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12. TEACHING AND ARTIFICIAL LIFE

TZUR SAYAG AND SIDNEY STRAUSS
Tel Aviv University

This chapter is being written with Ruth Berman in mind. It deals with aspects of
cognition and its development that have captured her heart and mind over the course
of her academic career in Israel. Her pioneering work in the structure of the Hebrew
language has inspired two generations of students and colleagues, both in Israel and
abroad who are continuing to develop theory and research in that area. The purview
of her work also includes language acquisition, which was an important departure
from her prior research area, not only for her, but also for the area of the acquisition
of Hebrew as a first language. And then she made yet another change, this time to
children’s understanding and production of texts. Ruth was virtually alone in Israel,
a pioneer, in all these endeavors, something that motivated many to follow the path
she set. Along with her groundbreaking work on the Hebrew language, she forged
research communities both in Israel and abroad. And she did so with an easy smile on
her lips and friendship in her heart.

Our work looks at theory concerning a natural cognition — not language, but
teaching. We are attempting to establish the nature of the cognitive prerequisites for
teaching, and much of what Ruth has done serves as a guide for us, as it has for so many.

Teaching is a domain that can be investigated under the examining eyes of cognitive
scientists. Strauss (in press; Strauss, & Ziv, 2001; Strauss, Ziv, & Stein, 2002) argued that
because teaching is remarkably complex, universal, evolutionarily beneficial, typically
found in human beings, mostly invisible, not taught, and easily learned by young
children, it can be thought of as a natural cognition. We believe that these claims
along with the everlasting interest in human learning, some of which is, at least at first
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glance, a mirror image of teaching, make a strong case for formal research focused on
this remarkable social phenomenon — teaching.

Strauss (in press) proposed a wide-ranging research agenda whose purpose was to
pinpoint the cognitive prerequisites that enable teaching. A part of the research agenda
includes the evolutionary perspective, where teaching could be speculated to be an
evolutionary solution for survival. A second part of this agenda involves the use of
computational models that might bring about rigorous definitions and descriptions of
teaching that are currently lacking. Our work in this chapter brings these two strands
together in the case of teaching, and we do so through the Artificial Life (ALife)
research paradigm.

Alife is the study of all phenomena of the living world through their reproduction in
artificial systems (Langton, 1995). It is a relatively new research paradigm that is based
on computer-based experiments in which virtual populations of living creatures, that
are capable of perceptual input, can interact with and evolve in virtual environments.
The special properties of this paradigm allow the scientist massive flexibility rarely
found in other non-analytical research methods. ALife experiments combine both
a computational model approach and a strong relation with models of evolution.
The core engine upon which an ALife individual changes is learning and an ALife
population changes is natural selection.

The main point in this short chapter is that ALife could be used to investigate some
issues in teaching theory and research. Furthermore, we suggest that using ALife could
potentially reveal hidden properties of teaching, properties that are difficult to observe
in our natural environment. The idea to use ALife models of learning and evolution as
a set of tools for the investigation of cognitive developmental issues, such as aspects of
Piaget’s theory, was recently suggested by Parisi and Schlesinger (2002). Our arguments
closely follow some of their ideas.

This chapter has four sections. Section 1 gives a brief description of teaching research
and formal methods. In section 2, we describe neural nets, artificial life, and evolution-
ary algorithms. Section 3 presents both the benefits and pitfalls of the formal approach
to human behavior research. In section 4 we show how ALife can be used for teaching
research. And we summarize the chapter in section 5.

TEACHING RESEARCH AND FORMAL METHODS

Teaching is a complex and elusive concept. One indication of its ambiguity is that,
from the time of the ancient Greeks to this day, there is no single, widely accepted
definition of teaching. Along with the advantages of ambiguity, this state of affairs
presents a drawback for research, e.g., the lack of a rigid, accepted working definition
makes it difficult to compare results from experiments because they are sometimes
based on different definitions. One example that comes to mind is the on-going
debate about whether teaching exists among non-human primates. Surely, with an
agreed-upon definition of teaching, this debate would be reduced to a trivial problem.
Of course, the definition one chooses is based on one’s theoretical framework, which
complicates matters.
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As opposed to the natural language, intuitive and flexible way of defining concepts,
formal methods postulate a different approach. In a formal framework, concepts and
terms are carefully stated in a symbolic and non-ambiguous manner. While a formal
approach avoids some of the problems just mentioned, it is far from being ideal.
Nevertheless, despite its attendant problems, as we note in Section 3, the formal
method is unquestionably an extremely powerful research approach.

