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Abstract

We study the design of profit maximizing single unit auctions under the assumption that the seller needs
to incur costs to contact prospective bidders and inform them about the auction. With independent bidders’
types and possibly interdependent valuations, the seller’s problem can be reduced to a search problem in
which the surplus is measured in terms of virtual utilities minus search costs. Compared to the socially
efficient mechanism, the optimal mechanism features fewer participants, longer search conditional on the
same set of participants, and inefficient sequence of entry.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Almost all the auction literature assumes that the set of bidders is either exogenous or determined
in advance before the auction begins. However, auctions based on this assumption are in general
suboptimal if the seller incurs costs when contacting prospective bidders. In this paper we study
profit maximizing auctions in the presence of such costs. We characterize the order in which
bidders are approached, and study the inefficiencies that arise due to the sequential nature of the
process and due to the bidders’ private information about their values.
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We consider a seller of a single indivisible good who faces a finite set of bidders. The bidders’
types are independently drawn, with ex post valuations interdependent across bidders as in My-
erson [12]. Initially, prospective bidders are not even aware of the seller’s intention to sell the
good. To attract their attention and allow them to participate, the seller must contact them and
provide them with all the necessary information—in Section 2 we discuss several interpretations
of this assumption. After being contacted by the seller and informed about the good for sale,
each prospective bidder privately learns his type before deciding whether or not to participate
in the seller’s mechanism. Given that contacting prospective bidders is costly, it is generally not
optimal to contact all prospective bidders at once. For instance, if the expected valuation of an
early bidder turns out to be sufficiently high, it is best to end the mechanism immediately and sell
him the good without incurring further costs. Hence the seller designs a search mechanism that,
contingent on history, specifies the order in which prospective bidders are contacted, the time at
which the process ends, and the payments made by the participating bidders.

In Section 2, we introduce the model and notations for search mechanisms. In Section 3.1, we
prove one of the main results, Theorem 1: the seller’s problem can be reduced to a standard search
problem in which the payoff from search is measured in terms of the winner’s virtual utility rather
than his actual utility. This result is nontrivial despite its well-known counterpart in the static
framework; the main complication in the proof is that the bidders’ incentive constraints depend
on the dynamic stochastic nature of the seller’s optimal search problem.

In Section 3.2, this theorem is applied to the private-value case without discounting. The
optimal mechanism there can be interpreted as a sequence of Myerson’s [12] optimal auctions,
with one additional bidder in each period. If all potential bidders have the same distribution of
their values (though the costs of contacting them may be different), the optimal mechanism is
simply a sequence of second-price auctions with reserve prices that decline over time.

The optimal search mechanisms we study here give rise to new types of distortions that are
completely absent in static mechanism design problems. In Sections 4.1–4.3, we present three
of these distortions: we show that asymmetry of information leads to fewer participants, longer
search conditional on the same set of participants, and inefficient sequence of entry.

Section 4.4 presents another feature of optimal search auctions: when the ex post values of
bidders are interdependent, the seller wants to delay the participation of “influential” bidders,
whose types have a strong effect on the willingness of others to pay for the good.

Our findings extend existing results in traditional mechanism design theory by endogenizing the
set of participants through a stochastic, history-contingent, search procedure.1 Myerson [12] has
characterized the optimal (profit maximizing) auctions in the case where the seller incurs no search
cost when contacting potential bidders, so there is no loss to assume that they all participate. Hence
his solution arises as a special case in our framework. McAfee and McMillan [10] characterize
optimal search mechanisms in the special case where bidders are ex ante symmetric in terms of
the search cost and the distribution of their types. Hence the sequence of entry and the resulting
distortions which play a major role in our paper do not matter in their model. We allow bidders
to be ex ante asymmetric so the sequence of entry is important, and we find some features of the
optimal sequence in Sections 3.2, 4.3, and 4.4. Moreover, McAfee and McMillan assume that

1 Our analysis may also contribute to the optimal search literature by highlighting a new parallel search problem where
the ex post social surplus from selling the good to a bidder depends on the signals of other potential bidders, whether they
have participated or not. We have not found any work in that literature that considers this problem. Weitzman [17] and
Vishwanath [16] considers only private values. Even for private values, the literature has no general characterization of
optimal search procedures that allow multiple entrants per period, which we consider.
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there is no discounting so that it does not hurt the seller to contact only one bidder at a time. We
allow discounting so the seller may need to contact a group of bidders in a period.

Two other papers have also applied search theory to auction design. Burguet [4] considers a
procurement model with private-value ex ante symmetric bidders who must decide whether or
not to participate before knowing their types. In Crémer, Spiegel and Zheng [6], we generalize
Burguet’s results, in the context of an auction model, by allowing for the entry of multiple bidders
at each stage and allowing for both interdependent valuation and asymmetric bidders. Unlike these
two papers, which assume ex ante participation constraints, this paper uses interim participation
constraints, as bidders are privately informed about their types during their participation decisions.

To the best of our knowledge, other than McAfee and McMillan [10] and Burguet [4], we are
the only ones optimizing over the rules of the auctions (as opposed to comparing specific auction
formats) given the constraints of costly participation. Other important works on mechanism design
with information acquisition or costly participation include Bergemann and Pesendorfer [1],
Bergemann and Välimäki [2], Levin and Smith [9], and Ye [19]. (See Bergemann and Välimäki [3]
for a recent survey.) Unlike these papers, which assume that the agents’ participation decisions
are made independently of each other, this paper allows an agent’s entry decision to depend on the
history of a mechanism. With this dynamic feature, our paper is somewhat related to Compte and
Jehiel [5] and Rezende [14], who analyze the effect of information acquisition conducted during
ascending price auctions.2

2. The model

2.1. Search costs

A seller wants to sell an indivisible good to one out of a finite set I of prospective bidders.
Initially, bidders do not know the seller’s intention to sell the good and are not aware of the auction
setting (the rules of the auction, the number and identity of other bidders, and the distribution
of bidders’ valuations). To bring this information to a bidder i’s attention, the seller incurs a
bidder-specific fixed cost ci > 0, which we call search cost. While learning the information, the
bidder also privately learns his own type which affects (but is not necessarily equal to) his ex post
valuation.

The cost ci has several possible interpretations. First, if the seller’s good is very complex (e.g.,
the controlling block of a state-owned enterprise), the seller may need to meet potential bidders in
person and describe the good in detail.3 Second, although we consider an auction environment,
our framework can be easily modified to a procurement environment in which a procurer wishes to

2 There are a few other interesting papers on specific auction formats with information acquisition or costly participation,
including Gal, Landsberger and Nemirovski [7], Stegeman [15], Pesendorfer and Wolinsky [13], and Wolinsky [18].
However, unlike in our paper, the participation or information acquisition decisions in these papers are not coordinated
by a principal.

3 If the seller has goals other than profit maximization, he may also have to meet with potential bidders in person in
order to ensure that they meet certain criteria (e.g., ensure that a privatized state-owned enterprise will be controlled by
a qualified manager). In this paper however we do not consider this possibility explicitly; doing so may require us to
consider additional dimensions of the buyers’ private information beyond their valuation of the seller’s good (e.g., their
level of “competence”). Moreover, in many examples it is likely that bidders may also have to incur costs in order to
participate in the seller’s mechanism. In this paper, however, we focus exclusively on the case where only the seller needs
to incur search costs. In Crémer, Spiegel and Zheng [6], we consider the other extreme case and assume that the buyers
need to incur costs to learn their types before they can participate in the seller’s mechanism. It would be interesting in
future research to study the harder case where both the seller and the buyers need to incur search costs.
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procure an indivisible good from a set of potential suppliers. If the procurer’s needs are complex
and hard to describe, he would need to understand exactly what each supplier can offer. For
instance, consider a firm that wants to outsource a custom-made component; in some cases, rather
than sending the description to a prospective supplier and asking for a price quote, it could be
more efficient to ask for a description of the supplier’s manufacturing facilities and explain what
type of steps need to be taken with these specific facilities in order to produce the good. The
supplier can then provide a quote.4

2.2. Utility functions and types

The value of the good to the seller is x0. For each bidder, i, nature draws a type xi from a
commonly known distribution, Fi , with density, fi , and support Xi = [xi, xi], with fi > 0 over
the interior of Xi . Types are independent across i. Denote

x := (xi)i∈I ∈ ×i∈IXi =: X.

