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1 Introduction

One of the cornerstones of economic analysis is the assumption that economic agents are ra-
tional and self-interested. Among other things, rationality typically includes the assumption
that agents correctly perceive material payoffs and choose actions to maximize these payoffs.
This assumption is often justified either formally or informally by appealing to evolutionary
arguments. For example, in their classic work, Alchian (1950) and Friedman (1953) argue that
profit maximization is a reasonable assumption for characterizing outcomes in competitive mar-
kets because firms that fail to maximize their profits will be driven out of the market by more
profitable rivals. Similar arguments that consumers behave “as if” maximizing their material
payoffs due to myriad market forces that exploit non-optimal behavior are pervasive.

Despite its central role in economic analysis, the assumption that economic agents behave
as if maximizing their material payoffs is at odds with a large body of evidence from psy-
chology and from experimental economics suggesting that individuals often pursue objectives
other than actual payoff maximization. Observed departures from material payoff maximizing
behavior routinely arise through actions that are altruistic or spiteful, that favor fairness or
reciprocity, or that show concern for relative payoffs. Individuals often demonstrate inaccurate
assessments of their environments, including their own abilities, payoffs, and probabilistic assess-
ments. For example, people are frequently overconfident, with voluminous evidence suggesting
that the ranks of the overconfident include judges (Guthrie, Rachlinski and Wistrich, 2001),
psychologists (Oskamp, 1965), physicians (Christensen-Szalanski and Bushyhead, 1981), engi-
neers (Kidd, 1970), entrepreneurs (Camerer and Lovallo, 1999; Cooper et al., 1988), negotiators
(Babcock and Loewenstein, 1997), securities analysts (Froot and Frankel, 1989; De Bondt and
Thaler, 1985), and managers (Russo and Schoemaker, 1992). In many experiments, subjects
sacrifice personal payoffs to reward or punish others, or for purely altruistic reasons.Evidence
also suggests that the nature of these departures may vary with the context or nature of in-
teraction. For example, Roth et al. (1991) show that behavior quickly and robustly conforms
with payoff maximization in market experiments, while the same subjects robustly fail to play
the payoff-maximizing subgame perfect equilibria in ultimatum bargaining games.1

Motivated in part by this evidence, a large body of literature has recently emerged that
examines the evolutionary foundations of preferences. Far from validating informal evolution-
ary arguments for payoff-maximizing behavior, this work shows that many different systematic
departures from payoff maximization may survive evolutionary pressures in various models.
Individuals in these models may have preferences that differ from their true material payoffs
due, for example, to concerns about fairness (Güth and Yaari 1992, Huck and Oechssler 1998),
social status (Fershtman and Weiss 1997, 1998), altruism (Bester and Güth 1998), spite (Pos-
sajennikov 2000, Bolle 2000), envy (Bergman and Bergman, 2000), relative rather than absolute
success (Koçkesen, Ok, and Sethi 2000a, 2000b), or overconfidence (Kyle and Wang 1997, Benos
1998). The main results in these papers show that such biases or dispositions may be evolu-
tionarily stable in particular models, and thus immune to the appearance of rational “mutants”
who maximize their actual material payoffs.2

1For example, see Chapter 2 of Camerer (2003) for an extensive discussion of this literature.
2The indirect evolutionary approach, where players’ preferences rather than strategies evolve over time, is

also employed by Dekel and Scotchmer (1999), Dufwenberg and Güth (1999), Rogers (1994), Robson (1996a,b),

2



In this paper, we extend these results in several directions. First, rather than focusing on
a particular model or parametric specification for payoff and bias functions, we seek general
conditions under which results about the evolution of preferences are valid. Second, we focus on
characterizing the evolutionary dynamics of the distribution of preferences, and on characteriz-
ing the support of the limiting distribution, rather than on the evolutionary stability of certain
population profiles as in other recent work on the evolution of preferences in general games,
including Dekel, Ely, and Yilankaya (2005) and Ely and Yilankaya (2001).3 Developing a truly
dynamic evolutionary model of the evolution of preferences is necessary for actually making
predictions based on such models. Results based solely on evolutionary stability are essentially
static in nature. As such, they can help explain the immunity of a particular population profile
to sporadic mutations, but say nothing about whether competitive selection could ever lead to
such population profiles given arbitrary initial states, and consequently say little about which
distributions are actually likely to emerge. Thus it is important to establish results that are
dynamic and that predict long-run outcomes corresponding to a wide range of initial population
distributions.

The idea that in strategic situations players may gain an advantage from having an objective
function different from actual payoff maximization dates back at least to Schelling (1960), and
his discussion of the commitment value of decision rules. The same ideas can be seen in the
work on strategic delegation (e.g., Fershtman and Judd (1987) and Katz (1991)). Considered
in this light, the intuition for the survival of various biases is fairly straightforward. Having
a disposition has two effects on a player’s payoff: a direct effect, through the player’s own
actions, and an indirect effect, by influencing other players’ actions. The direct effect of a
small nonzero degree of bias must always be negligible, as it results from a slight deviation
from payoff-optimizing behavior, yet the indirect effect resulting from the induced changes in
opponents’ actions may easily not be negligible. In a companion paper (Heifetz, Shannon and
Spiegel, forthcoming), we demonstrate this general principle behind much of the work on the
evolution of preferences, and show that the emergence of dispositions is in fact generic: in
almost every game and for almost every family of distortions of a player’s actual payoffs, some
degree of this distortion is beneficial to the player. Consequently, any such distortions will not
be driven out by any payoff-monotonic selection dynamics. In the current paper we complement
these results by developing a methodology that allows us to uniquely characterize the limiting
distribution of preferences in the population for a wide class of strategic interactions.

To establish our results we adopt the indirect evolutionary approach, positing that evolution-
ary selection dynamics operate on preferences based on the equilibrium payoffs that individuals
with these preferences obtain. The individuals choose actions in the underlying game based
on their perceived payoff functions, and then receive payoffs according to their actual payoff
functions. Thus the evolutionary fitness of a particular type is based on the equilibrium payoffs
in an artificial second stage “types” game with payoff functions given by the actual payoffs in-
duced in equilibrium given the play of each type. We show that if this types game is dominance

Waldman (1994), and Vega-Redondo (1997). See also further references below.
3Other fully dynamic models of the evolution of preferences include Huck, Kirchsteiger, and Oechssler (forth-

coming) who consider the emergence of an endowment effect in bargaining and Sandholm (2001) who considers
individual dispositions towards particular strategies. Apart from the general context, these papers differ from
ours in that the dynamics in Huck, Kirchsteiger, and Oechssler (forthcoming) is not shown to converge in the
long-run, whereas Sandholm only studies 2x2 normal form games.
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solvable, then given any initial distribution with full support and any payoff monotonic selec-
tion dynamics, the population distribution converges to a point mass at the unique type profile
that survives the iterated elimination of strictly dominated strategies in the types game. Our
results follow from the more general result that any serially dominated strategy must eventually
become extinct under payoff-monotonic selection dynamics, which we establish by extending
results of Samuelson and Zhang (1992) to games with a continuum of actions. This method-
ology allows us to determine the long run population dynamics in a relatively straightforward
way.

The paper is organized as follows. Section 2 develops the evolutionary framework and con-
tains our main results. In Section 3 we illustrate applications of our methodology by studying
two types of dispositions: perception biases (such as optimism and pessimism) and interdepen-
dent preferences (such as altruism and spite). In each case we are able to characterize the unique
level of disposition to which the population converges over time under any payoff-monotonic
selection dynamics. In Section 4 we show that our methodology can be adapted to cases where
preferences are only imperfectly observed. We consider two alternative settings: (i) preferences
are perfectly observed in some fraction of interactions but unobserved in others, and (ii) the
model involves costly signaling of preferences. In both settings we are able to completely char-
acterize the limiting distribution of types. Section 5 extends our main example to cases in
which there may be payoff uncertainty. Section 6 concludes, and the Appendix collects several
lengthy proofs.

2 A general analysis

2.1 Payoffs and dispositions

Two players, i and j, engage in strategic interaction. The strategy spaces of the two players
are Xi = Xj ⊂ R. Typical strategies are denoted xi and xj.We consider a symmetric game in
which the payoffs of the two players are given by

Πi(xi, xj) ≡ Π(xi, xj), Πj(xi, xj) ≡ Π(xj , xi),
for a function Π : R2 → R.

In the course of their strategic interaction, the players perceive their payoffs to be

U i(xi, xj, τ i) ≡ Πi(xi, xj) +Bi(xi, xj, τ i), (2.1)

U j(xi, xj, τ j) ≡ Πj(xi, xj) +Bj(xi, xj, τ j),

where
Bi(xi, xj , τ i) ≡ B(xi, xj , τ i), Bj(xi, xj, τ j) ≡ B(xj, xi, τ j),

for a function B : R3 → R. The functions Bi and Bj are the dispositions of players i and j,
and τ i and τ j are the players’ types.4 Types are drawn from the compact set T = [τ , τ ] ⊆ R,
where τ < 0 < τ . The dispositions drive a wedge between the objectives of the players, which

4We assume symmetry of payoffs and dispositions, because in what follows we restrict attention to a scenario
in which the two players are drawn from one large population.
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are to maximize their perceived payoffs U i and U j , and their eventual realized payoffs Πi and
Πj . In the next section we provide two examples for individual dispositions: perception biases
(such as optimism or pessimism) and interdependent preferences (such as altruism or spite).

Moreover, as a normalization we assume that

Bi(xi, xj, 0) ≡ Bj(xi, xj , 0) ≡ 0.

That is, a type 0 player has no disposition and hence maximizes his actual payoff.5

Let Γ = (Xi,Xj ,Πi,Πj, Bi,Bj) denote the game in which players i and j choose actions
xi and xj , respectively, to maximize their perceived payoffs, U i(·, τ i) and U j(·, τ j), and obtain
true payoffs Πi and Πj . We will maintain the following assumption about Γ:

Assumption A: The game Γ has a unique pure strategy equilibrium (bxi(τ i, τ j), bxj(τ i, τ j)) for
each (τ i, τ j) ∈ T × T .

Because we adopt the indirect evolutionary approach, we will measure the “fitness” of
a type through the payoffs that type achieves in equilibrium play of the underlying game
Γ. Obtaining positive results about the convergence of types requires determining how these
equilibrium payoffs change as the type profile (τ i, τ j) changes. For some classes of games it
may be possible to characterize these changes in equilibrium payoffs uniformly across multiple
equilibria. For such games, it may be possible to extend our basic methodology. For many games
with multiple equilibria, however, the comparative statics of equilibrium payoffs in response to
changes in the types τ i and τ j will differ for different equilibria. Deriving positive results
concerning the convergence of evolutionary dynamics for such games would then require some
theory of equilibrium selection, or a more explicit dynamic model in which the selection becomes
endogenous. Because we seek general results that may hold across a variety of problems,
we therefore maintain the assumption that the underlying game has a unique pure strategy
equilibrium for each profile of types.

