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This technical appendix contains detailed proofs for Lemmas 1-4 (in the paper we just provide

sketches of proofs) and the proof of Proposition whose proof was omitted from the paper.

Lemma 1. At the optimum, EIRθ and ICθ, θ = `, h cannot be both slack.

Proof: Assume by way of negation that both EIR` and IC` are slack. Since EIR` is

slack, either IR`g or IR`b or both are also slack, so it is possible to slightly lower t`g or t`b

or both. This lowers the right-hand side of ICh and hence relaxes it, without affecting IRhg

and IRhb. At the same time, the value of the regulator’s objective function is enhanced since

α < 1, thereby contradicting the assumption that the solution is optimal. The proof that

EIRh and ICh cannot be both slack is analogous. ¥

Lemma 2: At the optimum, t`b and thg can be set such that IR`b and IRhg, respectively,

will be binding while IR`g and IRhb are slack.

Proof: Suppose that at the optimum IR`b is slack. Now consider an alternative allocation

in which t`b is lowered by ε`b > 0 until IR`b is just binding and t`g is increased by
p`bε`b
p`g

to

ensure that EIR` and IC` remain intact. These changes relax IR`g (since t`g is increased)

but have no effect on EIRh, IRhg, IRhb, and on the regulator’s objective function. At the

same time the right-hand side of ICh changes by

phg
p`bε`b
p`g

− phbε`b = phgε`b
·
p`b
p`g
− phb
phg

¸
≤ 0,

where the inequality follows because the assumption that J ≡ phbp`g − phgp`b ≥ 0 implies
that p`b

p`g
≤ phb

phg
. Hence, ICh is relaxed. Altogether, this implies that the new allocation also

solves the regulator’s problem. Since IR`b is binding, EIR` implies that IR`g must be slack.

The proof concerning thg is completely analogous. ¥

Lemma 3. If the optimal production levels are strictly monotonic with respect to the firm’s

type in each state of nature, i.e., q`s > qhs for s = g, b, then, EIR` and EIRh cannot be

both slack.

Proof: Assume by way of negation that at the optimum, EIR` and EIRh are both slack.

Then, Lemma 1 implies that IC` and ICh must be both binding, while Lemma 2 implies
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that π`b = πhg =M . Hence, we can write IC` and ICh respectively, as

p`gπ`g + p`bM = p`g [M +∆g(qhg)] + p`b [πhb +∆b(qhb)] , (1)

and

phgM + phbπhb = phg [π`g −∆g(q`g)] + phb [M −∆b(q`b)] . (2)

Dividing equation (1) by p`g, dividing equation (2) by phg, and adding the two equations

yields,·
phb
phg
− p`b
p`g

¸
(πhb −M) + [∆g(q`g)−∆g(qhg)] +

·
phb
phg

∆b(q`b)− p`b
p`g

∆b(qhb)

¸
= 0. (3)

The first term on the left-hand side of (3) is nonnegative since J ≡ phbp`g − phgp`b ≥ 0, and
since by Lemma 2, IRhb is slack, so that πhb > M . The second term is strictly positive

given the assumption that output is strictly monotonic (recall that ∆s(q) is assumed strictly

increasing with q). Finally, the third term is strictly positive as J ≥ 0 implies that phb
phg
≥ p`b

p`g

and as output is strictly monotonic. The left-hand side of (3) must therefore be strictly

positive, a contradiction. We conclude that EIR` and EIRh cannot be both slack. ¥

Lemma 4. If the optimal production levels are strictly monotonic with respect to the firm’s

type in each state of nature, i.e., q`s > qhs for s = g, b, then EIRh is binding.

Proof: Assume be way of negation that EIRh is slack. Then ICh is binding by Lemma

1 and EIR` is binding by Lemma 3. Since π`b = M by Lemma 2, EIR` implies that

π`g = − p`b
p`g
M ; hence, ICh can be rewritten as

phgM + phbπhb = phg [π`g −∆g(q`g)] + phb [M −∆b(q`b)]

= phg

·
−p`b
p`g
M −∆g(q`g)

¸
+ phb [M −∆b(q`b)] (4)

= phgM

·
phb
phg
− p`b
p`g

¸
− phg∆g(q`g)− phb∆b(q`b).