As in Myerson [12], given any x, bidder i’s value of the good is equal to

ui(x) := xi +
∑

j∈I\i
eij (xj ),

where eij is a commonly known real function that reflects bidder j ’s influence on bidder i’s
value. Hence, bidder i’s value for the good depends not only on his own type, xi , but also on
the types of other bidders through the functions

{
eij (·)

}
j∈I\i . Everyone’s discount factor is � ∈

(0, 1]. If bidder i pays pt
i dollars in period t , then his utility from the viewpoint of period s is

�t ′−sui(x) −∑∞
t=s �t−spt

i if he gets the good in period t ′ �s, and −∑∞
t=s �t−spt

i if he never
gets it. The seller uses the same discount factor to evaluate his present discounted profit.

2.3. Search mechanisms

When the seller needs to incur costs to contact specific bidders, it is in general suboptimal
(both socially and from the seller’s viewpoint) to commit in advance to a fixed set of participants
without knowing the bidding history. Hence the seller picks a contingent plan that, based on the
messages of the “incumbents,” specifies whether the seller should (i) stop the mechanism and
either keep the good or allocate it to an incumbent bidder, or (ii) continue and invite new bidders.
Coupled with a payment scheme, such a contingent plan is called a search mechanism. Note that
parallel search is allowed since the seller can invite several entrants at once.

At the start of period 1, the seller contacts a set of entrants. If an entrant agrees to participate,
he signs with the seller a binding contingency contract. Since he is privately informed before
signing the contract, a bidder’s participation constraint is interim.5 Each period-1 entrant then
sends a message. Given these messages, either the mechanism stops and the seller keeps the good
or allocates it to a period-1 entrant, or the mechanism continues to period 2 and more entrants

4 Another example might be a movie producer looking for a location to shoot a new movie. In order to get price quotes
from the various potential locations, the producer needs to examine the exact facilities that each location can offer. Only
then can the producer tell which facilities it would need and obtain a price quote.

5 We assume that a seller cannot make a buyer commit to a payment plan before the buyer knows his type. Otherwise,
the buyer would be besieged by dishonest sellers selling him fake projects or goods of no value whatsoever.
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are invited. Depending on the information disclosure policy that the seller adopts as part of the
mechanism, each entrant in periods 1 and 2 is told none, or part of, or all of the messages sent
by period-1 entrants. Therefore, a period-2 entrant need not even know how many periods the
search has lasted.6 Given the disclosed information, each period-2 entrant decides whether to
participate; if he does, he sends a message. If the rules of the mechanism allow it, a period-1
entrant can submit a new message. Depending on the messages sent in periods 1 and 2, the
mechanism either continues and a new set of entrants is invited to participate in period 3, or
the mechanism stops. In the latter case, the seller keeps the good or allocates it to a period-1 or
period-2 entrant. The mechanism continues in a similar fashion until it stops.

2.4. Revelation search mechanisms

A revelation search mechanism is a search mechanism in which (i) each bidder i’s message
space is i’s type space, (ii) each entrant is disclosed information only when he is being contacted,
and (iii) each entrant sends a message once and only once, immediately after his information
disclosure stage. A search mechanism, as a multistage game, is equilibrium feasible if it has a
perfect Bayesian equilibrium (PBE). A revelation search mechanism is incentive feasible if it has
a PBE where every invited bidder participates and is truthful.

The next lemma allows us to restrict attention to revelation search mechanisms without loss.
Its proof is similar to the standard one and hence is omitted. In a general search mechanism, a
participating bidder may submit messages in several periods and hence his equilibrium strategy is
a mapping from his type to a complete contingency plan. However, there is no loss of generality
in suppressing the contingency plan and replacing it with a one-shot message. The principal, with
full commitment power, can tell the bidder: “Tell me your type and I will play for you in the
multistage mechanism according to the contingency plan that you would have chosen yourself.”

Lemma 1 (Revelation principle for search mechanisms). For any equilibrium feasible search
mechanism, there exists an incentive feasible revelation search mechanism that replicates its
equilibrium outcome.

Given a revelation search mechanism, suppose that the profile of realized types is x ∈ X and
every invited bidder participates and is truthful. Then the mechanism induces the following objects
(the formal definition is in the Appendix):

Et(x) := the set of potential bidders who enter the mechanism in period t .
qi(x) := the probability with which player i (bidder or seller) consumes the good.
pi(x) := the total payment made by bidder i discounted back to the period at which i enters the

mechanism.
Hi(x) := the smallest subset of ×j∈I\iXj which bidder i knows, when i enters the mechanism,

that contains the profile of all other players’ realized types.
ti (x) := the period at which player i enters the mechanism (i ∈ Eti(x)(x)).
�(x) := the period at which the search ends.

I t (x) := ⋃t
s=1 Es(x) = the set of incumbents at the end of period t .

6 By contrast, a period-1 entrant knows that he is in the first cohort. That is because the set of period-1 entrants is part
of the rules of the mechanism which are explained to each bidder when he is contacted. This feature, however, is not
essential: as explained in the Appendix, the seller can randomize the search procedure, in which case even a period-1
entrant need not know he is in the first cohort.
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A revelation search mechanism is denoted ((Et )∞t=1, q, (pi, Hi)i∈I ). A search procedure is the
operation-research part of a revelation search mechanism; it determines the set of entrants in each
period and the identity of the winner of the good but not how much to charge or what information
to disclose. Denote a search procedure by ((Et )∞t=1, q).7

The sequential nature of a search mechanism is formulated into the following constraints (which
are implied by the formal definition in the Appendix):

(1) E1 is constant on X, i.e., the set of entrants in period 1 is determined without any message.
(2) If two realized profiles x and x′ of bidder-values generate the same history up to period t �1,

i.e., Es(x) = Es(x′) for all s = 1, . . . , t , and if xi = x′
i for all incumbents i ∈ I t (x), then x

and x′ induce the same decisions for period t + 1:
(a) the set of entrants in period t + 1 is the same and this set is a subset of potential bidders

who have not yet entered, i.e., Et+1(x) = Et+1(x′) ⊆ I \ I t (x);
(b) if t = �(x), then q(x) = q(x′) and pi(x) = pi(x

′) for every potential bidder i; i.e., if the
mechanism stops at period t , then the allocation is the same for x and x′, and the payment
is the same for x and x′;

(c) for any i who enters the mechanism in period t + 1, Hi(x) = Hi(x
′), i.e., the news

disclosed to entrant i is the same for x and x′.8
(3) The good cannot go to bidders who do not participate in the mechanism, nor can the seller

collect payments from such bidders, i.e., i /∈ I �(x)(x) ⇒ qi(x) = pi(x) = 0.

The functions (Hi)i∈I constitute the disclosure policy of the mechanism. In a full disclosure
policy, for any profile x of realized types and in any period t , every entrant knows the entire
sequence (Es(x))ts=1 of entry up to that point, as well as the reported type xj of every incumbent
j ∈ I t−1(x). In a non-disclosure policy, an entrant only learns that he was invited to participate
but he does not learn the history of the mechanism up to that point, nor even how many periods
the mechanism was played.

Whatever the disclosure policy is, the bidders are told about the mechanism. A bidder makes
the participation decision only after he has been informed of his type and whatever the disclosure
policy reveals to him, including all the rules of the mechanism.

The above notations implicitly assume that the seller does not fully randomize on the search
procedure. This assumption causes no loss of generality, because the seller and bidders are all
risk neutral and types are independent. Our formal definition in the Appendix does allow full
randomization.

2.5. Notions of optimal search mechanisms

Given any search procedure ((Et )∞t=1, (qi)i∈I ), if all invited bidders participate and are truthful,
and if the seller gets the entire surplus, then the seller’s expected profit discounted to period 1 is

�((Et )∞t=1, (qi)i∈I | (ui)i∈I ) := Ex

⎡
⎣��(x)−1

[∑
i∈I

qi(x) (ui(x)−x0)

]
−

∞∑
t=1

�t−1
∑

i∈Et (x)

ci

⎤
⎦ .

(1)

7 Note: ((Et )∞
t=1) determines the period �(x) in which the search ends: �(x) = max{s = 1, 2, . . . : Es(x) 	= ∅}.

8 Constraint 2(c) implies that a participant cannot learn about the types of those who have not participated. To prove
that, suppose at state x, i enters in period t + 1 and j has not entered by the end of period t + 1 (i.e., i ∈ Et+1(x) and
j 	∈ I t+1(x)). For any possible type x′

j
of j , denote (x−j , x′

j
) for the state such that the type of j is x′

j
and the type of

everyone else is the same in x. By 2(c), Hi(x) = Hi(x−j , x′
j
), hence i has no way to update about j ’s type.
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Note that there is no need to quantify the first sum by the restriction that i is a participant,
because if i is not a participant then qi(x) = 0 by constraint 3 in the previous subsection.

