} \left[r_{s}(\widehat{\theta}) c_{s}(\widehat{\theta}) q_{s}^{**}(\widehat{\theta}) - r_{s}(\theta) c_{s}(\theta) q_{s}^{**}(\theta) \right] - \int_{\theta}^{\widehat{\theta}} \sum_{s} c_{s}(x) \left[r_{s}'(x) q_{s}^{**}(x) + r_{s}(x) q_{s}^{**'}(x) \right] dx$$

$$\geq \sum_{s} r_{s}(\theta) \left[c_{s}(\widehat{\theta}) - c_{s}(\theta) \right] q_{s}^{**}(\widehat{\theta}), \qquad \forall \theta, \widehat{\theta} \in \Theta.$$

Rearranging terms and using the fact that $r_s(\hat{\theta}) - r_s(\theta) = \int_{\theta}^{\hat{\theta}} r'_s(x) dx$ and $q_s^{**}(\hat{\theta}) - q_s^{**}(\theta) = \int_{\theta}^{\hat{\theta}} q_s^{**'}(x) dx$,

$$\int_{\theta}^{\widehat{\theta}} \sum_{s} r'_{s}(x) c_{s}(\widehat{\theta}) q_{s}^{**}(\widehat{\theta}) dx + \int_{\theta}^{\widehat{\theta}} \sum_{s} r_{s}(\theta) c_{s}(\theta) q'^{**}_{s}(x) dx$$
$$\geq \int_{\theta}^{\widehat{\theta}} \sum_{s} c_{s}(x) \left[r'_{s}(x) q_{s}^{**}(x) + r_{s}(x) q_{s}^{**'}(x) \right] dx, \qquad \forall \theta, \widehat{\theta} \in \Theta.$$

Rearranging terms once again and multiplying both sides of the inequality by $\frac{2}{(\hat{\theta}-\theta)^2}$,

$$\frac{2}{\left(\widehat{\theta}-\theta\right)^2} \int_{\theta}^{\widehat{\theta}} \sum_{s} -q_s^{\prime**}(x) \left[r_s(x)c_s(x) - r_s(\theta)c_s(\theta)\right] dx \tag{8}$$

$$\geq \frac{2}{\left(\widehat{\theta}-\theta\right)^2} \int_{\theta}^{\widehat{\theta}} \sum_{s} -r_s^{\prime}(x) \left[c_s(\widehat{\theta})q_s^{**}(\widehat{\theta}) - c_s(x)q_s^{**}(x)\right] dx, \qquad \forall \theta, \widehat{\theta} \in \Theta.$$

We now establish that as δ goes to 0, the left-hand side of (8) converges to a strictly positive term while the right-hand side has an upper bound that converges to 0. We begin with the right-hand side of (8). Since $r_s(x) = \frac{p_s(x)}{p_n(x)}, -r'_s(x) = \frac{p_s(x)p'_n(x)-p'_s(x)p_n(x)}{(p_n(x))^2}$. But since by assumption, $|p'_s(\cdot)| < \delta$ and $\epsilon \leq p_s(\theta) \leq 1$, it follows that $-r'_s(x) \leq \frac{2\delta}{\epsilon^2}$. Using this inequality and the fact that $c_s'(\cdot) \geq 0$ and $q_s^{**\prime}(\cdot) \leq 0,$ yields

$$\begin{split} & \frac{2}{\left(\widehat{\theta}-\theta\right)^2} \int_{\theta}^{\widehat{\theta}} \sum_{s} -r'_{s}(x) \left[c_{s}(\widehat{\theta})q_{s}^{**}(\widehat{\theta}) - c_{s}(x)q_{s}^{**}(x) \right] dx \\ &= \frac{2}{\left(\widehat{\theta}-\theta\right)^2} \int_{\theta}^{\widehat{\theta}} \sum_{s} -r'_{s}(x) \left[\int_{x}^{\widehat{\theta}} \left[c'_{s}(z)q_{s}^{**}(z) + c_{s}(z)q'_{s}^{**}(z) \right] dz \right] dx \\ &\leq \frac{2}{\left(\widehat{\theta}-\theta\right)^2} \int_{\theta}^{\widehat{\theta}} \sum_{s} \frac{2\delta}{\epsilon^2} \left[\int_{x}^{\widehat{\theta}} c'_{s}(z)q_{s}^{**}(z) dz \right] dx \\ &\leq \frac{2}{\left(\widehat{\theta}-\theta\right)^2} \int_{\theta}^{\widehat{\theta}} \sum_{s} \frac{2\delta}{\epsilon^2} \left[c'_{s}(\overline{\theta})q_{s}^{**}(\underline{\theta}) \int_{x}^{\widehat{\theta}} dz \right] dx \\ &= \frac{2}{\left(\widehat{\theta}-\theta\right)^2} \int_{\theta}^{\widehat{\theta}} \sum_{s} \frac{2\delta}{\epsilon^2} \left[c'_{s}(\overline{\theta})q_{s}^{**}(\underline{\theta}) \left(\widehat{\theta}-x\right) \right] dx \\ &= \frac{2}{\left(\widehat{\theta}-\theta\right)^2} \sum_{s} \frac{2\delta}{\epsilon^2} c'_{s}(\overline{\theta})q_{s}^{**}(\underline{\theta}) \frac{\left(\widehat{\theta}-\theta\right)^2}{2} \\ &= \frac{2\delta}{\epsilon^2} \sum_{s} c'_{s}(\overline{\theta})q_{s}^{**}(\underline{\theta}). \end{split}$$