The issues involving multiple equilibria in our setting also highlight the differences between
the dynamic results we establish and the static results regarding evolutionary stability that
are the focus of much of the literature on the evolution of preferences. Because evolutionary
stability is both local and static, characterizations of evolutionary stability can be derived
in the presence of multiple equilibria in the underlying game by conditioning on a particular
equilibrium. Moreover, most of these results seek characterizations of evolutionarily stable
preference and action profiles without simultaneously addressing the issue of the existence of
such profiles; not surprisingly, assumptions for such results may be more general.6

Simple well-known sufficient conditions can be given on the payoff and disposition functions
under which Assumption A holds. For these conditions, we assume that Πi,Πj, Bi and Bj are

5Notice that this formulation in terms of an additive disposition term is equivalent to specifying instead that
a player has preferences given by a utility function U i(xi, xj, τ ) such that U i(xi, xj , 0) ≡ Πi(xi, xj). To see this,
given such a utility function simply set Bi(xi, xj, τ ) ≡ U i(xi, xj , τ)−Πi(xi, xj).

6For example, existence is an issue for Dekel, Ely, and Yilankaya (2005) in the case of partially observable
preferences as a by-product of the tension between efficiency, which they show is necessary for stability in the
case of observable preferences, and Nash equilibrium, which is necessary for stability in the unobservable case.
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C2. In what follows, to simplify notation we often denote partial derivatives by

Πi
i(x

i, xj) ≡ ∂Πi

∂xi
(xi, xj), Πi

j(x
i, xj) ≡ ∂Πi

∂xj
(xi, xj),

Πi
ii(x

i, xj) ≡ ∂2Πi

(∂xi)2
(xi, xj), Πi

ij(x
i, xj) ≡ ∂2Πi

∂xi∂xj
(xi, xj),

with analogous notation for partial derivatives of Πj, Bi, Bj , U i, and U j.

We note several simple sufficient conditions under which Assumption A holds below.

Assumption A1: U i is C2 and differentiably strictly concave in xi, i.e., U i
ii(x

i, xj, τ i) < 0 for
all (xi, xj , τ i) ∈ R2 × T ; analogously for U j.

Assumption A2: U i isC2 and there exists ε > 0 such that |U i
ij(x

i, xj, τ i)| < (1−ε)|U i
ii(x

i, xj, τ i)|
for all (xi, xj , τ i) ∈ R2 × T ; analogously for U j.

Assumption A1 ensures that players’ best response functions are implicitly defined by the
first order conditions

U i
i (x

i, xj, τ i) = Πi
i(x

i, xj) +Bi
i(x

i, xj, τ i) = 0,

U j
j (x

i, xj , τ j) = Πj
j(x

i, xj) +Bj
j (x

i, xj , τ j) = 0,

provided their best responses are always interior. When the strategy sets Xi and Xj are convex
and best responses are well-defined, Assumption A2 ensures that the slope of each player’s best-
response function is uniformly less than 1 in absolute value. This implies in turn that there is
a unique Nash equilibrium in this game.7 Assumption A2 also ensures the stronger result that
myopic best-reply dynamics, in which each player plays a best reply to the previous action of
the opponent, will converge to the unique Nash equilibrium. This may justify the assumption
that individuals play the unique Nash equilibrium even if initially they do not observe each
other’s type.

Under Assumptions A1 and A2, the unique interior Nash equilibrium in the game given
types (τ i, τ j), (bxi(τ i, τ j), bxj(τ i, τ j)), is implicitly defined by the following two equations:

Πi
i(bxi(τ i, τ j), bxj(τ i, τ j)) +Bi

i(bxi(τ i, τ j), bxj(τ i, τ j), τ i) = 0,

Πj
j(bxi(τ i, τ j), bxj(τ i, τ j)) +Bi

j(bxi(τ i, τ j), bxj(τ i, τ j), τ j) = 0.

2.2 The types game

To study the evolution of dispositions, we adopt the indirect evolutionary approach. Given
Assumption A, the true payoffs of players i and j in the unique Nash equilibrium of the primitive
game Γ are:

f i(τ i, τ j) ≡ Πi
¡bxi(τ i, τ j), bxj(τ i, τ j)¢ and f j(τ i, τ j) ≡ Πj

¡bxi(τ i, τ j), bxj(τ i, τ j)¢ . (2.2)

7The uniformity requirement is needed to guarantee that the best-response functions actually intersect, and
thus that an equilibrium exists.
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We now consider a “types game” in which each player chooses a type τ i, τ j ∈ T = [τ , τ ],
and receives a payoff according to the fitness functions f i and f j . Notice that since the original
underlying game is symmetric, and all individuals have the same true payoff function Π, the
types game is also symmetric, that is, f i(τ i, τ j) = f j(τ j, τ i) for each (τ i, τ j) ∈ T × T . In what
follows, we will therefore omit the superscripts i and j from the function f(·, ·) whenever this
does not cause confusion.

To characterize the dynamic evolution of types, we will assume for many of our results that
this derived types game is dominance solvable.

Assumption B: The types game T = (T,T, f i, f j) is dominance solvable.

As with Assumption A, the strength of Assumption B is a function of the strength of the
results we seek. We show both that the distribution of types in the population converges under
a broad class of selection dynamics, and characterize the support of the limit distribution. As
with Assumption A, the particular features of certain classes of games may allow our general
methodology to be used to obtain these results in the absence of dominance solvability. A
notable example is given below in Theorem 3, in which we characterize the limit distribution
for fitness games with strategic complementarities.

We note that as with Assumption A, well-known conditions on the fitness functions f i and
f j are sufficient to ensure that Assumption B holds.

Assumption B1: f i is C2 and differentiably strictly concave in τ i, i.e., f i
ii(τ

i, τ j) < 0 for all
(τ i, τ j) ∈ T × T ; analogously for f j .

Assumption B2: |f i
ij(τ

i, τ j)| < |f i
ii(τ

i, τ j)| for all (τ i, τ j) ∈ T × T ; analogously for f j .

Assumption B1 ensures that the types game is well-behaved. Assumption B2 implies that
the slope of each player’s best-response function in the types game is less than 1 in absolute
value.8 Under Assumption B1, an interior Nash equilibrium in the types game is defined
implicitly by the following pair of equations:

f i
i (τ

i, τ j) = 0, f j
j (τ

i, τ j) = 0.

Since the types game is symmetric, the unique Nash equilibrium in the types game is also
symmetric and given by (bτ ,bτ). If bτ is interior it is defined implicitly by the equation f i

i (bτ ,bτ) ≡ 0.
Lemma 1 Under Assumption A and Assumptions B1 and B2, the types game T is dominance
solvable. The unique strategy profile that survives iterated elimination of strictly dominated
strategies is the unique symmetric Nash equilibrium (bτ ,bτ).

8We have chosen to state Assumptions B1 and B2 in terms of the derived payoff functions in the type game.
There are corresponding conditions in terms of the payoff functions in the original underlying game, Π, but they
involve complex expressions that include third-order derivatives of Π which do not yield much additional insight.
As we show in the applications that follow, we suspect it will be easier to simply check these conditions directly
on the derived fitness functions.
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Moreover, if (bxi(0, 0), bxj(0, 0)) ∈ int (Xi×Xj), then under Assumptions A1-A2 and B1-B2,

sign bτ = sign f i
i (0, 0)

= sign Πi
j(bxi(0, 0), bxj(0, 0))Πi

ij(bxi(0, 0), bxj(0, 0))Bi
iτ i(bxi(0, 0), bxj(0, 0), 0).

Proof. To prove dominance solvability of the types game, we appeal to Theorem 4 in
Moulin (1984) (see also Rosen (1965)). By this result, it suffices to show that

(i) The strategy set of each player is a one-dimensional compact interval;

(ii) The payoff function of each player is continuous, twice differentiable, and strictly concave
with respect to the player’s strategy;

(iii) The slope of each player’s best-response function is less than 1 in absolute value.9

Condition (i) is satisfied in the types game because the set of possible types for each player
is the compact interval T = [τ , τ ]. Assumptions B1 and B2 ensure that conditions (ii) and
(iii) are satisfied. Hence, the types game is dominance solvable and the unique outcome that
survives iterated elimination of strictly dominated strategies is the unique Nash equilibrium
(bτ ,bτ).

To establish the sign of bτ , recall that
f i(τ i, τ j) = Πi(bxi(τ i, τ j), bxj(τ i, τ j)).

Then bτ is interior iff it satisfies the equation f i
i (bτ ,bτ) = 0. Otherwise, bτ = τ (bτ = τ) if

f i
i (τ , τ) < 0 (> 0) for all τ ∈ (τ , τ ). Since f i

i (·, ·) is continuous, these three cases completely
characterize the possible values of bτ . Using this observation together with Assumptions B1 and
B2, we conclude that bτ > 0 if f i

i (0, 0) > 0 and bτ < 0 if f i
i (0, 0) < 0. Thus to determine the sign

of bτ , it suffices to determine the sign of f i
i (0, 0). To this end, note that bxi and bxj are C1 in a

neighborhood of (0, 0) by Assumption A2 and the implicit function theorem, and

f i
i (0, 0) = Πi

i(bxi(0, 0), bxj(0, 0))∂bxi∂τ i
(0, 0) +Πi

j(bxi(0, 0), bxj(0, 0))∂bxj∂τ i
(0, 0)

= Πi
j(bxi(0, 0), bxj(0, 0))∂bxj∂τ i

(0, 0),

where the second equality follows from the fact that Πi
i(bxi(0, 0), bxj(0, 0)) = 0.

To find an expression for ∂bxj

∂τ i
(0, 0), recall that bxi and bxj solve the equations

Πi
i(bxi(τ i, τ j), bxj(τ i, τ j)) +Bi

i(bxi(τ i, τ j), bxj(τ i, τ j), τ i) = 0,

Πj
j(bxi(τ i, τ j), bxj(τ i, τ j)) +Bj

j (bxi(τ i, τ j), bxj(τ i, τ j), τ j) = 0.

In what follows, we will occasionally simplify by abusing notation slightly and denotingΠi
i(τ

i, τ j) =
Πi

i(bxi(τ i, τ j), bxj(τ i, τ j)) and analogously for Bi and other derivatives thereof. We will also

9Note that under our assumptions, this is equivalent to the dominant diagonal condition in Assumption B2.
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make use of our normalization, Bi(xi, xj, 0) ≡ Bj(xi, xj , 0) ≡ 0, from which it follows that
Bi

ii(x
i, xj , 0) = Bi

ij(x
i, xj , 0) = Bj

jj(x
i, xj, 0) = Bj

ji(x
i, xj , 0) = 0 for any (xi, xj).