In traditional search theory there is no asymmetric information once the search cost has been
incurred. Thus, optimal search amounts to maximizing �((Et )∞t=1, (qi)i∈I | (ui)i∈I ) over all
search procedures. We call this unconstrained maximization problem symmetric-information
search problem relative to payoffs (ui)i∈I and say that its solution is symmetric-information
optimal relative to payoffs ui . In our auction environment, by contrast, after the seller incurs a
search cost and contacts a bidder, the bidder becomes privately informed about his type. Hence
the seller needs to design a search mechanism that induces the bidders to reveal their private infor-
mation truthfully. A search mechanism is optimal (profit maximizing) if the seller’s discounted
expected profit is maximized over all search mechanisms subject to interim participation and
incentive compatibility constraints. A search procedure is optimal if it is the search procedure of
an optimal search mechanism.

3. Optimal search mechanisms

For every potential bidder i ∈ I and any possible realized profile x := (xi)i∈I of bidder-values,
define the (ex post) virtual utility of bidder i to be

Vi(x) := xi − 1 − Fi(xi)

fi(xi)
+
∑

j∈I\i
eij (xj ). (2)

Following most of the optimal auction literature, we make the following assumption which extends
the usual monotone hazard rate assumption to the case of interdependent values.

Assumption 1. For any potential bidders i and j , xi − 1−Fi(xi )
fi (xi )

and eji(xi) are differentiable func-

tions of xi on Xi , their derivatives are uniformly bounded, and d
dxi

(
xi − 1−Fi(xi )

fi (xi )

)
> e′

ji(xi)�0

over the interior of Xi .

Theorem 1. If Assumption 1 holds, then (a) disclosure policies do not affect the seller’s expected
profit, and (b) there is an optimal search mechanism that uses the symmetric-information optimal
search procedure relative to virtual utility functions (Vi)i∈I .

Hence a profit-maximizing seller just needs to solve a distorted symmetric-information search
problem, where real utilities (ui)i∈I are replaced by virtual utilities (Vi)i∈I . Moreover, the seller
can pick any disclosure policy ranging from non-disclosure to full disclosure. Once he finds a
search procedure that solves the distorted problem and arbitrarily picks a disclosure policy, the
seller just needs to implement them with a payment scheme satisfying the familiar envelope
formula.

The irrelevance of disclosure policies might be unexpected. Here we sketch the economic
reasoning behind the proof. No matter how complicated a search procedure is, what matters from
each bidder’s viewpoint is the bidder’s discounted expected probability of winning, conditional
on the bidder’s own type and the bidder’s information set about the types of the other bidders.
The latter is disclosed to the bidder by the revelation search mechanism only when the bidder is
about to act (recall that each bidder acts only once in the mechanism). As long as an appropriate
monotonicity condition holds, the seller can induce each bidder to be truthful by offering the
bidder a payment plan conditional on the bidder’s information set. Hence the seller’s discounted
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surplus extracted from each bidder i is uniquely determined by the bidder’s type, xi , and the
bidder’s information set, Hi . Before the search procedure starts, the seller’s discounted expected
surplus extracted from bidder i is calculated by integrating the surplus extracted from i across
all possible information sets Hi that the mechanism may disclose to this bidder. Note that these
information sets constitute a partition on the set of possible realized type profiles x−i of the other
bidders. Hence this integration is the same as integrating across all the possible realized values
of x−i , which is independent of the disclosure policy. Thus, the seller’s surplus extracts from
each bidder i is uniquely determined by the bidder’s type xi and is independent of the disclosure
policy.9

3.1. The proof of the theorem

We prove Theorem 1 in three steps. First, in Section 3.1.1, we show that the seller’s opti-
mal discounted expected profit is bounded from above by the optimal payoff from the distorted
symmetric-information search problem. Second, we show in Section 3.1.2 that the solution for
this distorted symmetric-information problem is incentive compatible given full disclosure policy.
Finally, based on step two, we show in Section 3.1.3 that the seller can achieve the upper bound
in step one via full disclosure. Since other disclosure policies cannot yield less expected profit
than full disclosure, any disclosure policy, coupled with a solution for the distorted symmetric-
information search problem, is optimal for the seller.

3.1.1. Step one: necessary conditions for incentive feasibility and optimality
By Lemma 1, we can confine attention to revelation search mechanisms. Consider a revelation

search mechanism, described by the notations Et , qi , Hi , ti , and � introduced in Section 2.4.
Assume that bidder i is invited at some period. Let Hi be the information set disclosed to

bidder i before he reports his type. If he reports that his type is x̂i , then from the viewpoint of the
current period (which depends on the realized state and may be unknown to i), the discounted
expected value of his winning probability is

Qi(x̂i | Hi ) = Ex−i

[
��(x̂i ,x−i )−ti (x̂i ,x−i )qi(x̂i , x−i ) | Hi = Hi(x̂i , x−i )

]
, (3)

and the discounted expected value of other bidders’ influence on bidder i’s utility is

e−i (x̂i | Hi ) = Ex−i

⎡
⎣��(x̂i ,x−i )−ti (x̂i ,x−i )qi(x̂i , x−i )

∑
j∈I\i

eij (xj )

∣∣∣∣∣∣Hi = Hi(x̂i , x−i )

⎤
⎦ . (4)

The discounted expected value of bidder i’s payment from this viewpoint is calculated analogously
and denoted by Pi(x̂i | Hi ). If bidder i’s realized type is xi , then his discounted expected utility
from the viewpoint of the current period is

ui(x̂i | xi, Hi ) = xiQi(x̂i | Hi ) + e−i (x̂i | Hi ) − Pi(x̂i | Hi ). (5)

9 Gershkov and Szentes [8] study a dynamic mechanism design problem in which committee members acquire costly
information in order to make a collective decision, and show that full disclosure is not optimal. Their problem however
differs from ours in many important dimensions (e.g., there are no monetary transfers and the cost of information acquisition
is borne by the agents). Currently, there still does not exist a comprehensive framework that unifies the various strands
of the literature on dynamic mechanism design with costly information acquisition that makes it possible to identify the
general circumstances under which full disclosure is or is not optimal.
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Given the independence of bidders’ types, none of Qi(x̂i | Hi ), Pi(x̂i | Hi ) and e−i (x̂i | Hi )

vary with bidder i’s actual type. Thus, each bidder i’s objective function takes the quasilinear
form xiAi(x̂i) + Bi(x̂i), standard in auction theory. This quasilinear form, coupled with standard
techniques (e.g., Myerson [12, Lemma 2]), yields the next lemma.

Lemma 2. The seller’s problem is equivalent to maximizing his discounted expected profit
among all pairs of search procedures ((Et )∞t=1, (qi)i∈I ) and disclosure rules (Hi)i∈I subject
to the following constraints for any i ∈ I , any xi ∈ Xi , and any Hi in the range of
Hi (i.e., {Hi(x) : x ∈ X}):

the function Qi(· | Hi ) is nondecreasing, (6)

ui(xi | xi, Hi ) = ui(xi | xi, Hi ) +
∫ xi

xi

Qi(z | Hi ) dz, (7)

ui(xi | xi, Hi ) = 0. (8)

A revelation search mechanism is incentive feasible if (6) is satisfied and the payment scheme
satisfies the envelope formula

Pi(xi | Hi ) = xiQi(xi | Hi ) + e−i (xi | Hi ) −
∫ xi

xi

Qi(z | Hi ) dz (9)

for any i ∈ I , any xi ∈ Xi , and any Hi in the range of Hi .

The next lemma is similar to the “integration by parts” routine in optimal auction theory.

Lemma 3. If a revelation search mechanism with any disclosure policy is incentive feasible, then
the seller’s discounted expected profit is equal to

�((Et )∞t=1, (qi)i∈I | (Vi)i∈I ),

defined by (1) with ui replaced by Vi , where ((Et )∞t=1, (qi)i∈I ) is the search procedure of the
mechanism.

Proof. Let bidder i enter at period t and be informed of information set Hi . By Eq. 9, the seller’s
expected net profit extracted from bidder i discounted to period t is

Exi

[
(xi − x0)Qi(xi | Hi ) + e−i (xi | Hi ) −

∫ xi

xi

Qi(z | Hi ) dz − ci

]
.

