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This technical appendix contains detailed proofs for Lemmas 1-4 (in the paper we just provide

sketches of proofs) and the proof of Proposition whose proof was omitted from the paper.
Lemma 1. At the optimum, EIRy and ICy, 86 = £, h cannot be both slack.

Proof: Assume by way of negation that both EIR, and IC} are slack. Since EIR; is
slack, either IRy, or IRy or both are also slack, so it is possible to slightly lower ty, or t4
or both. This lowers the right-hand side of ICj, and hence relaxes it, without affecting I Ry,
and I Ryp. At the same time, the value of the regulator’s objective function is enhanced since
a < 1, thereby contradicting the assumption that the solution is optimal. The proof that
EIR;, and IC}, cannot be both slack is analogous. W

Lemma 2: At the optimum, ty and tng, can be set such that IRy and IRyg, respectively,

will be binding while IRy, and IRy, are slack.

Proof: Suppose that at the optimum [ Ry, is slack. Now consider an alternative allocation
in which ¢4 is lowered by €4 > 0 until IRy, is just binding and ?,, is increased by prng“’ to
ensure that FIR, and IC, remain intact. These changes relax IRy, (since t;, is increased)
but have no effect on EIRy,, IRy4, IRy, and on the regulator’s objective function. At the
same time the right-hand side of IC}, changes by
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where the inequality follows because the assumption that J = prypeg — prgper > 0 implies
that % < %. Hence, IC}, is relaxed. Altogether, this implies that the new allocation also
g g

solves the regulator’s problem. Since IRy is binding, FI R, implies that I R,, must be slack.

The proof concerning t5, is completely analogous. W

Lemma 3. If the optimal production levels are strictly monotonic with respect to the firm’s
type in each state of nature, i.e., qs > qns for s = g,b, then, EIR, and EIR) cannot be
both slack.

Proof: Assume by way of negation that at the optimum, EFIR, and FIR; are both slack.
Then, Lemma 1 implies that IC, and IC} must be both binding, while Lemma 2 implies
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that mg, = mpg = M. Hence, we can write /Cy and IC}, respectively, as

DegTeg + DM = pog [M + Ag(qng)] + pev e + Do(aqms)] (1)

and

PrgM + ProThe = Phg [Teg — Dg(qeg)] + pro [M — Ap(qa)] - (2)

Dividing equation (1) by ps,, dividing equation (2) by psg, and adding the two equations
yields,

LZ;_Z - i_ij (mho — M) + [Ag(qeg) — Ag(ang)] + II;_:ZAI)((]%) - ]Z;_ZAb(th) =0.  (3)
The first term on the left-hand side of (3) is nonnegative since J = ppyprg — PrgpPe > 0, and
since by Lemma 2, I Ry, is slack, so that 7w, > M. The second term is strictly positive
given the assumption that output is strictly monotonic (recall that A4(g) is assumed strictly
increasing with ¢). Finally, the third term is strictly positive as J > 0 implies that ;’%Z > g—j’g’
and as output is strictly monotonic. The left-hand side of (3) must therefore be strictly

positive, a contradiction. We conclude that EIR, and EIR; cannot be both slack. W

Lemma 4. If the optimal production levels are strictly monotonic with respect to the firm’s

type in each state of nature, i.e., s > qns for s = g,b, then EIRy, is binding.

Proof: Assume be way of negation that EIR), is slack. Then IC}, is binding by Lemma
1 and EIR, is binding by Lemma 3. Since 7wy = M by Lemma 2, FIR, implies that

Teg = —%M ; hence, IC}, can be rewritten as
g

pth + DbThe = DPhg [7T€g - Ag(Qfg)] + Dy [M - Ab(%)]
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Since EIRy, is slack, the left-hand side of (4) is strictly positive. The right-hand side is

strictly negative since M < 0, since J > 0 implies % > %, and since Ay(qey) and Ay(qge)
g g

are both positive. This contradicts the assumption that at the optimum FIR), is slack. W
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Proposition 3. Suppose that Assumptions 1-8 hold and the conditional hazard rate
is nonincreasing with 6. Then, for all M, there ezists a 6 > 0 such that if |p.(60)] < & for
all s in {1,...,n}, the solution characterized by (22)-(24) (in the paper) satisfies the E1Ry

constraints and is globally incentive compatible.