Now by the implicit function theorem,

∂bxj
∂τ i

(0, 0) =
1

J(0, 0)

³
Πj

ji(bxi(0, 0), bxj(0, 0)) +Bj
ji(bxi(0, 0), bxj(0, 0), 0)´Bi

iτ i(bxi(0, 0), bxj(0, 0), 0)
=

1

J(0, 0)
Πj

ji(bxi(0, 0), bxj(0, 0), 0)Bi
iτ i(bxi(0, 0), bxj(0, 0), 0),

where the second equality follows from our normalization, and

J(τ i, τ j) ≡ det
Ã
Πi

ii(τ
i, τ j) +Bi

ii(τ
i, τ j) Πi

ij(τ
i, τ j) +Bi

ij(τ
i, τ j)

Πj
ji(τ

i, τ j) +Bj
ji(τ

i, τ j) Πj
jj(τ

i, τ j) +Bj
jj(τ

i, τ j)

!
.

Again by our normalization,

J(0, 0) = det

Ã
Πi

ii(bxi(0, 0), bxj(0, 0)) Πi
ij(bxi(0, 0), bxj(0, 0))

Πj
ji(bxi(0, 0), bxj(0, 0)) Πj

jj(bxi(0, 0), bxj(0, 0))
!

.

Substituting and using the symmetry yields

f i
i (0, 0) =

1

J(0, 0)
Πi

j(bxi(0, 0), bxj(0, 0))Πi
ij(bxi(0, 0), bxj(0, 0))Bi

iτ i(bxi(0, 0), bxj(0, 0), 0).
The desired conclusion then follows by noting that J(0, 0) > 0 as a consequence of Assumptions
A1 and A2.

When there is a unique type in the support of the limiting distribution, the interpretation of
the sign of this type is largely a matter of conventions chosen in the modeling of the disposition
family B. Hence the crucial point is whether this value is zero, corresponding to a population
of payoff-maximizing agents, or non-zero. The second part of Lemma 1 illustrates a clear
intuition for determining the value of this type. For example, when agents’ actions are strategic
complements in the underlying game, a higher action by one agent leads to a higher action by
the other. When there are positive externalities in the underlying game, this benefits the agents,
and when types and actions are complements in the disposition function, a higher type induces
a higher action by the agent. Together these forces lead to the emergence of a positive type in
the limit. Similarly, negative externalities, strategic substitutability of actions, or substitutes
in the type-action interaction reverse this prediction.

2.3 The evolutionary dynamics of dispositions

To study how dispositions evolve, suppose that there is a continuum of individuals of different
types. We consider a continuous-time model in which at each point t ≥ 0 in time, this population
is characterized by the distribution Gt ∈ ∆(T ), where ∆(T ) denotes the set of Borel probability
distributions over T . We assume that the initial distribution G0 has full support over T . At
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each instant in time, individuals are randomly matched in pairs to play the game Γ. The
average fitness levels of individuals of type τ at time t is then given byZ

f(τ , τ 0)dGt(τ
0).

Recall that, due to the symmetry in the types game, we have dropped the superscripts i and j
here, and will do so in what follows.

We assume that the selection dynamics are monotonically increasing in average fitness. That
is, we assume that the distribution of types evolves according to the differential equation:

d

dt
Gt(S) =

Z
S

g(τ ,Gt)dGt(τ), S ⊆ T Borel measurable, (2.3)

where g : T ×∆(T )→ R is a continuous growth-rate function satisfying

g(τ ,Gt) > g(τ̃ , Gt) ⇐⇒
Z

f(τ , τ 0)dGt(τ
0) >

Z
f(τ̃ , τ 0)dGt(τ

0). (2.4)

To ensure that Gt remains a probability measure for each t, we also assume that g satisfiesZ
T

g(τ ,Gt)dGt = 0 for each t. (2.5)

Equations (2.3)-(2.5) reflect the idea that the proportion of more successful types in the popu-
lation increases from one period to another at the expense of less successful types. This may be
due to the fact that more successful individuals have more descendants, who then inherit their
parents’ preferences either genetically or by education. An alternative explanation is that the
decision rules of more successful individuals are imitated more often.

The same mathematical formulation is also compatible with the assumption that successful
types translate into stronger influence rather than numerical proliferation. Under this in-
terpretation, not all individuals are matched to play in each period; instead more successful
individuals take part in a larger share of the economic interactions, and so are matched to play
with a higher probability.

To guarantee that the differential equation (2.3) has a well-defined solution, we require some
additional regularity conditions on the selection dynamics as follows.

Definition 1 (Regular dynamics) A growth rate function g : T ×∆(T ) → R is called regular
if g can be extended to the domain T × Y, where Y is the set of signed Borel measures with
variational norm smaller than 2, such that on this extended domain, g is uniformly bounded
and uniformly Lipschitz continuous. That is, there exist constants M,K > 0 such that

sup
τ∈T

|g(τ ,Gt)| < M, sup
τ∈T

¯̄̄
g(τ ,Gt)− g(τ , eGt)

¯̄̄
< K

°°°Gt − eGt

°°° , ∀Gt, eGt ∈ Y,

where kµk = sup
|h|≤1

¯̄R
R hdµ

¯̄
denotes the variational norm of the signed measure µ.

The dynamics {Gt, t ≥ 0} are called regular if Gt solves the differential equation (2.3) for
some regular growth rate function g.

10



Oechssler and Riedel (2001, Lemma 3) prove that regularity of the dynamics guarantees
that the mapping G 7→ R

T
g(·, G)dG is bounded and Lipschitz continuous in the variational

norm, from which it follows that the differential equation in the space of distributions ∆(T )
defined by

d

dt
Gt(S) =

Z
S

g(τ ,Gt)dGt(τ), S ⊆ T Borel measurable,

has a unique solution for any initial distribution G0.

A special case of the class of growth rate functions that we consider is the familiar replicator
dynamics introduced by Taylor and Jonker (1978) for distributions with a finite support, and
by Oechssler and Riedel (2001) for general distributions. The more general selection dynamics
that we consider may be appropriate when the reproduction process of types is not purely
biological, but rather relies on education or imitation (see e.g., Weibull 1995, Section 4.4).

Having defined our general class of selection dynamics, we now seek to answer the follow-
ing question: starting from some initial distribution, G0, how will the distribution of types Gt

evolve over time under such regular, payoff-monotonic dynamics? To provide an answer, we
first establish the following theorem, which generalizes results in Samuelson and Zhang (1992)
to the case of games with infinitely many strategies. This theorem establishes the result that
any serially dominated strategy must eventually become extinct under any payoff-monotonic
selection dynamics. As a particular implication, in a dominance solvable game any such dynam-
ics must converge in distribution, and converge to a point mass at the unique action surviving
the iterated elimination of strictly dominated strategies.

To state this result we need some additional notation. In keeping with our basic framework
and applications, we state the result for symmetric two-player games with a compact strategy
space; note however that the result carries over to asymmetric games with virtually the same
proof. We consider a symmetric game with common strategy space T ⊂ R and payoff function
f : T × T → R. Let D denote the set of serially dominated strategies in this game, so that
D = ∪∞n=0Dn where D0 = ∅ and for n ≥ 1,

Dn = {t ∈ T \Dn−1 : ∃s ∈ T \Dn−1 such that f(s, r) > f(t, r) ∀r ∈ T \Dn−1}.

Analogously, let U denote the set of serially undominated strategies in this game, so that
U = T \D. Equivalently, U = ∩∞n=0Un where U0 = T and for n ≥ 1,

Un = {t ∈ T \Dn−1 : ∀s ∈ T \Dn−1 ∃r ∈ T \Dn−1 s.t. f(t, r) ≥ f(s, r)}.

Theorem 1 Let T ⊂ R be a compact set of strategies, f : T ×T → R be the continuous payoff
function of a symmetric two-player game, and g : T ×∆(T )→ R a regular, payoff monotonic
growth-rate function. Let Gt be the population dynamics defined by the differential equation

d

dt
Gt(S) =

Z
S

g(t,Gt)dGt, S ⊆ T Borel measurable

given initial distribution G0 with full support on T . For every strategy d ∈ D there is a neigh-
borhood Wd ⊂ T such that lim

t→∞Gt(Wd) = 0. In particular, if the game is dominance solvable,

so that U = {u} for some u ∈ T , then Gt converges in distribution to the unit mass at u.

11



Proof. We prove by induction that for each n, Un is compact, and for every strategy d ∈ Dn

there is a neighborhood Wd ⊂ T for which lim
t→∞Gt(Wd) = 0.

Since D0 = ∅ and U0 = T, the claim holds for n = 0. If D1 = ∅ as well, i.e. no strategies
are strictly dominated, then the claim holds vacuously. So without loss of generality assume
D1 6= ∅. Now suppose that the claim holds for n < k.

We first prove that Uk is compact. Since Uk ⊂ T and T is compact, it suffices to show that
Uk is closed. To that end, let {tn} ⊂ Uk and tn → t. Let s ∈ T \Dk−1. Since {tn} ⊂ Uk, for
each n there exists rn ∈ Uk−1 such that f(tn, rn) ≥ f(s, rn). By the inductive hypothesis, Uk−1

is compact, hence {rn} has a convergent subsequence. Without loss of generality, take rn → r
for some r ∈ Uk−1. Then since f is continuous, f(t, r) ≥ f(s, r). Hence t ∈ Uk, which shows
that Uk is closed.

Next we show that for each d ∈ Dk there is an open neighborhoodWd such that lim
t→∞Gt(Wd) =

0. To this end, let d ∈ Dk and let x ∈ Uk−1 be such that

f(x, y)− f(d, y) > 0 for all y ∈ Uk−1.

Let
B = {y ∈ T |f(x, y)− f(d, y) ≤ 0} .

Since f is continuous, B is a compact subset of T , and by choice of d and x, B ⊂ Dk−1. In
particular, B is a proper subset of Dk−1, since Dk−1 is open by the induction hypothesis. Now
let

s =
1

2
sup

y∈Dk−1

[f(x, y)− f(d, y)] ,

and
C = {y ∈ Dk−1|f(x, y)− f(d, y) ≤ s} .

Since B ( Dk−1, it follows that s > 0.

By the induction assumption, for each y ∈ C there exists a neighborhoodWy of y such that
Gt(Wy) → 0. Then {Wy : y ∈ C} is an open cover of C. As C is compact, there is a finite
subcover {Wy1, . . . ,WyK}, and for each t, Gt(C) ≤

P
Gt(Wyk). Thus Gt(C)→ 0 as t→∞.

Now note that by construction,

f(x, y)− f(d, y) > s for all y ∈ Dk−1 \ C

and
f(x, y)− f(d, y) > 0 for all y ∈ T \Dk−1.

Since f is continuous and Uk−1 is compact, there exists s̄ > 0 and open neighborhoods Vx 3 x
and Wd 3 d such that for every x0 ∈ V x and d0 ∈W d,

f(x0, y)− f(d0, y) ≥ s/2 for all y ∈ Dk−1 \ C

and
f(x0, y)− f(d0, y) ≥ s̄ for all y ∈ T \Dk−1.