One interesting area, where using formal methods made major breakthroughs, is
research on language and language acquisition. By using formal language theory as a
mathematical description of language and grammar, and integrating results from this
theory and linguistics research, Chomsky was able to develop his Universal Grammar
theory, which is one of the seminal achievements in the cognitive sciences over the past
50 years. These achievements were also based on the availability of detailed descriptions
of natural languages that scholars from linguistics and developmental psychology, such
as those by Berman (1978), made available.

When comparing the task of initiating a formal computational research program
on teaching to building a computational model for, say, language, we face a decidedly
challenging task. In language research, at least some of the basic building blocks are
well defined, which lend themselves to formalization. Teaching theory and research,
on the other hand, lag far behind. Currently, we have no clear idea about the nature of
teaching, what it is comprised of, and what the basic components are of any teaching
event or behavior, not to say how teaching is learned.

EVOLUTION, NEURAL NETS LEARNING, ARTIFICIAL LIFE
AND GENETIC ALGORITHMS
Alife is the study of all phenomena of the living world through their reproduction in
artificial systems (Langton, 1995). This means that one can simulate living phenomena
in a computer, although sometimes physical artifacts (robots) are constructed that
exhibit some of the behaviors of real organisms. Simulations are a new way of expressing
scientific theories and hypothesis about the causes, mechanisms, and processes that
underlie observed phenomena and, as such, they allow us to explain those phenomena.
The typical ALife experiment is based on two distinct processes, individual learning
and evolution. Within the ALife framework, learning is the process in which tan agent’s
neural network adjusts its internal synaptic weights according to a combination of the
current network input, output and a learning rule, which may vary. The second process
is the evolutionary one. In a nutshell, we allow this process to select each generation’s
best fit individuals and create the next generation from them. The new generation is
created by applying two sub-processes. The first is the combination of the synaptic
weights of the parents’ network into a new set of weights, and the second is the usage
of mutation, a small random change that also changes the network’s weights. These
two processes interact. For a detailed discussion of the interaction between these two
processes see David, Ackley, & Littman (1991) and Nolfi, Elman, & Parisi (1990).
AlLife simulations address all sorts of phenomena of the living world, including the
behavior, cognitive abilities and mental life of organisms. We cannot provide a detailed
descriptions of all aspect artificial life, so instead, we focus on three main components of
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the framework. A more detailed description is found in Ruppin, (2002) and Mitchell &
Forrest (1995).

The typical ALife framework is composed of three main objects: a population of
agents, an environment (sometimes called an arena), and a fitness function.

Agents are neural networks (NNs). In a nutshell, a NN is a naive implementation of
anervous system. A NN has at least 3 layers of basic units: (1) An input layer (sometimes
connected to actual sensors) that receives the perceptual input, (2) one or more hidden
layers that can be seen as a processing layer, and (3) an output layer which is usually
connected to external controls, such as motors.

The internal units of the NN are connected to each other with virtual wires.
Each wire has what is called a weight (some real number). Input is received via the
input units and is transmitted via the internal units to the output layer that, in turn,
causes some action to be performed. NNs learn to compute functions. For every
input pattern accepted by the input neurons, the hidden layer performs some rather
simple combination of its connection weights and produces an output to be carried
to the output units. Sometimes, the network is trained by allowing it to compare its
response with the “correct” response to the specific input. In this case, the connection
weights are updated via a learning rule, with future similar input resulting in “correct”
output.

The second component in the ALife framework is the environment. This is usually
some sort of bounded arena where agents live. Its exact description must be given. As
noted above, this is a computer program, and it cannot cope with partially defined
terms.