By a standard argument (e.g., Myerson [12, Lemma 3]), this is equal to

Ex

[
��(x)−t qi(x) (Vi(x) − x0) − ci | Hi = Hi(x)

]
,

where we used Eqs. (2)–(4). Viewed from period 1, the period t at which bidder i enters the
mechanism is a random variable uniquely determined by the profile x of realized types: t = ti (x).
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Thus, viewed from period 1, the seller’s expected profit extracted from bidder i is

Et

[
EHi

[
Ex

[
��(x)−1qi(x) (Vi(x) − x0) − �t−1ci

]∣∣∣Hi = Hi(x)
]∣∣∣ t = ti (x)

]

= Ex

⎡
⎣��(x)−1qi(x) (Vi(x) − x0) −

∑
t : t=ti (x)

�t−1ci

⎤
⎦ . (10)

Summing the right-hand side (10) over all i ∈ I (and noting that t = ti (x) ⇔ i ∈ Et(x)), we get

Ex

⎡
⎣��(x)−1

[∑
i∈I

qi(x) (Vi(x) − x0)

]
−

∞∑
t=1

�t−1
∑

i∈Et (x)

ci

⎤
⎦ , (11)

which is equal to �((Et )∞t=1, (qi)i∈I | (Vi)i∈I ), defined in Eq. (1), with Vi replacing ui . �

Remark. We would have obtained the traditional recipe of optimal auction by now had search
costs been zero: for every state x, set qi(x) := 1 for the bidder i whose virtual utility is highest
among all bidders and exceeds x0. This, however, is in general infeasible for a search mechanism,
because the seller does not know the realized types of bidders who have not yet been contacted.

3.1.2. Step two: verifying the incentive feasibility condition
The purpose of the second step is to show that the solution for the seller’s distorted symmetric-

information problem is incentive compatible given full disclosure policy. To this end, recall that,
in the distorted symmetric-information search problem, the seller tries to maximize the discounted
expected value of virtual utility of the winner of the good minus search costs. Denote

((Ẽt )∞t=1, (q̃i)i∈I ) := a search procedure that solves the distorted

symmetric-information search problem.

Next, at any period, denote

J := the set of incumbents, bidders who have entered,

xJ := (xi)i∈J , x−J := (xi)i /∈J ,

�(J, xJ ) := the seller’s optimal discounted expected payoff

given the state variable (J, xJ ),

�+(J, xJ ) := the seller’s optimal discounted expected payoff

from continuing the search given (J, xJ )

= � max
K⊆I\J

[
ExK

�(J ∪ K; xJ , xK) −
∑
k∈K

ck

]
. (12)

The above objects are well defined because a straightforward proof by induction implies that the
search procedure ((Ẽt )∞t=1, (q̃i)i∈I ) exists and the function � is well defined.

At each period, given the state variable (J, xJ ) for distorted symmetric-information search
problem, the seller’s alternatives, described relative to any incumbent i ∈ J , are (i) sell the good
to i right now, getting Ex−J

Vi(x), (ii) sell to another incumbent j 	= i right now, getting Ex−J
Vj (x),

(iii) continue search thus getting �+(J, xJ ), or (iv) stop and consume the good, getting x0. The
next lemma says that alternative (i) is more likely to be the best option if i’s type xi is high.
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Lemma 4. If i ∈ J , then Ex−J
Vi(xJ , x−J ) and �+(J, xJ ) are absolutely continuous functions

of xi ; whenever their derivatives exist,

�
�xi

Ex−J
Vi(xJ , x−J ) >

�
�xi

max
j∈J\i Ex−J

Vj (xJ , x−J ) and (13)

�
�xi

Ex−J
Vi(xJ , x−J ) � �

�xi

�+(J, xJ ), (14)

and if (14) holds with equality then Ex−J
Vi(xJ , x−J )��+(J, xJ ).

Proof. By Eq. (2), �
�xi

Ex−J
Vi(xJ , x−J ) = d

dxi

[
xi − 1−Fi(xi )

fi (xi )

]
, and, for all j 	= i, xi enters Vj (x)

only through eji(xi). Hence Assumption 1 implies (13).
To prove (14), we use a revealed-preference argument. Let (J, xJ ) be given. Denote

Q̃k(xJ ) := the discounted expected probability that

((Ẽt )∞t=1, (q̃i)i∈I ) awards the good to bidder k

(who need not has entered) given (J, xJ ). (15)

Assume that the seller follows the search procedure ((Ẽt )∞t=1, (q̃i)i∈I ) as if the type of an incum-
bent i ∈ J is x̂i 	= xi . (The seller knows the realized value of xi because this is a symmetric-
information search problem.) Let �̂+(J, xJ , x̂i) be the expected payoff of the seller from this
deviant plan, discounted back to the current period t ; xi enters �̂+(J, xJ , x̂i) only in the term

Ex−J

∑
k∈I

��(xJ\i ,x̂i ,x−J )−tVk(xJ\i , xi, x−J )q̃k(xJ\i , x̂i , x−J ).

Hence (remember that xi is one component of xJ )

�
�xi

�̂+(J, xJ , x̂i) = Q̃i(x̂i , xJ\i )
d

dxi

[
xi − 1 − Fi(xi)

fi(xi)

]
+
∑
k∈I\i

Q̃k(x̂i , xJ\i )e′
ki(xi).

As ((Ẽt )∞t=1, (q̃i)i∈I ) solves the dynamic programming problem given the state variable (J, xJ ),

�+(J, xJ ) = �̂+(J, xJ , xi) = max
xi

�̂+(J, xJ , x̂i).

Thus, the Milgrom–Segal envelope theorem [11] implies that �+(J, xJ ) is an absolutely contin-
uous function of xi and that, whenever its derivative exists,

�
�xi

�+(J, xJ ) = Q̃i(xi, xJ\i )
d

dxi

[
xi − 1 − Fi(xi)

fi(xi)

]
+
∑
k∈I\i

Q̃k(xi, xJ\i )e′
ki(xi). (16)

Thus, Assumption 1 implies (14). If (14) holds with equality, bidder i wins almost surely in
subsequent periods if the search were to continue. But since search is costly, this implies in turn
that awarding the good to bidder i immediately dominates the option of continuing the search.
Hence Ex−J

Vi(xJ , x−J )��+(J, xJ ). �
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We are now ready to prove the main lemma of this subsection.

Lemma 5. If Assumption 1 holds, then the search procedure ((Ẽt )∞t=1, (q̃i)i∈I ) operated under
the full disclosure policy satisfies the monotonicity condition (6), i.e., Qi(· | Hi ) is nondecreasing
for any information set Hi in the range of the full-disclosure rule.

Proof. Let J ⊆ I be the set of incumbents and let i ∈ J . It suffices to prove that Q̃i(xJ ), defined
by (15), is weakly increasing in xi . We shall prove this claim by induction on the size of I \ J .
The case of J = I follows directly from (13). Pick any n = 1, 2, . . . and suppose the claim is
true if the size of I \ J is less than or equal to n − 1. We shall prove the claim when I \ J is of
size n. Since the search procedure ((Ẽt )∞t=1, (q̃i)i∈I ) solves the problem

max

{
x0, Ex−J

Vi(xJ , x−J ), max
j∈J\i Ex−J

Vj (xJ , x−J ), �+(J, xJ )

}
,

Lemma 4 implies that the probability that bidder i wins in the current period is weakly increasing
in xi . The induction hypothesis implies that the probability (discounted back to next period) that
he wins later, conditional on him not winning in the current period, is weakly increasing in xi .
Thus, the total discounted winning probability of bidder i is weakly increasing in xi , as claimed.

�

3.1.3. Step three: the irrelevance of disclosure policies
To complete this final step of the proof, we show that the full-disclosure mechanism identified

in Section 3.1.2 is optimal among all incentive feasible mechanisms under any disclosure policy.
That is true because the full-disclosure mechanism, by definition of its search procedure, achieves
the upper bound identified in Section 3.1.1 if the mechanism is incentive feasible, and we have
proved in Section 3.1.2 that it is indeed incentive feasible. Thus, disclosure policies are irrelevant
because, as we will show below, other disclosure policies cannot yield smaller expected profit
than full disclosure.

Formally, denote

�FD, �ANY := the seller’s optimal discounted expected profit among all

incentive feasible search mechanisms using, respectively,

“full disclosure” (FD), “any disclosure policy” (ANY).