12



Since f is continuous on the compact set T , there exists a boundM such that |f(w, z)| ≤M
for all (w, z) ∈ T × T . Now set ε = min

©
s
2 , s̄,

1
2

ª
. There exists t̄ such that for each t ≥ t̄,

Gt(C) ≤ ε
8M and Gt(T \ C) > 1− ε. Then for any x0 ∈ V x, d

0 ∈W d and t ≥ t,

f(x0, Gt)− f(d0,Gt) =

Z
T

£
f(x0, y)− f(d0, y)

¤
dGt

=

Z
C

£
f(x0, y)− f(d0, y)

¤
dGt +

Z
T\C

£
f(x0, y)− f(d0, y)

¤
dGt (2.6)

> (−2M)
ε

8M
+ ε(1− ε) ≥ −ε

4
+ ε(1− 1

2
) =

ε

4
.

By the continuity of f, (2.6) holds also when Gt is replaced by any probability measure µ ∈
A ≡ {Gt}t≥t, the closure of {Gt}t≥t in the weak topology.

Now, by the payoff monotonicity of the growth-rate function g, for every µ ∈ A, x0 ∈ V x

and d0 ∈W d,
g(x0, µ)− g(d0, µ) > 0.

The continuous function g(x0, µ)−g(d0, µ) attains its minimum on the compact set V x×W d×
A. Therefore, there exists δ > 0 such that

g(x0,Gt)− g(d0, Gt) ≥ δ for any x0 ∈ V x, d0 ∈W d, and t ≥ t. (2.7)

Then (2.7) also holds if we replace g(x0,Gt) and g(d0, Gt) by their averages in V x and Wd,
respectively. Thus for t ≥ tR

V x
g(y,Gt)dGt

Gt(V x)
−
R
Wd

g(y,Gt)dGt

Gt(Wd)
≥ δ.

Hence, by (2.3), for t ≥ t,

Gt(V x)

Gt(Wd)
≥ Gt(V x)

Gt(Wd)
exp[δ(t− t)]→∞ as t→∞.

Therefore, lim
t→∞Gt(Wd) = 0, as required.

Although we will mainly focus on applications satisfying the general conditions for domi-
nance solvability outlined in the previous section, Theorem 1 has a wide variety of implications
beyond this particular setting. By Theorem 1, any serially dominated strategy will eventually
become extinct under regular payoff-monotonic selection dynamics, so the support of any lim-
iting distribution must be a subset of the set U of serially undominated strategies. In games
where this set can be characterized or computed easily, Theorem 1 gives useful predictions
regarding the dynamic evolutionary outcomes. Our main results give two different instances of
this idea. The first focuses on settings where the types game is dominance solvable because it
satisfies the standard concavity and dominant diagonal conditions in Assumptions A1-A2 and
B1-B2.
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Theorem 2 Suppose that Assumptions A and B are satisfied. Then there exists a unique typebτ ∈ T such that given any initial distribution of types with full support T , the distribution of
types converges in distribution to a unit mass at bτ under any regular, payoff-monotonic selection
dynamics.

Moreover, if (bxi(0, 0), bxj(0, 0)) ∈ int (Xi×Xj), then under Assumptions A1-A2 and B1-B2,

sign bτ = sign f i
i (0, 0)

= sign Πi
j(bxi(0, 0), bxj(0, 0))Πi

ij(bxi(0, 0), bxj(0, 0))Bi
iτ i(bxi(0, 0), bxj(0, 0), 0).

Proof. The first statement follows immediately from Theorem 1. The second follows from
Lemma 1 and Theorem 1.

A second broad class of games to which these results apply is games with strategic com-
plementarities.10 In these games, the set of serially undominated strategies is an interval, with
endpoints given by the smallest and largest pure strategy Nash equilibria in the game. These
endpoints are easily computed by standard best-response iteration algorithms. By Theorem
1, any types outside this set must asymptotically become extinct under any payoff-monotonic
selection dynamics. In addition, under strategic complementarities any symmetric game with
a unique symmetric equilibrium must be dominance solvable; Theorem 1 then implies that
a unique type will survive under any payoff-monotonic selection dynamics. We collect these
results below.

Theorem 3 Suppose T ⊂ R is compact and f : T × T → R satisfies the single crossing
property.11 Let f be the payoff function of a symmetric two-player game, and {Gt, t ≥ 0} be
regular payoff-monotonic dynamics such that G0 has full support T . Then there exist τ , τ ∈ T
with τ ≤ τ such that U = [τ , τ ]. For every τ ∈ T \ [τ , τ ], there exists a neighborhood Wτ of
τ for which Gt(Wτ ) → 0 as t → ∞. If there is a unique symmetric equilibrium (bτ ,bτ) in this
game, then Gt converges in distribution to the unit mass at bτ .

Proof. This follows from Theorem 1 and Theorem 12 of Milgrom and Shannon (1994).

3 Applications

In this section we consider two applications of our main result. In the first application we in-
terpret the dispositions as perception biases - players can differ from one another in terms of
their perceptions of the effects of their actions. Depending on the context, this could represent
over- or under-confidence, optimism or pessimism, or departures from rational expectations and
Bayesian updating with a common prior. In our second application, we consider interdepen-
dent preferences, in which players differ with respect to the weight that they assign to their
opponents’ payoffs in their utility functions.12

10Koçkesen, Ok, Sethi (2000a, 2000b) study the effects of strategic complementarities in the evolutionary
stability of interdependent preferences.
11A function f : T ×T → R satisfies the single crossing property provided that for each τ 01 > τ1, if f(τ 01, τ2) ≥

(>)f (τ1, τ2) for some τ2 ∈ T then f (τ 01, τ
0
2) ≥ (>)f (τ1, τ

0
2) for each τ 02 > τ2. See Milgrom and Shannon (1994).

12 In another important class of examples, Heifetz and Segev (2004) use these results to study the dynamic
emergence of “tough” behavior in a salient class of bargaining mechanisms under asymmetric information.
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3.1 The evolution of perception biases

Our first application can be viewed as an evolutionary explanation for the large body of evi-
dence mentioned in the Introduction on the prevalence of optimism and overconfidence.13 This
application shows that over time, individuals who are unrealistically optimistic about the in-
fluence of their actions will grow in number at the expense of other types, including those with
accurate perceptions, and will eventually take over the entire population.

To study the evolution of perception biases regarding own actions, consider a large pop-
ulation of individuals who are continuously and randomly matched in pairs to interact with
one another. In every pairwise interaction, the matched individuals, i and j choose actions
xi, xj ∈ R. These actions can be thought of as the degree of effort or the level of investment
the individuals put into the interaction.14 Suppose the individuals’ actual payoff functions are
given by

Πi(xi, xj) = (α− bxj − xi)xi, Πj(xi, xj) = (α− bxi − xj)xj, (3.1)

where α > 0 and b ∈ (−1, 1). Note that Πi
j(x

i, xj) = −bxi and Πi
ij(x

i, xj) = b. In this example
xi and xj are both positive in the relevant range, thus when b > 0 the individuals impose
negative externalities on one another (i.e., the larger is j’s action, the lower is i’s payoff), and
moreover, actions are strategic substitutes in the sense of Bulow, Geanakoplos and Klemperer
(1985). In contrast, when b < 0, the individuals impose positive externalities on one another,
and their actions are strategic complements.

Although the payoffs are symmetric, individuals may differ in the way they perceive the
effects of their actions: pessimistic types underestimate the value of α, optimistic types over-
estimate it, and only realistic types assess it correctly. Specifically, individual i perceives the
value of α to be

αi = α+ τ i, τ i ∈ T = [τ , τ ],

and analogously for j. We assume that −α ≤ τ < 0 < α
5 < τ and b2α

4+2b−b2 ∈ T . We assume that
−α < τ in order to ensure that αi and αj are both positive, and assume that α

5 < τ in order
to ensure that equilibria are interior. One interpretation is that τ 6= 0 due to some inherent
psychological bias. Alternatively, αi and αj might represent random variables with true mean
α, with nonzero values of τ i and τ j arising as a result of departures from a common prior, from
rational expectations, or from Bayesian information processing.

For simplicity, we will refer to the type τ as the individual’s perception bias. We will say
that a player is an optimist if τ > 0, a pessimist if τ < 0, and a realist if τ = 0. An optimist
overestimates the return to his actions for any given action taken by the other individual while
a pessimist underestimates it.

Substituting αi and αj for α in equation (3.1), the perceived payoffs of the individuals can

13For an alternative exploration of optimism and self-confidence based on dynamic inconsistency, see for ex-
ample Benabou and Tirole (1999a,b) and Brocas and Carrillo (1999). Compte and Postlewaite (2004) give
another justification for welfare-improving effects of perception biases, based on an interaction between beliefs
and performance.
14For some interpretations, it may be suitable to consider only non-negative actions. Our arguments continue

to hold with such a restriction, though the analysis becomes more involved.

15



be written as

U i(xi, xj, τ i) = (α− bxj − xi)xi + τ ixi, U j(xi, xj, τ j) = (α− bxi − xj)xj + τ jxj. (3.2)

Here the players’ dispositions are Bi(xi, xj, τ i) = τ ixi and Bj(xi, xj, τ j) = τ jxj .

A straightforward calculation establishes that the unique Nash equilibrium of the game with
these utility functions is (bxi(τ i, τ j), bxj(τ i, τ j)), where

bxi(τ i, τ j)=2(α+ τ i)− b(α+ τ j)

4− b2
, bxj(τ i, τ j)=2(α+ τ j)− b(α+ τ i)

4− b2
. (3.3)

Substituting bxi(τ i, τ j) and bxj(τ i, τ j) into (3.1) yields the resulting fitness functions
f i(τ i, τ j) ≡ Πi(bxi(τ i, τ j), bxj(τ i, τ j)) = ¡

2(α+ τ i)− b(α+ τ j)
¢ ¡
2α− (2− b2)τ i − b(α+ τ j)

¢
(4− b2)2

,

(3.4)

f j(τ i, τ j) ≡ Πj(bxi(τ i, τ j), bxj(τ i, τ j)) = ¡
2(α+ τ j)− b(α+ τ i)

¢ ¡
2α− (2− b2)τ j − b(α+ τ i)

¢
(4− b2)2

.

We can now use Theorem 2 to characterize the asymptotic distribution of types in the
population.

Proposition 1 Consider the game described above, and suppose that b2α
4+2b−b2 ∈ T . For any

initial distribution of types with full support T , the distribution of types converges in distribution
to a unit mass at bτ = b2α

4+2b−b2 under any regular payoff-monotonic selection dynamics.

Proof. By Theorem 2, it suffices to verify that Assumptions A1-A2 and B1-B2 are satisfied.
From (3.2), it is easy to see the Assumptions A1 and A2 are satisfied. From (3.4) it is easy
to verify that Assumptions B1 and B2 are also satisfied. Hence the types game can be solved
by iterated elimination of strictly dominated strategies. The unique outcome that survives this
process is bτ = b2α

4 + 2b− b2
> 0,

found by solving the equation f i
i (bτ ,bτ) = 0.

Proposition 1 shows that the population will converge to a unit mass at b2α
4+2b−b2 . Notice

that this type is strictly positive unless b = 0. That is, aside from the case where b = 0,
in which there is no strategic interaction between the players, evolution gives rise to players
who consistently overestimate the returns to their actions. All other types, including types
who perceive the returns to their actions accurately, become extinct asymptotically under any
regular payoff-monotonic selection dynamics.