Proof of Proposition 3. We begin with the FIRy constraints. The proof of Lemma
6 shows that > r,(f)ms(d) = 0. Hence, EIRjz is binding. To show that EIR, holds for
6 < 0, note from equation (24) in the paper that the profit of type # < @ in state n is

T (0) = £7(0) — ca(0)q;"(0)
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Since by Lemma 6, 75*(8) = M, Vs # n, and recalling that rs(x) = gz((a;))’ the expected profit

of type 0 < 0 is

> pO)7(0) = (1—pa()) M + pa(6) [/0 3 r(@)e,(@)qr () da M(1 — pa(0))
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where B**(z) = ) ps(z)c,(x)g*(x). Differentiating the expected profit expression, we get
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Since E1Rjz is binding (so Y, ps()7:*(0) = 0), it is sufficient to show that the derivative

in (5) is negative in order to establish that the EIR, constraints are satisfied for all § € ©.
Our strategy will be to show that the right-hand side of (5) is bounded from above and its
upper bound is negative for small enough 6.

To find an upper bound for the right-hand side of (5), note from the proof of Lemma
6 that,
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But since by Assumption 1, p,(f) is increasing with 6,
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On the other hand, since by Assumption 1, p;(6) > e > 0forall s € {1,...,n} and all § € ©,

FO|n) _ Jyefl@ eF(6)
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Therefore, equation (22) in the paper implies that for all s € {1,....n} and all § € ©,

77 (0) < ¢;7(0) <7;(0), where g**(0) and ;"(¢) are defined implicitly by
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Using these expressions, the definition of B**(), and the assumption that p/,(f) < ¢ for all
0 € O, we get
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where the second line follows because € < ps(f) <1 for all s € {1,...,n} and all § € ©. For
sufficiently low 6, the right-hand side of (6) is negative, so & (3", ps(6)m:*(6)) < 0. Hence,
for sufficiently low 6, the F'I Ry constraints are satisfied for all § € ©.

It now remains to check that the solution to the regulator’s relaxed problem satisfies
1C,5 for all 6,6 € ©. Substituting the transfers defined by equations (23) and (24) in the

paper into the IC, 5, recalling that ry(0) = z]: 5(((;)

/ er x)dr — / er (x)dx (7)
> ZS:rs [cs — C (9)] qx (9), v, 0eo.

and simplifying, the constraint becomes

Now suppose that [ # 0. Then, (7) becomes
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Integrating the left-hand side by parts, we get
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Rearranging terms and using the fact that r, (5) —rs(0) = [) ri(z)dr and ¢¢ (9) — ¢ (0) =

f@ **/ 0
/Zr cs d:z:+/ er cs(0)q (x)dx

/0 S (@) [ (0)g!" () + r()g" (@) o, 0,0 € O,

Rearranging terms once again and multiplying both sides of the inequality by

(-0)"
Lf / (@) [ra(@)ea(x) — 1(0)ca(8)) de ®)

/ Z—T 0" (0) - cs(x)q;‘*(a:)] dr,  ¥0,0€0.

We now establish that as 6 goes to 0, the left-hand side of (8) converges to a strictly
positive term while the right-hand side has an upper bound that converges to 0. We begin
with the right-hand side of (8). Since ry(z) = gz—((?), —ri(z) = ps(x)p;l((;n)g;%gw)p"(x). But
since by assumption, [p,(-)] < & and e < p,(d) < 1, it follows that —r/(z) < 2. Using this




inequality and the fact that ¢,(-) > 0 and ¢}*'(-) <0, yields
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Clearly, this expression converges to 0 as 6 goes to 0. As for the left-hand side of (8), recall
that for all s € {1,...,n} and all 0 € ©, ¢"*(0) < ¢;"(0) <7;*(). Since ¢;'(-) <0, it follows
that ¢ € [g:*(g)@:*(ﬁ)] Let

k= maxmax {157()] | ¢ € | 0).7"(0)] |
s g
be the upper bound on |S”(¢**(¢))|. Then, equation (22) in the paper implies that

40 +(1- ) (COFR + 4O (53)) _ we

S

0= 5 (6 @) =7

Using this inequality, noting that rs(-) = zl)):b_((:)) > ¢, and recalling that —r(-) < % and



c(-) >0, we get
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As 6lgoes(tol0,thislexpression[¢onvergesfo D . %0))26 > (0. Hence, for a sufficiently small
8, (8) holds, implying that 7C,; holds for all 0,6 € ©. W