Since bidders are assumed to be risk neutral, incentive feasibility with a fine disclosure policy
implies incentive feasibility with a coarse disclosure policy. (Incentive feasibility means a set
of inequalities, one for each event that the disclosure policy can possibly reveal to a bidder;
integration across these events preserves the direction of the inequalities.) Hence

�ANY ��FD.

Lemma 3 implies that �ANY is bounded from above by the optimal discounted expected payoff
in the distorted symmetric-information search problem. Since ((Ẽt )∞t=1, (q̃i)i∈I ) is a solution for
this distorted problem, we have

�
(
(Ẽt )∞t=1, (q̃i)i∈I | (Vi)i∈I

)
��ANY.
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Lemma 5, coupled with Lemma 2, implies that the search procedure ((Ẽt )∞t=1, (q̃i)i∈I ) is incentive
feasible when it is supplemented by the full disclosure policy. Hence

�FD ��
(
(Ẽt )∞t=1, (q̃i)i∈I | (Vi)i∈I

)
.

Thus, we obtain the equation that immediately implies the theorem

�ANY = �FD = �
(
(Ẽt )∞t=1, (q̃i)i∈I | (Vi)i∈I

)
.

3.2. An optimal mechanism with private values and no discounting

In this subsection we illustrate Theorem 1 for the case where bidders have private values
(eij = 0 for all i, j ∈ I ) and there is no discounting (� = 1). We shall show that the optimal
search procedure can be implemented by a sequence of Myerson’s [12] optimal auctions, with an
additional bidder joining the competition in each period if the good is not yet sold. In the special
case where bidders have the same distribution of values, this sequence of auctions is simply a
sequence of second-price auctions with period-specific reserve prices that decline over time.

Since the distributions of bidders’ types and the cost of contacting each bidder are not necessarily
the same across bidders, the results in this subsection generalize the results in McAfee and
McMillan [10] where the bidders are assumed to be ex ante identical.

By Theorem 1, the seller needs to solve the distorted symmetric-information search problem,
where his reward from selling the good to a bidder is the bidder’s virtual utility. With private
values, a bidder’s virtual utility depends only on his own type (hence we write Vi(xi) instead of
Vi(x)):

Vi(xi) = xi − 1 − Fi(xi)

fi(xi)
. (17)

This symmetric-information search problem is similar to Weitzman’s [17] Pandora problem. In
that problem, Pandora searches for the highest reward from n boxes under the assumption that
only one box can be opened in any single period and opening each box is costly. Weitzman proved
that the solution to Pandora’s problem is as follows. First, Pandora computes a cutoff value for
each box—this cutoff value depends only on the ex ante characteristics of the box itself. Then, if
the highest cutoff value falls short of Pandora’s initial fallback reward, Pandora does not search
and simply gets the fallback reward. Otherwise, Pandora opens the box with the highest cutoff
value. In every period, the search continues if the highest cutoff among all closed boxes exceeds
the updated fallback reward which is the maximum between the initial fallback reward and the
highest reward among all opened boxes. If search ends, Pandora gets the updated fallback reward.

In our distorted symmetric-information search problem, the boxes are the potential bidders,
and the seller’s reward from each bidder is the bidder’s virtual utility. The initial fallback reward
is just x0. Since we assume away discounting, there is no loss of generality in inviting only one
entrant (i.e., “opening one box”) in each period as Weitzman’s Pandora problem. The relevant
cutoff level v∗

i for bidder i is the solution of

Exi

[(
Vi(xi) − v∗

i

)+] = ci . (18)

This equation is analogous to Eq. (7) in Weitzman [17]. It says that, if the seller’s updated
fallback payoff is v∗

i , then the seller is indifferent between (i) stopping the search and getting v∗
i
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immediately, and (ii) contacting bidder i at a cost of ci and then stopping the search and getting
a payoff equal to either Vi(xi) or v∗

i , whichever is higher.
With the cutoffs computed, the optimal search mechanism is: relabel the potential bidders so

that v∗
1 � · · · �v∗

n �v∗
n+1 := −∞, n being the total number of potential bidders. If 0�v∗

1 , quit.
Else invite bidder 1. Every invited bidder is asked to make a report x̂i and commits to paying, in
expected value, an amount Pi(x̂i | Hi ) specified by Eq. (9). If (x̂s)

t−1
s=1 are the invited bidders’

reports up to the end of period t − 1, let

vt−1 := max
{
x0, max

s<t
Vs(x̂s)

}
.

If vt−1 < v∗
t , continue to period t and invite bidder t . If vt−1 �v∗

t , the seller stops searching and
sells the good to a bidder s ∈ {1, . . . , t − 1} for whom Vs(x̂s) = vt−1, if such bidder exists, or
keeps the good otherwise.

Note that bidder t can end the search and buy the good immediately if he reports his type
as x̂t such that Vt (x̂t )� max{vt−1, v∗

t+1}. In that case, Eq. (9) implies that the payment made by
bidder t is equal to10

V −1
t (max{vt−1, v∗

t+1}) = max
{
V −1

t

(
max
s<t

Vs(x̂s)
)

, V −1
t (max{x0, v

∗
t+1})

}

= max
{
V −1

t

(
max
s<t

Vs(x̂s)
)

, rt
t

}
, (19)

where

rt
t := V −1

t (max{x0, v
∗
t+1}). (20)

Thus, bidder t is essentially competing in Myerson’s [12] optimal auction:

(a) he wins immediately if and only if (i) the virtual utility Vt (x̂t ) of his bid is the highest among
all invited bidders 1, . . . , t and (ii) x̂t is at least as high as the reserve price rt

t ;
(b) if he wins immediately, his payment is equal to either (i) the minimum bid that defeats all

other invited bidders in virtual utilities or (ii) the reserve price rt
t , whichever is higher;

(c) if he does not win immediately, bidder t may still win at the end of the search; at that point,
his winning event is (i) Vt (x̂t ) is highest among all the bidders that have been invited and (ii)
x̂t matches the reserve price V −1

t (x0) set at the final period of the search.11

Note that bidder t’s incentive is unchanged if the bidders invited in previous periods are allowed
to resubmit their bids so that (x̂s)

t−1
s=1 records their most recent instead of old bids. These earlier

bidders are truth-telling in the resubmission if any inconsistency between their new and old bids
is forgiven and if their new bids are subject to the optimal search procedure, so that the winning
event for bidder s is (i) the virtual utility of her new bid is greater than the virtual utilities of the
most recent bids from all other invited bidders, i = {1, . . . , t} \ {s}, and (ii) the new bid is at least
as high as a bidder-specific reserve price rt

s :

rt
s := V −1

s (max{x0, v
∗
t+1}), (21)

which weakly decreases as t increases, as v∗
t+1 weakly decreases in t .

10 The inverse function V −1
t exists by Assumption 1.

11 If the search stops at the end of period T , then vT �v∗
T +1 (including the case T = n since v∗

n+1 = −∞), hence

bidder t’s winning event in the final period is Vt (x̂t )�vT .
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Hence the optimal mechanism has the following interpretation: if the search continues to pe-
riod t , invite bidder t and hold a Myerson auction with period- and bidder-specific reserve prices rt

s

among all the invited bidders s ∈ {1, . . . , t}.
In the special case where all bidders have the same distribution for their types (though the search

costs of contacting them may be different), the virtual utility functions are identical across bidders:
Vs =: V for all bidders s. As V is assumed to be strictly increasing, V (xi) > V (xj ) ⇔ xi > xj ,
i.e., comparing bids in virtual utilities is equivalent to comparing bids in their actual values. Thus,
the optimal mechanism can be simply interpreted as a sequence of second-price auctions among
the bidders invited so far subject to period-specific reserve prices. By (21), in each period t , the
reserves rt

s are identical for all invited bidders s ∈ {1, . . . , t}; furthermore, this uniform reserve
price declines over time, as v∗

t+1 does so. Section 3.3 presents a simple example of such a sequence
of second-price auctions.

A further special case in which the search costs are also the same across bidders (i.e., the bidders
are ex ante identical) has been analyzed by McAfee and McMillan [10]. Since the bidders are
ex ante identical, the cutoffs v∗

i defined by Eq. (18) are identical across bidders. Thus, unlike in
most of our paper, the sequence in which the bidders are contacted is irrelevant in their setting and
the optimal mechanism is simply a sequence of standard second-price auctions with a constant
reserve price, with one more bidder invited in every period.