The intuition underlying the evolution of optimistic types is fairly straightforward. Opti-
mistic types play more aggressively than realists or pessimists, and choose larger actions as
they exaggerate the impact of their actions on their payoffs. When b > 0, players’ actions are
strategic substitutes, so the aggressive behavior of optimists induces rivals to play soft. When
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b > 0 the players’ actions have negative externalities on their opponents, so the soft behavior of
his opponents benefits the optimistic player. Instead when b < 0, actions are strategic comple-
ments, so the aggressive behavior of optimists induces rivals to play aggressively as well. Since
the actions of individuals impose positive externalities on opponents when b < 0, the aggressive
behavior of rivals benefits the aggressive player in this case. Thus regardless of the sign of b,
optimists gain a strategic advantage here. Of course being aggressive is costly because an opti-
mistic individual fails to play a best-response against his rival’s action. Hence wildly optimistic
individuals do not do as well as more moderate optimists, so on average, “cautiously” opti-
mistic individuals fare better than individuals with other perceptions and therefore gradually
take over the entire population.

Proposition 1 provides an evolutionary explanation for various well-documented perception
biases like the belief perseverance phenomenon, which is the tendency to cling to one’s beliefs in
the face of contrary evidence, or the confirmation bias, which is the tendency to seek information
that confirms one’s own views and overlook evidence that contradicts these views.15 Individuals
who hold biased perceptions about their prospects and fail to update their beliefs in a Bayesian
fashion will gain a strategic advantage over rivals and hence, their frequency in the population
will grow over time at the expense of realistic individual who use Bayesian updating. This
suggests in turn that there is no reason to believe that over time, individuals will learn to
update their beliefs in a Bayesian fashion, or converge to a common prior.

In a similar but slightly more complicated setting, our results can be applied to give a fully
dynamic version of the results of Kyle and Wang (1997) on the survivability of overconfidence
in financial markets. In a duopoly version of the Kyle (1985) model, Kyle and Wang consider
traders who have different noisy signals about the liquidation value of an asset, and relax
the rational expectations assumption by allowing traders to have different distributions over
signals. In the analogue of our types game that results, when each trader uses a linear pricing
strategy, each trader’s best response function has a slope less than one in absolute value, and the
game is dominance solvable. Thus by our Theorem 2, any regular payoff-monotonic selection
dynamics results in convergence to a unit mass at the unique type that is the dominance
solution. This type corresponds to optimistic beliefs regarding the liquidation value of the
asset in their model. As Kyle and Wang note, this has a number of interesting implications
regarding the design of incentive contracts for managers and the desirability of delegated fund
management; moreover, the fully dynamic results obtained using this methodology conform
with some evidence indicating that more experienced traders may in fact be more overconfident
than newcomers (see Griffen and Tversky, 1992).

3.2 Interdependent preferences

The second application of our results is to the case where individuals care not only about their
own material payoffs but also about the material payoffs of others. This could be due to factors
like altruism or spite, or to concerns about relative rather than absolute payoffs.

15Reflecting on many experiments, Wason (1981) reports that once people have a wrong idea they “...evade
facts, become inconsistent, or systematically defend themselves against the threat of new information relevant
to the issue.” For detailed discussion and review of some experimental evidence on the belief perseverance
phenomenon and the confirmation bias, see for instance Ch. 10 in Myers (1998).
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To study the evolution of interdependent preferences, we consider the same setting as in
Section 3.1: a large population of individuals are continuously and randomly matched in pairs
to interact with one another. In every pairwise interaction, the individuals i and j choose
actions xi, xj ∈ R and their actual payoffs, Πi(xi, xj) and Πj(xi, xj), are given by (3.1), where
now, b ∈ (−1/2, 0)∪ (0, 2/5). Players’ perceived payoffs will be a weighted average of their own
payoff and their rival’s payoff. The perceived payoffs of the individuals are given by

U i(xi, xj, τ i) = Πi(xi, xj) + τ iΠj(xi, xj), U j(xi, xj, τ j) = Πj(xi, xj) + τ jΠi(xi, xj), (3.5)

where the parameter τ ∈ [−1, 1] is the player’s type and measures the degree to which he cares
about his opponent’s material payoff. Here a player is altruistic when τ > 0 and spiteful when
τ < 0.

Bester and Güth (1998), Bolle (2000), and Possajennikov (2000) have used the same setting
to study the evolutionary stability of interdependent preferences. Bester and Güth (1998)
restrict attention to the cases in which b ∈ (−1, 1) and τ i, τ j ∈ [0, 1], and show that the unique
evolutionarily stable outcome is such that τ i = τ j = − b

2+b
if b < 0 and τ i = τ j = 0 if b > 0.

Bolle (2000) shows that if players are allowed to be spiteful, so that τ i, τ j ∈ (−∞, 1], then the
unique evolutionarily stable outcome is τ i = τ j = − b

2+b
. Possajenikov (2000) shows that this

result extends to cases where b ∈ [−2, 1) or b > 2. Using Theorem 2, we can extend these
results by showing that if b ∈ (−1/2, 0) ∪ (0, 2/5), then τ i = τ j = − b

2+b
is not only the unique

evolutionarily stable outcome, but also the outcome to which the population will converge in
distribution starting from any arbitrary initial distribution of types with support [−1, 1].16

To see this, note first that the unique Nash equilibrium in the game given (τ i, τ j) is
(bxi(τ i, τ j), bxj(τ i, τ j)), where

bxi(τ i, τ j) = a
¡
2− b(1− τ i)

¢
4− b2(1− τ i)(1− τ j)

, bxj(τ i, τ j) = a
¡
2− b(1− τ j)

¢
4− b2(1− τ i)(1− τ j)

. (3.6)

Substituting bxi(τ i, τ j) and bxj(τ i, τ j) into (3.5) yields the resulting fitness functions17
f i(τ i, τ j) ≡ Πi(bxi(τ i, τ j), bxj(τ i, τ j))

=
a2
¡
2− b(1+ τ i)

¢ ¡
2− b(1− τ i)− b2τ i(1+ τ j)

¢
(4− b2(1+ τ i)(1+ τ j))2

,

(3.7)

f j(τ i, τ j) ≡ Πj(bxi(τ i, τ j), bxj(τ i, τ j))
=

a2
¡
2− b(1+ τ j)

¢ ¡
2− b(1− τ j)− b2τ j(1+ τ i)

¢
(4− b2(1+ τ j)(1+ τ i))2

.

We can now use our general results to characterize the limiting distribution of types in this
setting.

16We need to restrict b and assume that b 6= 0 to ensure that the type game is dominance solvable, and
hence that we can uniquely characterize the support of the limiting distribution. Bolle (2000) and Possajennikov
(2000) were able to consider a larger range of values of b because instead they use the static notion of evolutionary
stability.
17These functions coincide with equation (4) in Possajennikov (2000).
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Proposition 2 Consider the game described above with b ∈ (−1/2, 0)∪(0, 2/5) and T = [−1, 1].
For any initial distribution of types with full support T , the distribution of types converges in
distribution to a unit mass at − b

2+b
under any regular payoff-monotonic selection dynamics.

Proof. By Theorem 2, it suffices to verify that Assumptions A1-A2 and B1-B2 are satisfied.
From (3.5), it is easy to see the Assumptions A1 and A2 are satisfied. To check Assumption
B1, note that straightforward differentiation of (3.7) yields

∂2f i

(∂τ i)2
(τ i, τ j) = − 2a2b2

¡
2− b(1+ τ j)

¢
(4− b2(1+ τ i)(1+ τ j))4

M(τ i),

where
M(τ i) ≡ 8− 4b ¡1+ b(1− τ i)

¢
(1+ τ j) + b3

¡
4− b− (2 + b)τ i

¢
(1+ τ j)2.

To determine the sign of ∂2f i

(∂τ i)2 (τ
i, τ j), note that

∂M

∂τ i
(τ i) = b2(1+ τ j)

¡
4− b(2 + b)(1+ τ j)

¢ ≥ 0,
where the inequality follows because τ j ≥ −1, b < 1/2, and τ j ≤ 1. Hence for any τ i ∈ T ,

M(τ i) ≥M(−1) = 8− 4b (1+ 2b) (1+ τ j) + 6b3(1+ τ j)2.

Now suppose that b > 0. Then

M(τ i) ≥M(−1) ≥ 8− 4b (1+ 2b) (1+ τ j) > 0,

where the last inequality follows because b < 1/2 and τ j ≤ 1. On the other hand, if b < 0, then

M(τ i) ≥M(−1) ≥ 8 + 6b3(1+ τ j)2 ≥ 5,

where the last inequality follows because b < 1/2 and τ j ≤ 1. Hence M(τ i) > 0 for all
τ i ∈ [−1, 1], implying that ∂2f i

(∂τ i)2 (τ
i, τ j) < 0. Hence Assumption B1 holds.

Since f i is concave in τ i, the best-response function of player i in the types game is

BRi(τ j) ≡ − b (2− b) (1+ τ j)

4− b(2 + b)(1+ τ j)
.

The best-response function of player j is analogous. To prove that Assumption B2 holds, it
suffices to show that the slope of BRi(·) is less than 1 in absolute value. To this end, note that

dBRi

dτ j
(τ j) =

−4b (2− b)

(4− b(2 + b)(1+ τ j))2
.

This expression is decreasing in τ j, and hence is maximized at τ j = −1 and minimized at
τ j = 1. For b < 0 this slope is positive, so the maximum absolute value occurs at τ j = −1,
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where the value is −b(2−b)
4 < 1 since b > −1

2 . For b > 0 this slope is negative, so the maximum
absolute value occurs at τ j = 1, where the absolute value is

b(2− b)

[2− b(2 + b)]2
.

It is straightforward to verify that this is less than 1 for b < 2
5 .

Hence by Theorem 2 the types game is dominance solvable. The unique outcome that
survives this process is bτ ≡ − b

2 + b
,

found by solving the equation f i
i (bτ ,bτ) = 0.