The third component of an ALife experiment is called the fitness function. Under-
standing what the fitness function is requires explaining how the typical ALife sim-
ulation works. Initially, a population of agents with randomly initialized connection
weights is placed in the environment. They are called generation0. At every time step,
each agent performs one action (move forward for instance). After a predefined num-
ber of steps, agents are evaluated and receive a fitness score according to the fitness
function. The top two agents are selected and allowed to reproduce, thus creating a
new agent. And much like in real life, the newly created agent’s NN is a combination
of its parent’s networks. Before reproduction is completed, the agent is duplicated and
a small part of his NN is randomly mutated. The newly created agents are similar to
their ancestors because they inherited most of their networks; however, they are dif-
ferent since a combination and mutation was performed. The new population, called
generationl, is placed in the environment and the process continues. The simulation
stops when the fitness function no longer shows signs of improving. The fitness func-
tion is some computable function, such as the number of times the agent has slammed
itself into a wall when the task is to avoid walls and obstacles.

The AlLife framework’s simplicity along with the comparable simplicity of the
genetic algorithm may lead to a somewhat misleading conclusion about its ability
to solve complex tasks. Below is a short list of three remarkably sophisticated behaviors
that agents perform resulting from these frameworks.
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Avoiding obstacles

Consider the task of moving around some arbitrary flat space at high speed trying
to avoid external walls and other obstacles. Initially, you have no idea what your
orientation is, where in that space you are or the location of the obstacles. Agents have
been shown to perform extremely well in this task after proper training. These agents
seem to first adjust their orientation to a point where the wall is to their right and then
proceed at full speed keeping the external wall at a constant distance. For a detailed
description of a similar experiment, see Kodjabachian & Meyer (1998).

Flocking behavior in birds

Reynolds (1987) investigated how flocks of birds fly, without central direction; i.e.,
a leader. He created a virtual bird with basic flight capabilities, called a boid. The
computerized world was populated with a collection of boids, flying in accordance
with the following three rules:

¢ Collision Avoidance: avoid collision with nearby flock-mates.
* Velocity Matching: Attempt to match velocity with nearby flock-mates.
 Flock Centering: Attempt to stay close to nearby flock-mates.

Each boid comprises a basic unit that sees only its nearby flock-mates and “flies”
according to these rules.

These three rules were sufficient for the emergence of flocking behavior. The boids
flew as a cohesive group, and when obstacles appeared in their way they spontaneously
split into two groups, without any central guidance, rejoining again after clearing the
obstruction.

Reynolds’ (1987) model demonstrates the basic architecture of ALife systems, i.e., a
large number of elemental units that are relatively simple can interact with a small num-
ber of nearby neighbors with no central controller. High-level, emergent phenomena
resulting from these low-level interactions are observed.

Predator-prey

Floreano, Nolfi, & Mondada (1998) report an extremely interesting co-evolution based
EAA experiment where two different populations (different basic skills) evolve and
compete (see Floreano et al., 1998 and Nolfi et al., 1993 for detailed technical descrip-
tions of this experiment). The complexity of predator and prey strategies observed in
the resulting population is remarkable. Predators seem to wait for prey agents to come
closer before they attempt to attack; prey and predator seem to change their strategies
in accordance to their opponent’s strategy.

ALIFE BENEFITS AND PITFALLS

A major advantage of the ALife framework over traditional research tools is that if
one expresses one’s theory or hypotheses in the form of a computer program, one is
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forced to be explicit, complete, and detailed. Otherwise the program won't run or
the simulation will not produce the expected results. And because teaching is such an
ambiguous concept, the use of the ALife framework forces us to avoid this ambiguity.

One pitfall of the Alife approach is that there are many simplifications involved
in these models. While enabling one to address systems that would be otherwise
too complex to investigate formally, it may well be that interesting and even vital
components of a system are missed in that simplification.

Alife is a sophisticated search procedure within the task solution space. But as
powerful as it is, it can never break the optimal performance boundary of the controlling
network. It can be shown that a neural network simply cannot learn some tasks.