3.3. A two-bidder example with private values and no discounting

In this subsection we examine a specific example with two potential bidders that illustrates how
the optimal mechanism can be computed. Suppose that xi is uniformly distributed on [0, 1] for each
potential bidder i, and the cost of contacting bidder i is ci , with c1 < c2 < 1

4 . As in Section 3.2,
we assume that e12 = e21 = 0 (private values) and � = 1. Hence, the profit optimal search auction
is a Weitzman search procedure with the bidders’ values replaced by their virtual utilities

Vi(x) = 2xi − 1. (22)

The seller will not sell the good to bidder i if Vi(x)�0; hence a bidder with xi � 1
2 has a zero

probability of winning the good.
Using (18), the cutoffs v∗

1 and v∗
2 are defined by∫ 1

(1+v∗
i )/2

[
2x − 1 − v∗

i

]
dx = ci ⇐⇒ v∗

i = 1 − 2
√

ci .

Since c1 < c2 < 1
4 , we get v∗

1 > v∗
2 > 0, it is optimal to invite bidder 1 in period 1, and if the

search continues, to invite bidder 2 in period 2.
Bidder 1 wins the good immediately if V1(x1)�v∗

2 , i.e., if x1 �1−√
c2. Otherwise, the mecha-

nism continues to period 2, and bidder 1 wins if and only if x1 > max
{
x2,

1
2

}
. Since x2 ∼ U [0, 1],

the probability that bidder 1 wins is 0 if x1 < 1
2 , x1 if 1

2 �x1 < 1 − √
c2, and 1 if x1 �1 − √

c2.
Using (9), the expected payment of bidder 1 is

p1(x1) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 if x1 <
1

2
,

x2
1 − ∫ x1

1/2 z dz = x2
1

2
+ 1

8
if

1

2
�x1 < 1 − √

c2,

x1 − ∫ 1−√
c2

1/2 z dz − ∫ x1
1−√

c2
dz = 1 − c2

2
+ 1

8
if x1 �1 − √

c2.

(23)
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Conditional on being invited to participate, bidder 2 wins the good if and only if V2(x2) > max

{V1(x1), 0}, i.e., x2 > max
{
x1,

1
2

}
. By (9), the expected payment of bidder 2 is

p2(x2, x1) =

⎧⎪⎨
⎪⎩

0 if x2 � max
{
x1,

1
2

}
,

x2 − ∫ x2
max{x1,1/2} dz = max

{
x1,

1
2

}
if x2 > max

{
x1,

1
2

}
.

The optimal mechanism can be implemented with the following sequence of second-price auc-
tions, which is a simplest special case covered by our characterization in Section 3.2. Bidder 1
is offered the good at price (1 − c2)/2 + 1

8 in period 1 (a degenerate second-price auction with
one participant); if he rejects the offer, he and bidder 2 participate in period 2 in a second-price
auction with a reserve price equal to 1

2 . (Note, since c2 < 1
4 , we have (1 − c2)/2 + 1

8 > 1
2 , hence

the reserve price declines over time, as predicted in Section 3.2.) Since both bidders bid their
values in the period-2 second-price auction, bidder 2 wins if and only if x2 > max{x1,

1
2 } and his

payment if he wins is max{x1,
1
2 }. Hence, we only need to verify that bidder 1’s optimal strategy

in our procedure is aligned with the optimal mechanism.
In our procedure, bidder 1 has to pay at least 1

2 if he wins. Thus, if x1 � 1
2 , he does not

want to win, and it is dominant to bid his true type in both periods. In period 2, bidder 1

wins if and only if x1 > max
{
x2,

1
2

}
, and if he wins, he pays max

{
x2,

1
2

}
; his expected

payment is∫ 1/2

0

1

2
dx2 +

∫ x1

1/2
x2 dx2 = 1

8
+ x2

1

2
.

This expression is equal to the second line in Eq. (23).
Finally, to verify that bidder 1 accepts the offer in period 1 if and only if x1 �1 −√

c2, we note
that bidder 1 has two options: (i) agree to pay 1−c2

2 + 1
8 and obtain the good immediately, or (ii)

participate in the second-price auction with bidder 2. Bidder 1’s payoff from option (i) is

x1 −
(

1 − c2

2
+ 1

8

)
.

With option (ii), bidder 1 wins with probability x1 and his expected payment is
x2

1
2 + 1

8 ; his
expected payoff is

x1x1 −
(

x2
1

2
+ 1

8

)
= x2

1

2
− 1

8
.

Comparing bidder 1’s expected payoff under the two options shows that he will choose option (i)
if and only if x1 �1 − √

c2. Hence bidder 1’s strategy is consistent with the optimal mechanism.
In the general case with parallel search, it is difficult to identify the consequences of a change in

search cost, except for the trivial fact that an increase in search costs decreases the seller’s profits.
In the current example however it is easy to identify the effects: an increase in c1 (assuming that
c1 is still below c2) does not affect the bidders’ utilities but does decrease the seller’s profit. On the
other hand, an increase in c2 lowers the reserve price in period 1 and hence makes it more likely
that the mechanism will end in period 1. This in turn increases bidder 1’s utility while decreasing
bidder 2’s utility.
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4. Properties of profit-maximizing search mechanisms

In standard auction theory, asymmetric information leads to inefficiencies in the form of no trade
in some states of nature, and, sometimes, biased allocations. In our search-theoretic framework,
asymmetric information leads to a third form of inefficiency: inefficient search procedures. In
Section 4.1, we show that the optimal mechanism may completely exclude some bidders who
would be invited to participate in the (socially) efficient mechanism. In Section 4.2, we show an
opposite effect: the optimal mechanism gives the seller an excessive incentive to search relative to
the efficient mechanism. In Section 4.3, we show that the order in which bidders are approached
need not be the same as the efficient mechanism.

In order to explore these kinds of inefficiency, we shall consider the private values case where
eij = 0 for all i, j ∈ I and there is no discounting.12 Given these assumptions, the seller’s optimal
search mechanism is characterized in Section 3.2. In particular, the optimal search procedure
is generated by Weitzman’s solution with the cutoffs being implicitly defined by Eq. (18). By
contrast, the cutoffs for a (socially) efficient procedure are defined by the equation

Exi

[
xi − x∗

i

]+ = ci . (24)

This difference arises because the payoff in the associated search problem is measured in virtual
utilities in the former mechanism and is measured in actual utilities in the latter. In Crémer,
Spiegel and Zheng [6] we proved that the efficient search procedure can always be implemented
by a PBE.13

4.1. Fewer participants

Since a bidder’s actual value exceeds his virtual utility, the benefit of inviting a bidder to partic-
ipate is lower in an optimal search mechanism for the seller than it is in an efficient mechanism for
the economy if the fallback payoffs are the same. In fact, the optimal mechanism may completely
exclude a bidder even before the search begins, even though that bidder has a positive probability
of participation in an efficient mechanism. This is described in the following proposition.

Proposition 1. From the standpoint of period 1, every bidder i’s probability of participation in a
socially efficient mechanism is positive if his probability of participation in an optimal mechanism
is positive, but the converse is not necessarily true.

Proof. For z�xi , Exi
[Vi(xi) − z]+ and Exi

[xi − z]+ are strictly decreasing functions of z and
Exi

[Vi(xi) − z]+ �Exi
[xi − z]+. Hence, v∗

i < x∗
i for all i ∈ I . The proof is completed by noting

that a bidder i has a positive probability of participating in the socially efficient mechanism if
x∗
i > x0 and a positive probability of participation in the optimal mechanism only if v∗

i �x0. �

4.2. Longer search

As virtual utilities are below actual utilities, the seller’s fallback value in the optimal mechanism
is smaller than his fallback value in a socially efficient mechanism. This leads to an effect opposite

12 By continuity, the inefficiencies that we identify still hold if these assumptions are slightly relaxed.
13 Although the participation constraint is ex ante in that paper, its efficiency result is applicable here because interim

participation constraints can always be satisfied by transfers from the seller.
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to the previous one, as the lower fallback value makes it more attractive to continue the search. A
simple case for this effect is when bidders’ types are i.i.d., so their virtual utility functions are the
same, say V , though their participation costs may still be different. While the cost of an additional
searching period is the same in both the efficient and optimal mechanisms, the gains are different.
To see that, suppose that an additional search increases the highest reported value and hence the
social surplus by �x. The resulting effect on the seller’s revenue, measured in virtual utilities, is
approximately V ′(x)�x. Under Assumption 1, V ′(x)�1. Thus, other things equal, the seller is
more willing to continue searching than a social planner would.