Proposition 2 shows that if b < 0 (i.e., agents impose positive externalities on one another),
the population will converge over time to a unit mass at some moderate level of altruism, asbτ > 0. This level of altruism will be greater the greater are the positive externalities that
the agents impose on one another. On the other hand, if b > 0 (i.e., agents impose negative
externalities on one another), the population will converge to a moderate level of spite, asbτ < 0.18

4 Imperfect observability

Thus far, we have assumed that players in the basic game play a Nash equilibrium given their
perceived payoff functions. One justification for this assumption is that players’ perceived
payoffs are perfectly observed. Of course, by standard arguments, Nash equilibrium play does
not necessarily require observability of payoffs. If the interaction lasts several rounds, play
can converge to a Nash equilibrium even if players have very limited knowledge or adapt their
behavior myopically. This may be the case, for example, if the players follow some version of
fictitious play (see e.g., Fudenberg and Levine, 1998). In particular, in the setting of our main
result, naive best-response dynamics yields play that converges to the unique Nash equilibrium
for a given pair of types. Thus provided evolution occurs on a slower time scale than learning
in a given population, the Nash assumption may not be wildly inaccurate.19

In this section, we pursue further the possibility that preferences may not be perfectly
observed. We consider two different settings: (i) preferences are observed only in a fraction of
encounters, and (ii) players may be engaged in costly signaling regarding their preferences. We
develop general results analogous to Theorems 1 and 2 for models with partial observability,
and illustrate their application in a version of the example of Section 3. We also show how the
general results of Theorem 1 can be used to study a version of this example that includes costly
signaling of preferences.
18Note that this result illustrates the larger point of Heifetz, Shannon and Spiegel (forthcoming) regarding the

generic emergence of dispositions. Here we are able to show that various different types of dispositions — in this
case both perception biases and interdependent preferences — may emerge in the same basic setting of material
payoffs given by this simple duopoly model.
19For example, Al-Najjar, Baliga, and Besanko (2004) give an interesting foundation for the sunk cost fallacy

in which learning and experimentation justify the Nash equilibrium assumption.
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4.1 Partial observability

In this subsection we consider a setting in which preferences are observed in some exogenously
specified fraction 1−ρ of interactions, but are completely unobserved in the remaining fraction
ρ of interactions, where ρ ∈ (0, 1]. When preferences are not observed, players are assumed
to play a Bayesian equilibrium, with common knowledge of the distribution of types in the
population. We derive a general result along the lines of Theorem 1, and then demonstrate how
it can be applied to a version of the example of Section 3.1 incorporating partial observability.

We consider a class of two-player symmetric Bayesian games characterized by a payoff
function of the form f : T × T × (0, 1)× T → R. For each fixed ρ ∈ (0, 1] indexing the fraction
of interactions in which payoffs are unobservable, f(τ , τ 0, ρ, ω) gives the payoff to a player of
type τ when facing a player of type τ 0, given that the average type in the current population is
ω.

As in Section 2.3, we consider the evolution of the population under payoff-monotonic
selection dynamics. At each point t ≥ 0 in time, this population is characterized by the
distribution Gt ∈ ∆(T ), with initial distribution G0 having full support over T . The average
fitness levels of individuals of type τ at time t is then given byZ

f(τ , τ 0, ρ, τ̄Gt)dGt(τ
0),

where τ̄Gt ≡
R
τ 0dGt(τ

0) is the average type in the population at time t.

We assume that the distribution of types evolves according to the differential equation (2.3)
where g : T ×∆(T )→ R is a continuous growth-rate function satisfying

g(τ ,Gt) > g(τ̃ ,Gt) ⇐⇒
Z

f(τ , τ 0, ρ, τ̄Gt)dGt(τ
0) >

Z
f(τ̃ , τ 0, ρ, τ̄Gt)dGt(τ

0). (4.1)

We derive a general result that mirrors Theorem 1, but dominance solvability is more
complicated in this setting due to the dependence of payoffs on the average type as well as the
type of the opponent. Thus we focus on a set of sufficient conditions analogous to Assumptions
B1 and B2 that guarantee both a version of dominance solvability, and convergence to a unique
type under any regular, payoff monotonic selection dynamics.

Assumption C: For each i:

1. The best response BRi(τ ; ρ,ω) is single-valued for each (τ , ρ, ω) ∈ T × (0, 1)× T

2. either

(a) f i has the single crossing property in (τ i, τ j) and in (τ i,−ω), or
(b) f i has the single crossing property in (τ i,−τ j) and in (τ i, ω)

3. BRi is Lipschitz continuous in τ and ω with constants kτ and kω satisfying kτ + kω < 1
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Taken together, these assumptions guarantee that for each fixed ρ and ω, the symmetric
types game with payoff function f(·, ·, ρ, ω) is dominance solvable. In addition, the strategic
complementarities in Assumption C2 guarantee that the unique symmetric equilibrium in this
game is monotone in ω, decreasing in the case of 2(a), or increasing in the case of 2(b). Together
with the single crossing property of the payoff function, this monotonicity implies that we can
find a decreasing sequence of intervals containing any strategies that are not serially dominated
in the underlying Bayesian game. This sequence must converge to a point as a consequence of
the Lipschitz continuity in Assumption C3.

Theorem 4 Let T ⊂ R be compact, and let f : T × T × (0, 1)× T → R be the payoff function
of a symmetric two-player Bayesian game satisfying Assumption C. Then there exists a unique
type bτ ∈ T such that given any initial distribution of types with full support T , the distribution
of types converges in distribution to a unit mass at bτ under any regular, payoff-monotonic
selection dynamics.

Proof. Fix ρ ∈ (0, 1), let g : T ×∆(T ) → R be a regular, payoff monotonic growth-rate
function, and let Gt be the population dynamics defined by (4.1), with initial distribution G0

having full support T . To prove that the population converges underGt converges in distribution
to a unit mass at bτ , let bτ be defined implicitly by the equation

bτ = BRi(bτ ; ρ,bτ). (4.2)

Assumption C guarantees that bτ is well-defined.
The idea behind the rest of the proof is as follows. The types game played at each point

in time depends on the current average type ω. Hence, we cannot prove the convergence result
as in Theorem 1 and need to use a more involved argument. Yet, once it is determined that
irrespective of the value of ω, types outside an interval [τ �, τh] are serially dominated and
hence asymptotically become extinct, the average type ω will eventually converge to an interval
[τ �−δ, τh+δ], where δ is some small positive number.20 The fact that bτ ∈ [τ �−δ, τh+δ] enables
us to show that further types are serially dominated and thus that types outside some smaller
interval [τ 0�, τ

0
h] ⊂ [τ �, τh] also asymptotically become extinct. The crux of the argument is

in showing that it is impossible for this iterative process to stop with an interval of positive
length.

We explore the evolution of the distribution of player i’s types. The evolution of player j’s
types is analogous. Let

←−τ = inf
n
τ 0 > bτ : ∀τ > τ 0 ∃Vτ 3 τ , Vτ open, s.t. lim

t→∞Gt (Vτ ) = 0
o
, (4.3a)

τ−→ = sup
n
τ 0 < bτ : ∀τ < τ 0 ∃Vτ 3 τ , Vτ open, s.t. lim

t→∞Gt (Vτ ) = 0
o
. (4.3b)

Here we use the convention that ←−τ = τ if the infimum in (4.3a) ranges over an empty set, and
similarly that τ−→ = τ if the supremum in (4.3b) ranges over an empty set.

20A priori we cannot rule out the possibility that ω will either approach τ � from below or τh from above, and
therefore always remain outside the interval [τ �, τh]. As an intermediate step we first show instead that ω will
converge to some larger interval [τ � − δ, τh + δ].
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Let ε > 0, and set A = [τ , τ−→− ε
2 ] ∪ [←−τ + ε

2 , τ ]. Then A is a compact subset of T . For each
τ ∈ A, let Vτ be a neighborhood of τ as given in (4.3a,b). Then {Vτ : τ ∈ A} is an open cover
of A. Take a finite sub-cover Vτ1 , . . . , Vτn . Since limt→∞Gt (Vτk) = 0 for each k = 1, . . . , n,
there exists a time tε such that for t > tε, Gt (Vτk) < ε

2nM for each k = 1, . . . , n, where

M = max{ε, τ − ¡←−τ + ε
2

¢
,
³
τ−→− ε

2

´
− τ}. Hence, for t > tε we conclude

Gt(A) ≤
nX

k=1

Gt (Vτk) <
ε

2M
.

Therefore, for t > tε the average type in the population, ω, satisfies the following inequalities:

ω <
ε

2M
τ +

³
1− ε

2M

´³←−τ + ε

2

´
=
³←−τ + ε

2

´
+

ε

2M

³
τ −

³←−τ + ε

2

´´
(4.3)

≤
³←−τ + ε

2

´
+

ε

2
=←−τ + ε,

and

ω >
ε

2M
τ +

³
1− ε

2M

´³
τ−→− ε

2

´
=
³
τ−→− ε

2

´
− ε

2M

³³
τ−→− ε

2

´
− τ

´
(4.5)

≥
³
τ−→− ε

2

´
− ε

2
= τ−→− ε.

These inequalities imply that for every ε > 0, there exists a time tε such that for every t > tε,
ω ∈ [ τ−→− ε,←−τ + ε].

Next, consider Assumption C2(a) and C2(b) in turn. In either case, Assumptions C2 and
C3 imply that for each fixed value of ω, there exists a unique symmetric Nash equilibrium
in the fitness game. Under Assumption C2(a), BRi(·; ρ,ω) is decreasing in ω. Hence, the
“highest” symmetric Nash equilibrium in the fitness game is attained when ω = max{ τ−→−ε, τ}
and the “lowest” equilibrium is attained when ω = min{←−τ + ε, τ̄}. Let the highest and lowest
symmetric Nash equilibria be (←−τ ε,←−τ ε) and ( τ ε−→, τ ε−→), respectively. That is, ←−τ ε and τ ε−→ are the

solutions to the equations ←−τ ε = BRi(←−τ ε; ρ, ( τ−→− ε) ∨ τ) and τ ε−→ = BRi(τ ε−→; ρ, (
←−τ + ε) ∧ τ̄).

By Assumption C2(a), for ω < eω and τ i < eτ ,
f i(eτ , τ j ; ρ,ω) < f i(τ i, τ j ; ρ, ω) implies f i(eτ , τ j ; ρ, eω) < f i(τ i, τ j ; ρ, eω),

and similarly

f i(eτ , τ j ; ρ, eω) > f i(τ i, τ j ; ρ, eω) implies f i(eτ , τ j ; ρ, ω) > f i(τ i, τ j ; ρ, ω).

These inequalities imply in turn that types above ←−τ ε are serially dominated for t > tε, while
types below τ ε−→ are serially dominated for t > tε. By Theorem 1, this implies that types outside

[τ ε−→,←−τ ε] asymptotically become extinct. By the definition of ←−τ and τ−→, it follows that
←−τ ≤ ←−τ ε

and τ−→ ≥ τ ε−→ for every ε > 0. Since←−τ ε and τ ε−→ are continuous functions of ε, letting ε→ 0 yields

←−τ ≤ inf
ε>0

←−τ ε ≡←−τ0 = BRi(←−τ0; ρ, τ−→),
τ−→ ≥ sup

ε>0
τ ε−→ ≡ τ0−→ = BRi(τ0−→; ρ,

←−τ ).
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Subtracting the second inequality from the first yields:

0 ≤←−τ − τ−→ ≤←−τ0 − τ0−→ = |←−τ0 − τ 0−→|
= |BRi(←−τ0; ρ, τ−→)−BRi(τ0−→; ρ,

←−τ )|
= |BRi(←−τ0; ρ, τ−→)−BRi(←−τ0; ρ,

←−τ ) +BRi(←−τ0; ρ,
←−τ )−BRi(τ0−→; ρ,

←−τ )|
≤ |BRi(←−τ0; ρ, τ−→)−BRi(←−τ0; ρ,

←−τ )|+ |BRi(←−τ 0; ρ,
←−τ )−BRi(τ0−→; ρ,

←−τ )|
≤ kω|←−τ − τ−→|+ kτ |←−τ0 − τ0−→|
≤ (kω + kτ )|←−τ 0 − τ0−→|.