Since EIRh is slack, the left-hand side of (4) is strictly positive. The right-hand side is

strictly negative since M < 0, since J ≥ 0 implies phb
phg
≥ p`b

p`g
, and since ∆g(q`g) and ∆b(q`b)

are both positive. This contradicts the assumption that at the optimum EIRh is slack. ¥

3



Proposition 3. Suppose that Assumptions 1-3 hold and the conditional hazard rate f(θ|n)
F (θ|n)

is nonincreasing with θ. Then, for all M , there exists a δ > 0 such that if |p0s(θ)| < δ for

all s in {1, ..., n}, the solution characterized by (22)-(24) (in the paper) satisfies the EIRθ

constraints and is globally incentive compatible.

Proof of Proposition 3. We begin with the EIRθ constraints. The proof of Lemma

6 shows that
P

s rs(θ)πs(θ) = 0. Hence, EIRθ is binding. To show that EIRθ holds for

θ < θ, note from equation (24) in the paper that the profit of type θ < θ in state n is

π∗∗n (θ) = t∗∗n (θ)− cn(θ)q∗∗n (θ)

=

Z θ

θ

X
s

rs(x)c
0
s(x)q

∗∗
s (x)dx−

M(1− pn(θ))
pn(θ)

.

Since by Lemma 6, π∗∗s (θ) =M , ∀s 6= n, and recalling that rs(x) ≡ ps(x)
pn(x)

, the expected profit

of type θ < θ isX
s

ps(θ)π
∗∗
s (θ) = (1− pn(θ))M + pn(θ)

"Z θ

θ

X
s

rs(x)c
0
s(x)q

∗∗
s (x)dx−

M(1− pn(θ))
pn(θ)

#

=

µ
1− pn(θ)

pn(θ)

¶
M + pn(θ)

Z θ

θ

B∗∗(x)
pn(x)

dx,

where B∗∗(x) ≡Ps ps(x)c
0
s(x)q

∗∗
s (x). Differentiating the expected profit expression, we get

d

dθ

ÃX
s

ps(θ)π
∗∗
s (θ)

!
= −p

0
n(θ)

pn(θ)
M + p0n(θ)

Z θ

θ

B∗∗(x)
pn(x)

dx−B∗∗(θ). (5)

Since EIRθ is binding (so
P

s ps(θ)π
∗∗
s (θ) = 0), it is sufficient to show that the derivative

in (5) is negative in order to establish that the EIRθ constraints are satisfied for all θ ∈ Θ.

Our strategy will be to show that the right-hand side of (5) is bounded from above and its

upper bound is negative for small enough δ.

To find an upper bound for the right-hand side of (5), note from the proof of Lemma

6 that,

F (θ | n)
f(θ | n) =

R θ

θ
pn(x)f(x)dx

pn(θ)f(θ)
.

But since by Assumption 1, pn(θ) is increasing with θ,

F (θ | n)
f(θ | n) ≤

R θ

θ
pn(θ)f(x)dx

pn(θ)f(θ)
=
F (θ)

f(θ)
.
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On the other hand, since by Assumption 1, ps(θ) ≥ ² > 0 for all s ∈ {1, ..., n} and all θ ∈ Θ,

F (θ | n)
f(θ | n) ≥

R θ

θ
²f(x)dx

f(θ)
=
²F (θ)

f(θ)
.

Therefore, equation (22) in the paper implies that for all s ∈ {1, ..., n} and all θ ∈ Θ,

q∗∗
s
(θ) ≤ q∗∗s (θ) ≤ q∗∗s (θ), where q∗∗s (θ) and q∗∗s (θ) are defined implicitly by

S0
³
q∗∗
s
(θ)
´
= cs(θ) + (1− α) c0s(θ)

F (θ)

f(θ)
,

and

S0 (q∗∗s (θ)) = cs(θ) + (1− α) c0s(θ)
²F (θ)

f(θ)
.