Proposition 2. Assume that types xi are identically distributed across bidders, with V denoting
their common virtual utility function (though their participation costs ci may be different). If
Assumption 1 holds and if v∗

i > x0 for all i ∈ I , then an optimal search lasts at least as long as,
and with a positive probability strictly longer than, a socially efficient search.

Proof. First, recall that xi is the upper bound of the support of xi and let

�(z) :=
∫ xi

z

(xi − z) dFi(xi), �(z) :=
∫ xi

z

(Vi(xi) − Vi(z)) dFi(xi).

The solution of �(z) = ci is V −1
i (v∗

i ). By assumption V ′ > 1, �′ < �′ < 0 throughout their
common domain. Then the fact that �(xi) = 0 = �(xi) implies V −1(v∗

i ) > x∗
i for all i ∈ I .

Second, the order of entry is the same in both mechanisms: with i.i.d. bidders, x∗
i > x∗

j

⇐⇒ ci < cj ⇐⇒ v∗
i > v∗

j . Thus, we can relabel the bidders so that v∗
1 �v∗

2 � · · · �v∗
n and

x∗
1 �x∗

2 � · · · �x∗
n . Because v∗

i > x0, the optimal mechanism invites bidder 1 to participate.
We show that it continues from period t to period t + 1 with a higher probability than the
socially efficient procedure. To see that, let (x1, . . . , xt ) be the sequence of realized values up
to period t . If the efficient search continues to period t + 1, then max{x0, x1, . . . , xt } < x∗

t+1;
because V −1(v∗

i ) > x∗
i and v∗

i > x0,

v∗
t+1 > max{x0, V1(x1), . . . , Vt (xt )}.

Hence the optimal search continues to period t + 1. Thus, it continues whenever the efficient
procedure continues. The converse, however, is false: when

x∗
t+1 < max{x1, . . . , xt } < V −1(v∗

t+1),

which occurs with a positive probability, the efficient search stops while the optimal search
procedure continues. This proves the proposition. �

4.3. Inefficient order of entry

Determined by different sets of cutoffs, the order in which the bidders enter the optimal mech-
anism may differ from the order in the socially efficient mechanism. The following example
shows this distortion with two bidders. The seller’s value, x0, is zero; bidder 1’s type x1 is
uniformly distributed on [x1, x1] and bidder 2’s type x2 is drawn from an exponential distri-
bution F2(x2) := 1 − exp(−�x2). Given these assumptions, the virtual utility functions and
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cutoffs are

V1(x1) = 2x1 − x1, V2(x2) = x2 − 1/�,

x∗
1 = x1 −√2c1(x1 − x1), x∗

2 = − ln(�c2)/�,

v∗
1 = x1 − 2

√
c1(x1 − x1), v∗

2 = − (1 + ln(�c2)) /�.

Since x∗
i > v∗

i , there exist two numbers a and b such that v∗
1 < a < b < x∗

1 . Let � := 1/(b − a)

and c2 := exp(−�b)/�. Then x∗
1 > x∗

2 and v∗
1 < v∗

2 : bidder 2 enters first in the optimal mechanism,
whereas bidder 1 enters first in the socially efficient mechanism.

4.4. Delayed participation of influential bidders

When bidders’ values are interdependent, we can address the following question: If bidder i’s
type has a stronger influence on the valuations of other bidders than bidder j ’s type, should
the seller let i enter before j or vice versa? For simplicity, we address this question under the
assumption that, for all j ∈ I , there is a number �j such that eij (xj ) = �j xj for all xj and i 	= j ,
with �j ∈ [0, 1). We can therefore regard bidders with higher �’s as more influential. We show
that the more influential bidders will enter later than less influential bidders. As we will see, this is
a property linked to the sequential nature of the search mechanism, and not, as in Sections 4.1–4.3,
a distortion due to asymmetry of information.

Proposition 3. Assume Vi �0 and xi �0 for all i, and eji(xi) = �ixi for all j 	= i. Also assume
that search costs and type-distributions are identical across i ∈ I . Then the larger �i is, the later
and less probable is i’s entry in an optimal or a socially efficient search mechanism.

Proof. For every i ∈ I and every xi ∈ Xi , let

Wi(xi) := xi − 1 − Fi(xi)

fi(xi)
− �ixi .

Note that Vi(x) = Wi(xi) + ∑j∈I �j xj . Thus, for any state variable (J, xJ ) in the dynamic
programming problem of optimal search,

Ex−J
Vi(xJ , x−J ) > Ex−J

Vj (xJ , x−J ) ⇐⇒ Wi(xi) > Wj(xj ). (25)

Since Vi �0 by assumption, the optimal mechanism never results in no sale. Hence (25) implies
that the search procedure is equivalent to a standard Weitzman search with payoff from search
being Wi(xi). In this search procedure, the cutoffs w∗

i are implicitly defined by

Exi

[
Wi(xi) − w∗

i

]+ = ci .

Exi

[
Wi(xi) − w∗

i

]+ is strictly decreasing in w∗
i and Wi(xi) is strictly decreasing in �i (since

xi �0 by assumption). Thus, w∗
i is strictly decreasing in �i , as claimed.

The proof for the socially efficient mechanism is analogous and can be deduced by simply
setting Wi(xi) := xi − �ixi for every i ∈ I and every xi ∈ Xi . �

The basic intuition for Proposition 3 is as follows: if there is a very influential bidder, a change
in his type will increase the value of other bidders nearly as much as it increases his own value.
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Hence, inviting this bidder to participate in the mechanism early on will not reduce the set of
states of nature in which it would also be optimal to invite other bidders to participate and will
therefore not save on search costs. To illustrate, assume that there are two bidders, with �1 = 1,
�2 = 0 and x0 = 0. Bidder 1 is therefore “influential” as a change in x1 has a positive effect on
bidder 2’s value but not vice versa. Since bidder 2’s value, x2 + x1, always exceeds bidder 1’s
value, x1, it is clear that if the good is allocated, it is certainly allocated to bidder 2; thus, only
bidder 2 will be invited to participate. The influential bidder, bidder 1, is excluded.

5. Conclusion

We have studied a single unit auction environment in which the set of bidders is endogenously
determined through a dynamic search process. The distinctive feature of our model is that it
allows for discounting and asymmetry and value-interdependency across potential bidders. With
asymmetry and interdependency, the sequence in which bidders are contacted is important. With
discounting, some potential bidders may need to be contacted at the same time.

We showed that an optimal mechanism for the seller is equivalent to an optimal search with
symmetric information, where the utilities are replaced by virtual utilities. That is, the seller
conducts a costly search for the bidder with the highest virtual utility. In standard auction theory,
the information rents that the seller concedes to the bidders create inefficiencies in the form of no
trade in some states of nature and, sometimes, biased allocations. Our search-theoretic framework
gives rise to a third form of inefficiency: inefficient search procedures. In the case of private values
with no discounting, this inefficiency results in fewer participants, longer search conditional on
the same set of participants, and inefficient sequence of entry, relative to the socially efficient
mechanism.

Acknowledgments

We are grateful for comments received from Dirk Bergemann, Eddie Dekel, Rich McLean,
Andrew McLennan, Josh Pinkston, Michael Schwarz, Asher Wolinsky, Lixin Ye, an associate
editor, two referees, and the seminar participants of “Endogenous Information Acquisition” in
the 2006 Annual ASSA Meeting. Yossi Spiegel gratefully acknowledges the financial support of
the IIBR and Charles Zheng thanks the NSF for Grant SES-0214471.

Appendix. A formal definition of revelation search mechanisms

Here we complement the informal definition of sequential mechanisms in Section 2.3 by a
formal definition. This enables us to provide a formal link between Section 2.3 and the definitions
introduced in Section 2.4. To this end we first define a decision tree for the search problem. Then
we define a search procedure as a transition function on the decision tree, and payment scheme
and disclosure policy as plans contingent on the nodes.14 In the following, a decision node is
called principal node if it is the principal’s turn to move, and agent node if it is agents’ turn to
move.

The initial node of the decision tree, d0, is a principal node. The immediate successors of d0

are (d0, E1), where E1 ⊆ I is the set of period-1 entrants at that node; if E1 = ∅, then the seller
keeps the good without conducting any search. Each (d0, E1) is an agent node. The immediate

14 This type of formalism was first developed by Zheng [20].
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successors of (d0, E1) are (d0, E1, x1), where x1 ∈ ×i∈E1Xi is a profile of types that period-1
entrants reported as their realized types. Each (d0, E1, x1) is a principal node at period 1.