Since kω + kτ < 1, ←−τ0 = τ0−→, and
←−τ = τ−→ = bτ as desired.

When Assumption C2(b) holds the argument is similar. Now for ω < eω and τ i < eτ ,
f i(eτ , τ j ; ρ,ω) > f i(τ i, τ j ; ρ, ω) implies f i(eτ , τ j ; ρ, eω) > f i(τ i, τ j ; ρ, eω),

and similarly

f i(eτ , τ j ; ρ, eω) < f i(τ i, τ j ; ρ, eω) implies f i(eτ , τ j ; ρ,ω) < f i(τ i, τ j ; ρ, ω).

Since BRi(·; ρ,ω) is decreasing in τ j and increasing in ω, the highest best-response of i intersects
the lowest best-response of j at (←−τ ε, τ ε−→). This implies in turn that types above

←−τ ε for i and

below τ ε−→ for player j are serially dominated for t > tε. By Theorem 1, types outside [τ ε−→,←−τ ε]
asymptotically become extinct. By the definition of ←−τ and τ−→, it follows that

←−τ ≤ ←−τ ε and
τ−→ ≥ τ ε−→ for every ε > 0. Since ←−τ ε and τ ε−→ are continuous functions of ε, letting ε→ 0 yields

←−τ ≤ inf
ε>0

←−τ ε ≡←−τ0 = BRi(τ0−→; ρ,
←−τ ),

τ−→ ≥ sup
ε>0

τ ε−→ ≡ τ0−→ = BRi(←−τ0; ρ, τ−→).

Then as above,

0 ≤←−τ − τ−→ ≤←−τ0 − τ0−→ = |←−τ0 − τ0−→|
= |BRi(τ0−→; ρ,

←−τ )−BRi(←−τ0; ρ, τ−→)|
≤ (kω + kτ )|←−τ0 − τ0−→|.

Since kω + kτ < 1, we again conclude that ←−τ0 = τ0−→, and
←−τ = τ−→ = bτ as desired.

As an example of this result, we extend the perception bias example of Section 3.1 to allow
for partial observability of any degree ρ ∈ (0, 1].

Proposition 3 Consider the example of Section 3.1 with partial observability and suppose that
2(1−ρ)b2α

8+4b−2b2−ρb3 ∈ T . If the initial distribution of types has full support, then under any regular
payoff-monotonic selection dynamics the distribution of types converges in distribution to a unit
mass at bτ = 2(1− ρ) b2α

8 + 4b− 2b2 − ρb3
.
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Proof. See the Appendix.

Proposition 3 shows that the emerging type is monotonic in the probability (1− ρ) of
observability. Moreover, the disposition becomes asymptotically extinct, that is, bτ = 0, only in
the extreme cases where either ρ = 1 (preferences are never observed), or b = 0 (there is no
strategic interaction between the players).21 This example also illustrates the generic emergence
of dispositions, since for any b ∈ (−1, 1) \ {0} and any ρ ∈ (0, 1), the unique type supported in
the limit distribution is not zero.

4.2 Costly signaling of preferences

The benefit of having a disposition is the influence it exerts on opponents’ equilibrium behavior,
achieved at the cost of departures from actual payoff maximization. This leads to the following
natural question. Can a player enjoy the best of all worlds — signal a disposition to rivals but
choose actions that maximize his or her actual payoff? If signaling a disposition to others were
merely cheap talk, then the signal would be ignored by the opponents, and hence the actual
asymptotic behavior in the population would converge to a Nash equilibrium of the underlying
game without dispositions. This is essentially the argument of Acemoglu and Yildiz (2001).

In practice, however, the appearance of individuals often does convey information about
their dispositions. This information may be transmitted by body language or by past behavior
in similar encounters. One possibility for why this is the case is that it may be costly to conceal
dispositions. For instance, Frank (1987, 1988) argues vividly that some physical tendencies,
like the blush that follows lying, may be the observable symptoms of emotional arousal that
reflects the operation of automatic physical reactions and hence may be a credible signals about
character. Although a mutant for whom these functions are not automatic and may be able to
consciously control these functions may enjoy the benefits of lying without being caught, would
also pay a fitness cost as a result of reacting more slowly to predators and enemies. This cost
would be larger the less automatic these reactions are.

To model this idea, we suppose that players generate signals mi and mj regarding their true
types τ i and τ j. The multiplicity of Bayesian equilibria associated with such a game at each
point in time preempts a general analysis. Hence we consider an extension of the example
from Section 3.1. Suppose that mi,mj ∈ M , where M ⊂ R is a (large) compact interval that
contains 0. To capture the idea that deception is costly, assume that these signals entail fitness
costs c(τ i − mi)2 and c(τ j − mj)2, where c > 0. The signaling cost increases with the gap
between the signal and the player’s true type. We suppose that the signals mi and mj evolve in
parallel with the players’ types τ i and τ j according to some regular payoff-monotonic selection
dynamics starting from some initial distribution with support in the rectangle T ×M . That is,
the effective types of the players are now two-dimensional, consisting of both their disposition
parameters τ i and τ j , and their signals mi and mj. When players i and j interact, they first
observe each other’s signals, update their beliefs about each other’s preferences, and then play
a Bayesian equilibrium given these updated beliefs. We can then characterize the limits of this
evolutionary process as follows.

21 In different but analogous settings, Dekel, Ely, and Yilankaya (2005), Ely and Yilankaya (2001), Ok and
Vega Redondo (2001) and Güth and Peleg (2001) also consider what corresponds to our extreme case of ρ = 1,
when preferences are completely unobservable, and show that payoff-maximization is evolutionarily stable.
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Proposition 4 Consider the example from Section 3.1 with costly signaling and suppose that
8cb2α

2(4+2b−b2)(1+4c)−b3 ∈ T , 2(1+4c)b2α

2(4+2b−b2)(1+4c)−b3 ∈M , and the initial distributions have full support.
Then the joint distribution of types and signals will converge under any regular payoff-monotonic
selection dynamics to a unit mass at

bτ =
8cb2α

2(4 + 2b− b2)(1+ 4c)− b3
,

bm =
2(1+ 4c) b2α

2(4 + 2b− b2)(1+ 4c)− b3
.

Proof. See the Appendix.

Note that unless b = 0, so that there is strategic interaction between the players, bτ > 0.
This implies that in our model, the players will generically have dispositions. Also note that bτ
coincides with the type to which the population converges under full observability only when
c→∞, that is, only when deception is infinitely costly. Otherwise, bτ is smaller when signaling
is costly. Intuitively, this is because the cost of deception must now be added to the costs
of having a disposition. Furthermore, note that for all 0 < c < ∞, bm > bτ , implying that
the population will converge over time to a type whose appearance will exaggerate the true
disposition. That is, players will project they are overconfident to a larger extent than they
actually are.

5 Individuals occasionally play against nature

The main point of the analysis so far was that in the context of strategic interactions, individuals
with biased perceptions gain a strategic advantage over rivals and as a result, the population
converges over time to a biased monomorphic type. In this section we show that this argument
continues to hold even if occasionally, individuals play against nature instead of being engaged
in strategic interactions.

To capture this idea in a simple way, we will stay within the basic framework of Section
3.1. We assume now that the parameter b is a binomial random variable, where b = 0 with
probability ρ, and b ∈ (−1, 1) \ {0} with probability 1 − ρ. When b = 0 there is no strategic
interaction, as the payoff to i is independent of j’s action, so individuals can only lose by having
a bias in this case.

The expected payoff of type τ i when facing type τ j is now given by:

f i(τ i, τ j; ρ) = (1− ρ)

¡
2(α+ τ i)− b(α+ τ j)

¢ ¡
2α− (2− b2)τ i − b(α+ τ j)

¢
(4− b2)2

(5.1)

+ρ

¡
α+ τ i

¢ ¡
α− τ i

¢
4

.

The expression multiplied by 1− ρ is the payoff in (3.5), and the expression multiplied by ρ is
the payoff in (3.5) evaluated at b = 0.
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The best-response functions in the types game are given by

BRi(τ j; ρ) =
2(1− ρ)b2

¡
2α− b(α+ τ j)

¢
16− 8b2 + ρb4

, (5.2)

and analogously for player j. As before, the best-response functions are downward sloping when
b > 0, and upward sloping when b < 0. Moreover, since |b| < 1, the slope of the best-response
functions is less than or equal to 1

4 in absolute value. Therefore, the types game is dominance
solvable. The unique type that survives this process is

bτ(ρ) ≡ 2(1− ρ)b2α

2 (4 + 2b− b2)− ρb3
. (5.3)

In particular, the type bτ(ρ) is strictly decreasing with ρ. Hence, the more often individuals
have to play against nature (i.e., the closer is ρ to 1), the smaller is the perception bias to
which the population will converge over time. At one extreme, when ρ = 1 (with probability 1
there is no strategic interaction) bτ(1) = 0, so the population converges to realism. At the other
extreme, when ρ = 0 (with probability 1 there is strategic interaction) bτ(0) = b2α

4+2b−b2 , so the
situation is as in Section 3.1. The main point, however, is that as long as there is a positive
probability of strategic interaction between individuals (i.e., ρ < 1), the qualitative results from
Section 3.1 continue to hold.

We collect these observations in the final proposition.

Proposition 5 Consider the example of Section 3.1 and suppose that b = 0 with probability ρ,
b ∈ (−1, 1) \ {0} with probability 1− ρ, and

bτ(ρ) ≡ 2(1− ρ)b2α

2 (4 + 2b− b2)− ρb3
∈ T.

Then for any initial distribution of types with full support T and any payoff-monotonic selection
dynamics, the distribution of types converges in distribution to a unit mass at bτ(ρ). Moreover,bτ(·) is decreasing in ρ, with bτ(0) = b2α

4+2b−b2 and bτ(1) = 0.
6 Conclusion

Our results have illustrated how the pressures of explicit, dynamic evolutionary processes can
select a unique preference profile when preferences are influenced by the outcomes of strategic
interactions. The fully dynamic nature of the evolutionary analysis developed here expands the
predictive power of evolutionary models of preference formation and strategic delegation.

This paper is part of a large and growing body of work that focuses on the meaning and
foundations of rationality in economic models. Standard models often assume that decision
makers have well-defined, stable and self-interested preferences, and act optimally given these
preferences. In contrast, a large body of experimental work, combined with casual observation,
suggests that individuals often behave in ways that are inconsistent with these assumptions. One
approach to explaining such behavior is to attribute it to various bounds on the rationality of
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individuals, such as limited computational ability, limited memory, and so on. Instead our work
has followed an alternative, more recent approach by exploring the evolutionary foundations of
preference formation. This approach, by focusing on the evolution of preferences, shows that
in a variety of contexts individuals can actually obtain higher payoffs if they strive to maximize
some distorted form of their actual payoffs.