Using these expressions, the definition of B∗∗(·), and the assumption that p0n(θ) < δ for all

θ ∈ Θ, we get

d

dθ

ÃX
s

ps(θ)π
∗∗
s (θ)

!
< δ

"
−M
pn(θ)

+

Z θ

θ

P
s ps(x)c

0
s(x)q

∗∗
s (x)

pn(x)
dx

#
−
X
s

ps(x)c
0
s(x)q

∗∗
s
(x)

≤ δ

"
−M
²
+

Z θ

θ

P
s c
0
s(x)q

∗∗
s (x)

²
dx

#
−
X
s

²c0s(x)q
∗∗
s
(x), (6)

where the second line follows because ² ≤ ps(θ) ≤ 1 for all s ∈ {1, ..., n} and all θ ∈ Θ. For

sufficiently low δ, the right-hand side of (6) is negative, so d
dθ
(
P

s ps(θ)π
∗∗
s (θ)) < 0. Hence,

for sufficiently low δ, the EIRθ constraints are satisfied for all θ ∈ Θ.

It now remains to check that the solution to the regulator’s relaxed problem satisfies

ICθ,bθ for all θ,bθ ∈ Θ. Substituting the transfers defined by equations (23) and (24) in the

paper into the ICθ,bθ, recalling that rs(θ) ≡ ps(θ)
pn(θ)

and simplifying, the constraint becomes

Z θ

θ

X
s

rs(x)c
0
s(x)q

∗∗
s (x)dx−

Z θ

bθ
X
s

rs(x)c
0
s(x)q

∗∗
s (x)dx (7)

≥
X
s

rs(θ)
h
cs(bθ)− cs (θ)i q∗∗s (bθ), ∀θ,bθ ∈ Θ.

Now suppose that bθ 6= θ. Then, (7) becomesZ bθ
θ

X
s

rs(x)c
0
s(x)q

∗∗
s (x)dx ≥

X
s

rs(θ)
h
cs(bθ)− cs (θ)i q∗∗s (bθ), ∀θ,bθ ∈ Θ.
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Integrating the left-hand side by parts, we get

X
s

h
rs(bθ)cs(bθ)q∗∗s (bθ)− rs(θ)cs(θ)q∗∗s (θ)i− Z bθ

θ

X
s

cs(x) [r
0
s(x)q

∗∗
s (x) + rs(x)q

∗∗0
s (x)] dx

≥
X
s

rs(θ)
h
cs(bθ)− cs (θ)i q∗∗s (bθ), ∀θ,bθ ∈ Θ.

Rearranging terms and using the fact that rs(bθ)− rs(θ) = R bθθ r0s(x)dx and q∗∗s (bθ)− q∗∗s (θ) =R bθ
θ
q∗∗0s (x)dx, Z bθ

θ

X
s

r0s(x)cs(bθ)q∗∗s (bθ)dx+ Z bθ
θ

X
s

rs(θ)cs(θ)q
0∗∗
s (x)dx

≥
Z bθ
θ

X
s

cs(x) [r
0
s(x)q

∗∗
s (x) + rs(x)q

∗∗0
s (x)] dx, ∀θ,bθ ∈ Θ.

Rearranging terms once again and multiplying both sides of the inequality by 2

(bθ−θ)2 ,
2³bθ − θ
´2 Z bθ

θ

X
s

−q0∗∗s (x) [rs(x)cs(x)− rs(θ)cs(θ)] dx (8)

≥ 2³bθ − θ
´2 Z bθ

θ

X
s

−r0s(x)
h
cs(bθ)q∗∗s (bθ)− cs(x)q∗∗s (x)i dx, ∀θ,bθ ∈ Θ.