Clearly, this expression converges to 0 as δ goes to 0. As for the left-hand side of (8), recall that for all $s \in \{1, ..., n\}$ and all $\theta \in \Theta$, $\underline{q}_s^{**}(\theta) \leq \overline{q}_s^{**}(\theta) \leq \overline{q}_s^{**}(\theta)$. Since $q_s^{**'}(\cdot) \leq 0$, it follows that $q \in \left[\underline{q}_s^{**}(\overline{\theta}), \overline{q}_s^{**}(\underline{\theta})\right]$. Let

$$k \equiv \max_{s} \max_{q} \left\{ |S^{"}(q)| \mid q \in \left[\underline{q}_{s}^{**}(\overline{\theta}), \overline{q}_{s}^{**}(\underline{\theta})\right] \right\},\$$

be the upper bound on $|S^{"}(q^{**}(\theta))|$. Then, equation (22) in the paper implies that

$$-q_s^{\prime **}(\theta) = \frac{c_s^{\prime}(\theta) + (1-\alpha)\left(c_s^{"}(\theta)\frac{F(\theta|n)}{f(\theta|n)} + c_s^{\prime}(\theta)\frac{d}{d\theta}\left(\frac{F(\theta|n)}{f(\theta|n)}\right)\right)}{|S^{"}\left(q_s^{**}(\theta)\right)|} \ge \frac{c_s^{\prime}(\underline{\theta})}{k}$$

Using this inequality, noting that $r_s(\cdot) \equiv \frac{p_s(\cdot)}{p_n(\cdot)} \geq \epsilon$, and recalling that $-r'_s(\cdot) \leq \frac{2\delta}{\epsilon^2}$ and

 $c'_s(\cdot) > 0$, we get

$$\begin{split} & \frac{2}{\left(\widehat{\theta}-\theta\right)^2} \int_{\theta}^{\widehat{\theta}} \sum_{s} -q_{s}^{\prime**}(x) \left[r_s(x)c_s(x) - r_s(\theta)c_s(\theta)\right] dx \\ &= \frac{2}{\left(\widehat{\theta}-\theta\right)^2} \int_{\theta}^{\widehat{\theta}} \sum_{s} -q_{s}^{\prime**}(x) \left[\int_{\theta}^{x} \left[r_s^{\prime}(z)c_s(z) + r_s(z)c_s^{\prime}(z)\right] dz\right] dx \\ &\geq \frac{2}{\left(\widehat{\theta}-\theta\right)^2} \int_{\theta}^{\widehat{\theta}} \sum_{s} -q_{s}^{\prime**}(x) \left[\int_{\theta}^{x} \left[-\frac{2\delta}{\epsilon^2}c_s(z) + \epsilon c_s^{\prime}(z)\right] dz\right] dx \\ &\geq \frac{2}{\left(\widehat{\theta}-\theta\right)^2} \int_{\theta}^{\widehat{\theta}} \sum_{s} -q_{s}^{\prime**}(x) \left[\int_{\theta}^{x} \left[-\frac{2\delta}{\epsilon^2}c_s(\overline{\theta}) + \epsilon c_s^{\prime}(\underline{\theta})\right] dz\right] dx \\ &= \frac{2}{\left(\widehat{\theta}-\theta\right)^2} \int_{\theta}^{\widehat{\theta}} \sum_{s} -q_{s}^{\prime**}(x) \left[-\frac{2\delta}{\epsilon^2}c_s(\overline{\theta}) + \epsilon c_s^{\prime}(\underline{\theta})\right] (x-\theta) dx \\ &\geq \frac{2}{\left(\widehat{\theta}-\theta\right)^2} \sum_{s} \frac{c_s^{\prime}(\underline{\theta})}{k} \left[-\frac{2\delta}{\epsilon^2}c_s(\overline{\theta}) + \epsilon c_s^{\prime}(\underline{\theta})\right] \frac{\left(\widehat{\theta}-\theta\right)^2}{2} \\ &= \sum_{s} \frac{c_s^{\prime}(\underline{\theta})}{k} \left[-\frac{2\delta}{\epsilon^2}c_s(\overline{\theta}) + \epsilon c_s^{\prime}(\underline{\theta})\right]. \end{split}$$

As δ goes to 0, this expression converges to $\sum_s \frac{(c'_s(\underline{\theta}))^2 \epsilon}{k} > 0$. Hence, for a sufficiently small δ , (8) holds, implying that $IC_{\theta,\widehat{\theta}}$ holds for all $\theta, \widehat{\theta} \in \Theta$.