The value of dispositions in many different settings suggests that when contemplating the
design of particular institutions, such as markets, auctions, or committees, it may be important
to consider not only the equilibrium behavior of payoff-maximizing agents, but the equilibrium
behavior of individuals whose behavior is biased by various dispositions as well. Moreover, this
work suggests that institutions themselves may influence the long-run preferences of partici-
pating agents. Preliminary analysis in this vein includes Bar-Gill and Fershtman (2001), Güth
and Ockenfels (2001), Fershtman and Heifetz (forthcoming), and Heifetz et al. (2003). Ex-
ploring the extent to which preferences may be in part an endogenous feature of the particular
institutional framework seems to present promising avenues for future research.

7 Appendix

Following are the proofs of Propositions 3 and 4.

Proof of Proposition 3. When preferences are mutually observable, the equilibrium actions
are specified in (3.3). When preferences are unobservable, we look for a Bayesian Nash equilib-
rium in which each player forms a belief about her opponent’s action and plays a best-response
given this belief. To characterize this equilibrium, let x be the average action in the population.
Then the perceived average payoff of player i whose type is τ i when taking action xi is given
by:

U i(xi, x; τ i) = (α+ τ i − bx− xi)xi. (A.1)

The problem of player j is analogous. The best-responses of players i and j against x are:

BRi(x, τ i) =
α+ τ i − bx

2
, BRj(x, τ j) =

α+ τ j − bx

2
. (A.2)

On the equilibrium path, the beliefs of the two players about x must be correct. Taking
expectations on both sides of equation (A.2), using ω to denote the average type in the (current)
population, and solving for x yields:

x =
α+ ω

2 + b
.

That is, when a player cannot observe the other player’s preferences, the player (correctly)
anticipates that given ω, the rival will play on average x. Substituting for x in BRi(x; τ) and
BRj(x; τ j) yields equilibrium actions

bxi = α+ τ i − bα+ω
2+b

2
, bxj = α+ τ j − bα+ω

2+b

2
.

Given bxi and bxj , the resulting payoff of player i when the types are mutually unobserved isÃ
α− b

α+ τ j − bα+ω
2+b

2
− α+ τ i − bα+ω

2+b

2

!Ã
α+ τ i − bα+ω

2+b

2

!
. (A.3)

28



With probability 1−ρ, preferences are observed and individual i’s payoff is as in (3.4), whereas
with probability ρ preferences are not observed and i’s payoff is given by (A.1). Hence the
expected fitness of player i when the player’s type is τ i, the type of player j is τ j, and the
current average type of player j in the population is ω is given by

f i(τ i, τ j; ρ, ω) = (1− ρ)

¡
2(α+ τ i)− b(α+ τ j)

¢ ¡
2α− (2− b2)τ i − b(α+ τ j)

¢
(4− b2)2

(A.4)

+ρ

Ã
α− b

α+ τ j − bα+ω
2+b

2
− α+ τ i − bα+ω

2+b

2

!Ã
α+ τ i − bα+ω

2+b

2

!
.

The expected fitness of player j is analogous.

As in the proof of Proposition 1, consider the fitness game in which i and j choose their
types, τ i and τ j, to maximize their fitness. The best-response function of player i in this game
is

BRi(τ j ; ρ, ω) =
2αb2 (2− b) (1− ρ)

(16− 8b2 + ρb4)
+

bρ (2− b)2 (2 + b)2

2 (16− 8b2 + ρb4)
ω (A.5)

−b
¡
ρb4 + 4b2 − 12ρb2 + 16ρ

¢
2 (16− 8b2 + ρb4)

τ j.

The best response of player j, BRj(τ i; ρ,ω), is analogous.

In what follows we use Theorem 4 to prove that the population converges over time to a
stable monomorphic type. To this end, let bτ be defined implicitly by the equation

bτ = BRi(bτ ; ρ,bτ).
Solving this equation yields bτ = 2(1− ρ) b2α

8 + 4b− 2b2 − ρb3
.

Note that bτ ∈ T by the assumption that 2(1−ρ)b2α

8+4b−2b2−ρb3 ∈ T .

Next, note from equation (A.4)

∂2f i

∂τ iτ j
(τ i, τ j, ρ, ω) = (1− ρ)

·
b(2− b2)

(4− b2)2
+

−2b
(4− b2)2

¸
+ ρ

−b
2

= (1− ρ)
−b3

(4− b2)2
+ ρ

−b

2

and

∂2f i

∂τ iω
(τ i, τ j , ρ, ω) = ρ

·
b2

4(2 + b)
+

b

4(2 + b)
+

b

4(2 + b)

¸
=

ρ(b2 + 2b)

4(2 + b)

=
ρb

4
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From this calculation we conclude that when b < 0, f i satisfies Assumption C2(a), while when
b > 0, Assumption C2(b) is satisfied instead.

In both cases, (A.5) shows that BRi is Lipschitz in τ j and in ω with constants

kτ =
|b| ¡ρb4 + 4b2 − 12ρb2 + 16ρ

¢
2 (16− 8b2 + ρb4)

=
|b| ¡ρ(b4 − 8b2 + 16

¢
+ 4b2(1− ρ)

2 (16− 8b2 + ρb4)
,

and

kω =
|b|ρ (2− b)2 (2 + b)2

2 (16− 8b2 + ρb4)
.

Notice that

kτ + kω =
|b|ρ(2− b)2(2 + b)2 + |b|ρ(2− b)2(2 + b)2 + |b|4b2(1− ρ)

2 (16− 8b2 + b4) + 2ρb4 − 2b4

=
2|b|ρ(2− b)2(2 + b)2 + |b|4b2(1− ρ)

2 (16− 8b2 + b4) + 2ρb4 − 2b4

and

2(1− |b|ρ)(16− 8b2 + b4)− (1− ρ)(2b4 + 4|b|3) > 2(1− |b|ρ)(16− 8b2)− (1− ρ)4|b|3
> 2(1− |b|ρ)(16− 8b2)− (1− ρ)4b2

> 2(1− |b|ρ)(16− 12b2) > 0.

From this we conclude that kτ + kω < 1 as desired.

The result now follows from Theorem 4. ¥

Proof of Proposition 4. The proposition follows from Theorem 1 once we show that (bτ , bm)
is the only combination of strategies that survives iterative elimination of strictly dominated
strategies (τ ,m) in the fitness game.

Player i with type τ i and signal mi chooses an action xi to maximize the expected perceived
payoff

(α+ τ i − bχj(mi,mj)− xi)xi,

where the expectation is taken over the actions of player j with the signal mj and χj(mi,mj)
is the (current) average action of these players. The problem of player j is analogous.

The best-responses of players i and j against χj(mi,mj) and χi(mi,mj), are

xi =
α+ τ i − bχj(mi,mj)

2
, xj =

α+ τ j − bχi(mi,mj)

2
. (A.10)

Let τ i(mi) and τ j(mj), respectively, be the (current) average types of player i with signal mi

and player j with signalmj. Taking expectations on both sides of the equations in (A.10) yields:

χi(mi,mj) =
α+ τ i(mi)− bχj(mi,mj)

2
, χj(mi,mj) =

α+ τ j(mj)− bχi(mi,mj)

2
.
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Solving these two equations yields

χi(mi,mj) =
2α+ 2τ i(mi)− αb− bτ j(mj)

4− b2
, χj(mi,mj) =

2α+ 2τ j(mj)− αb− bτ i(mi)

4− b2
.

Substituting χi(mi,mj) and χj(mi,mj) in (A.10) reveals that the equilibrium actions of players
i and j are given by

bxi = α+ τ i − b2α+2τj(mj)−αb−bτ i(mi)
4−b2

2
, bxj = α+ τ j − b2α+2τ i(mi)−αb−bτj(mj)

4−b2

2
.

The resulting (current) average fitness of player i of type τ i and signal mi when meeting
player j with signal mj is therefore

f i
¡¡
τ i,mi

¢
,mj

¢
=

α− b
2α+ 2τ j(mj)− αb− bτ i(mi)

4− b2
− α+ τ i − b2α+2τj(mj)−αb−bτ i(mi)

4−b2

2


×α+ τ i − b2α+2τj(mj)−αb−bτ i(mi)

4−b2

2
− c(mi − τ i)2. (A.11)

The corresponding average fitness of player j is analogous. Maximizing f i
¡¡
τ i,mi

¢
,mj

¢
with

respect to τ i and f j
¡¡
τ j ,mj

¢
,mi

¢
with respect to τ j implies that among all types of player i

with the signal mi and among all types of player j with the signal mj, those with the highest
average fitness are bτ i(mi) =

4c

1+ 4c
mi, bτ j(mj) =

4c

1+ 4c
mj.

Therefore, under regular payoff-monotonic selection dynamics, the combination
¡bτ i(mi),mi

¢
will have the highest growth rate among all types of player i with signalmi, and the combination
and

¡bτ j(mj),mj
¢
will have the highest growth rate among all types of player j with signal mj .

This implies in turn that

lim
t→∞ τ i

¡
mi
¢
= bτ i(mi) =

4c

1+ 4c
mi, lim

t→∞ τ j
¡
mj
¢
= bτ j(mj) =

4c

1+ 4c
mj . (A.12)

Taking the limit of the expressions in (A.11) as t→∞ and using (A.12), yields

f i(mi,mj) ≡ lim
t→∞ f i(

¡bτ i(mi),mi
¢
,mj)

=

α− b
2α+ 2 4c

1+4cm
j − αb− b 4c

1+4cm
i

4− b2
− α+ 4c

1+4cm
i − b

2α+2 4c
1+4c

mj−αb−b 4c
1+4c

mi

4−b2

2


×α+ 4c

1+4cm
i − b

2α+2 4c
1+4c

mj−αb−b 4c
1+4c

mi

4−b2

2
− c

µ
mi − 4c

1+ 4c
mi

¶2

.

The corresponding expression for player j is analogous.
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Now consider fitness game in which players i and j choose their signals mi and mj to
maximize their respective fitness, f i(mi,mj) and f j(mj,mi). The best response function of
player i in this game is given by

BRi(mj) =
2b2α(2− b) (1+ 4c)

(4− b2)2 + 32c(2− b2)
− 8cb3

(4− b2)2 + 32c(2− b2)
mj, (A.13)

analogously for player j

The slope of these best-response functions is less than 1 in absolute value. Since the strategy
sets in this signal game are one-dimensional compact intervals (recall that mi,mj ∈M , where
M is a one-dimensional compact interval), and the functions f i and f j are smooth and strictly
concave in the players’ own strategies, as in Lemma 1 it follows from Moulin (1984, Theorem
1) that the types game can be solved by iterative elimination of strictly dominated strategies.
The unique signal that survives this process is

bm =
2(1+ 4c) b2α

2(4 + 2b− b2)(1+ 4c)− b3
,

which can be found by setting BRi(mj) = mj = bm in equation (A.13). By Theorem 1, the
distribution of signals converges to a unit mass at bm. Using (A.12), the resulting types are

bτ i = bτ j = 8cb2α

2(4 + 2b− b2)(1+ 4c)− b3
,

as claimed. ¥
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