Let dt := (d0, E1, x1, . . . , Et , xt ) be a period-t principal node. The immediate successors
of dt are either (dt , w) or (dt , Et+1), where w ∈ ⋃t

s=1 Es ∪ {seller} is the winner of the good
(which could be the seller), and Et+1 ⊆ I \⋃t

s=1 Es , with Et+1 	= ∅, is the set of period-(t + 1)

entrants.15 Each (dt , w) is a terminal node specifying who gets the good, while each (dt , Et+1)

is an agent node specifying the potential bidders who are invited to participate in period t + 1.
Note that if I \⋃t

s=1 Es = ∅, then the immediate successors of dt are all terminal. The immediate
successors of any agent node (dt , Et+1) are (dt , Et+1, xt+1), where xt+1 ∈ ×i∈Et+1Xi is a profile
of types that period-(t + 1) entrants reported as their realized types, and (dt , Et+1, xt+1) is a
period-(t + 1) principal node. Hence a decision tree is recursively defined.

Let D be the set of all principal nodes. For any dt ∈ D, let

(dt )+ :=
{

(dt , w) : w ∈
t⋃

s=1

Es ∪ {seller}
}

∪
{

(dt , Et+1) : ∅ 	= Et+1 ⊆ I
∖ t⋃

s=1

Es

}

be the set of immediate successors of dt , and (D)+ be the set of successors of principal nodes.
With �S denoting the set of lotteries on the outcome set S, a search procedure is a transition
function

	 : D −→ 
(D)+ such that 	(dt ) ∈ 
(dt )+.

A payment scheme is a function p on the set (D)+ that assigns to each immediate successor of
(d0, E1, . . . , Et , xt ) a profile (pt

i )i∈⋃t
s=1 Es ∈ R

⋃t
s=1 Es

of payments, where pt
i is a participating

bidder i’s payment to the seller delivered in period t (nonparticipants make zero payments).
A disclosure policy is a function H on the set of agent nodes such that, at each such node

(dt−1, Et ), H assigns to each period-t entrant i ∈ Et an information set Hi(d
t−1, Et ) that

contains this node. A period-t entrant i’s knowledge consists of his realized type, all the rules
of the search mechanism, and the fact that he is at a node belonging to Hi(d

t−1, Et ). A bidder
makes the participation decision only after he has acquired this knowledge.

In a non-disclosure policy, for any entrant i ∈ Et , Hi(d
t−1, Et ) consists of all the agent nodes

(d0, E1, . . . , Es) such that i ∈ Es , with s = 1, 2, . . . (so i cannot tell any two of these nodes
apart); hence i does not even know which period he is in, nor the past sequence of entry or the
reports from previous entrants. In a full disclosure policy, for any entrant i ∈ Et , Hi(d

t−1, Et ) =
{(dt−1, Et )}; hence i knows the entire past history, including the reports from previous entrants.

A revelation search mechanism is a triplet (	, p, H), consisting of a search procedure 	,
payment scheme p, and disclosure policy H . Note that since 	 is a transition function, this
definition allows randomization of the sequence of search, payment scheme, and disclosure policy.

From the above definition we can derive the notations used in the main text. Let �̃ be a
random vector with support � such that, conditional on any principal node dt ∈ D, any realiza-
tion � of �̃ uniquely determines an immediate successor s(�) of dt , and the probability with
which a successor is s(�) is equal to the probability governed by the transition function 	(dt ).

15 The assumption Et+1 	= ∅ means that the seller does not stop searching for some periods and then start searching
again. This is trivially true for any optimal mechanism when � < 1. When � = 1, there exists an optimal mechanism that
satisfies this assumption.
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A realized state x̃ is a pair of bidder type profile and realization of �̃:

x̃ := (x, �) := ((xi)i∈I , �) ∈ X × �.

If every invited bidder participates and is truthful, then any realized state x uniquely determines
a complete history of the search, i.e., a terminal node

(d�, w) = (d0, E1, x1, . . . , E�, x�, w),

where � is the terminal period at which the mechanism ends, (E1, . . . , E�) is the sequence of
entry, and w is the winner of the good (possibly the seller). Abusing notations, denote the terminal
period by �(x̃), the good’s winner by w(x̃), and the sequence of entry by (E1(x̃), . . . , E�(x̃)(x̃)).
If bidder i enters at period t during this search history, i’s information set is uniquely determined
to be some Hi(d

t−1(x̃), Et (x̃)); abusing notations, denote this t by ti (x̃), and this information set
by Hi(x̃).

Thus, given any revelation search mechanism (	, p, H), if every invited bidder participates
and is truthful, then any realized state x̃ ∈ X × � uniquely determines the following objects:

Et(x̃) := the set of potential bidders who enter the mechanism in period t .
1i (x̃) := the indicator function for “player i finally owns the good”.
Hi(x̃) := the information set for bidder i when i enters.
ti (x̃) := the period at which player i enters the mechanism.

All our calculations remain intact if these notations replace their counterparts (Et(x), qi(x),
etc.) in the main text. To keep the exposition simple, we prefer however to use in the main text
the notations introduced in Section 2.4. Moreover, we assume in the main text that the search
procedure is not randomized; this assumption is harmless because every player is risk neutral and
types are independent.

References

[1] D. Bergemann, M. Pesendorfer, Information structures in optimal auctions, Cowles Foundation Discussion Paper
1323, August 2001.

[2] D. Bergemann, J. Välimäki, Information acquisition and efficient mechanism design, Econometrica 70 (2002)
1007–1033.

[3] D. Bergemann, J. Välimäki, Information in mechanism design, Cowles Foundation Discussion Paper 1532, August
2005.

[4] R. Burguet, Optimal repeated purchases when sellers are learning about costs, J. Econ. Theory 68 (1996) 440–455.
[5] O. Compte, P. Jehiel, On the virtues of the ascending price auction: new insights in the private value setting, Mimeo,

C.E.R.A.S.-E.N.P.C., C.N.R.S., December 2000.
[6] J. Crémer, Y. Spiegel, C.Z. Zheng, Optimal selling mechanisms with costly information acquisition, Working Paper,

Institut d’Economie Industrielle (IDEI), Toulouse, August 12, 2003.
[7] S. Gal, M. Landsberger, A. Nemirovski, Participation in auctions, Mimeo, University of Haifa, Haifa, Israel, 2003.
[8] A. Gershkov, B. Szentes, Optimal voting schemes with costly information acquisition, Mimeo, Hebrew University

of Jerusalem, University of Chicago, 2004.
[9] D. Levin, J.L. Smith, Equilibrium in auctions with entry, Amer. Econ. Rev. 84 (1994) 585–599.

[10] R.P. McAfee, J. McMillan, Search mechanisms, J. Econ. Theory 44 (1988) 99–123.
[11] P. Milgrom, I. Segal, Envelope theorems for arbitrary choice sets, Econometrica 70 (2002) 583–601.
[12] R.B. Myerson, Optimal auction design, Math. Methods Operations Res. 6 (1981) 58–73.
[13] W. Pesendorfer, A. Wolinsky, Second opinion and price competition: inefficiency in the market for expert advice,

Rev. Econ. Stud. 70 (2003) 417–437.



248 J. Crémer et al. / Journal of Economic Theory 134 (2007) 226–248

[14] L. Rezende, Mid-auction information acquisition, Mimeo, Department of Economics, Stanford University, October
2000.

[15] M. Stegeman, Participation costs and efficient auctions, J. Econ. Theory 71 (1996) 228–259.
[16] T. Vishwanath, Parallel search for the best alternative, Econ. Theory 2 (1992) 495–507.
[17] M.L. Weitzman, Optimal search for the best alternative, Econometrica 47 (1979) 641–654.
[18] A. Wolinsky, Competition in a market for informed experts’ services, RAND J. Econ. 24 (1993) 380–398.
[19] L. Ye, Optimal auctions with endogenous entry, Contrib. Theoretical Econ. 4 (2004) Article 8.
[20] C.Z. Zheng, VCG mechanisms in dynamic processes, Mimeo, 〈http://faculty-web.at.northwestern.edu/economics/

zheng/research/working/vcg/〉, October 2005.

http://faculty-web.at.northwestern.edu/economics/zheng/research/working/vcg/
http://faculty-web.at.northwestern.edu/economics/zheng/research/working/vcg/