We now establish that as δ goes to 0, the left-hand side of (8) converges to a strictly

positive term while the right-hand side has an upper bound that converges to 0. We begin

with the right-hand side of (8). Since rs(x) =
ps(x)
pn(x)

, −r0s(x) = ps(x)p0n(x)−p0s(x)pn(x)
(pn(x))

2 . But

since by assumption, |p0s(·)| < δ and ² ≤ ps(θ) ≤ 1, it follows that −r0s(x) ≤ 2δ
²2
. Using this
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inequality and the fact that c0s(·) ≥ 0 and q∗∗0s (·) ≤ 0, yields

2³bθ − θ
´2 Z bθ

θ

X
s

−r0s(x)
h
cs(bθ)q∗∗s (bθ)− cs(x)q∗∗s (x)i dx

=
2³bθ − θ
´2 Z bθ

θ

X
s

−r0s(x)
"Z bθ

x

[c0s(z)q
∗∗
s (z) + cs(z)q

0∗∗
s (z)] dz

#
dx

≤ 2³bθ − θ
´2 Z bθ

θ

X
s

2δ

²2

"Z bθ
x

c0s(z)q
∗∗
s (z)dz

#
dx

≤ 2³bθ − θ
´2 Z bθ

θ

X
s

2δ

²2

"
c0s(θ)q

∗∗
s (θ)

Z bθ
x

dz

#
dx

=
2³bθ − θ
´2 Z bθ

θ

X
s

2δ

²2

h
c0s(θ)q

∗∗
s (θ)

³bθ − x´i dx
=

2³bθ − θ
´2X

s

2δ

²2
c0s(θ)q

∗∗
s (θ)

³bθ − θ
´2

2

=
2δ

²2

X
s

c0s(θ)q
∗∗
s (θ).

Clearly, this expression converges to 0 as δ goes to 0. As for the left-hand side of (8), recall

that for all s ∈ {1, ..., n} and all θ ∈ Θ, q∗∗
s
(θ) ≤ q∗∗s (θ) ≤ q∗∗s (θ). Since q∗∗0s (·) ≤ 0, it follows

that q ∈
h
q∗∗
s
(θ), q∗∗s (θ)

i
. Let

k ≡ max
s
max
q

n
|S”(q)| | q ∈

h
q∗∗
s
(θ), q∗∗s (θ)

io
,

be the upper bound on |S”(q∗∗(θ))|. Then, equation (22) in the paper implies that

−q0∗∗s (θ) =
c0s(θ) + (1− α)

³
c”s(θ)

F (θ|n)
f(θ|n) + c

0
s(θ)

d
dθ

³
F (θ|n)
f(θ|n)

´´
|S” (q∗∗s (θ))|

≥ c
0
s(θ)

k
.

Using this inequality, noting that rs(·) ≡ ps(·)
pn(·) ≥ ², and recalling that −r0s(·) ≤ 2δ

²2
and
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c0s(·) > 0, we get

2³bθ − θ
´2 Z bθ

θ

X
s

−q0∗∗s (x) [rs(x)cs(x)− rs(θ)cs(θ)] dx

=
2³bθ − θ
´2 Z bθ

θ

X
s

−q0∗∗s (x)
·Z x

θ

[r0s(z)cs(z) + rs(z)c
0
s(z)] dz

¸
dx

≥ 2³bθ − θ
´2 Z bθ

θ

X
s

−q0∗∗s (x)
·Z x

θ

·
−2δ
²2
cs(z) + ²c

0
s(z)

¸
dz

¸
dx

≥ 2³bθ − θ
´2 Z bθ

θ

X
s

−q0∗∗s (x)
·Z x

θ

·
−2δ
²2
cs(θ) + ²c

0
s(θ)

¸
dz

¸
dx 

=
2³bθ − θ
´2 Z bθ

θ

X
s

−q0∗∗s (x)
·
−2δ
²2
cs(θ) + ²c

0
s(θ)

¸
(x− θ)dx

≥ 2³bθ − θ
´2X

s

c0s(θ)
k

·
−2δ
²2
cs(θ) + ²c

0
s(θ)

¸ ³bθ − θ
´2

2

=
X
s

c0s(θ)
k

·
−2δ
²2
cs(θ) + ²c

0
s(θ)

¸
.

As δ go es to 0, thi s expression converges to
P

s
(c0s(θ))

2²
k

> 0. Hence, for a sufficiently small

δ, (8) holds, implying that ICθ,bθ holds for all θ,bθ ∈ Θ. ¥
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