It should also be noted that evolutionary search for optimal solution within the ALife
framework does not perform magic. An agent which is not equipped with wings that
allow flying will not spontaneously start gliding in the air no matter how patient we are
for this to occur. It will also not build wings by itself or develop an arbitrary perceptual
ability. These are far beyond the capabilities of these rather simple controlling networks
that are commonly used in typical ALife experiments. As computational power grows,
we can expect to see increasingly more powerful networks allowing more and more
complex behaviors to emerge; however, many tasks will always be beyond the reach
of even the most sophisticated networks available, given the computational model
currently used.

A COMPUTATIONAL APPROACH TO DESCRIBE THE NATURE OF TEACHING
AND HOW TEACHING IS LEARNED
We now attempt to explore an ALife approach to teaching, in which we propose to
explore idealized teaching situations and evaluate the effectiveness of various teaching
methods. That is, we adopt the perspective of an artificial intelligence researcher or
engineer in such a way that we can both explore designs for machines that are effective
in solving teaching problems of scientific interest and evaluate these designs through
mathematical analysis or computational experiments.

In the following section we propose to investigate the nature of teaching within the
Alife framework. This topic encapsulates many smaller questions, some of which we
believe can be addressed within that framework.

The nature of teaching

The questions we propose here deal with teaching both as a concept and a behavioral
phenomenon. We suggest that, given a definition of teaching, the following questions,
and others, may be addressed concerning the concept of teaching: What does it take for
an agent to identify teaching behaviors in others? Is the task of identifying teaching
behaviors a learnable task? What are the prerequisites for the identification of teaching
potential situations?

Concerning the nature of teaching as a behavioral phenomenon, here are sev-
eral questions that could be tested in an Alife context: What are the prerequisites
(environmental- and agent-related) for teaching to take place? Does teaching behavior
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emerge spontaneously, given what its cognitive prerequisites are? What is the relation-
ship between teaching and learning, e.g., is teaching an accelerator for learning?

Mapping teaching onto artificial life

In this section we discuss and develop an example to show that applying the method-
ology advocated by ALife research can be used to address some of the questions about
teaching we just raised. In particular, we deal with the issue of mapping.

This section is organized as follows: First, we define mapping. Then we describe
a common real life teaching scene — teaching to ride a bike. That is followed by
presenting a partial mapping operator of some of the objects and actions that play a
role bike-riding onto ALife A-objects and A-actions. And, finally, we complete the
mapping to include some complex notions that were omitted before.

Mapping
Intuitively, a mapping transforms notions, objects and actions such as people and
“learning” from real life into ALife notions, A-objects and A-actions that are precisely
defined. Mapping is a projection of concepts from real life terms onto ALife terms.
A mapping M is called an improper or invalid mapping if one can point at least
one relevant relationship between objects in real life that are not preserved in AlLife,
e.g., mapping two different people in real life onto one single undistinguished agent
in ALife would be improper. While we hope that the direction from real life to ALife
can be accounted for (it is under our control, after all), the opposite direction, i.e.,
accounting for relationships between objects in ALife to those in real life, is not trivial.
Let’s see how mapping can work in an example of teaching.

Teaching someone to ride a bicycle

One of the many tasks parents undertake is teaching their children to ride a bicycle.
Let us observe some of the events occurring while Ron is teaching his six-year-old
child, Danny, to ride a bike. Below is a typical incomplete description of the entire
task:

. Danny has seen his best friend riding his new bike.

. He approaches his father, Ron, asking him to teach him to ride a bike.

. Ron considers and replies that the weekend would be a good time to start.

. Over the weekend, they go to the bike shop, buy a new bike and head to a nearby
park for the teaching session.

5. Ron is not a professional bike trainer but he does have his own bike and can ride

R C I S R

it. He spends some time planning how to teach Danny to ride, and he considers
different aspects of riding such as balancing, safety and control that he believes are
necessary for Danny to learn in order to ride his new bike.

6. Ron must also integrate his knowledge about Danny’s physical, cognitive and
learning abilities into his teaching plan.
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7. At some point, the teaching session starts, and Ron starts executing his teaching
plan. While doing that, he has to make sure that Danny’s attention is not drawn
away, so he picks a quiet place in the park.

8. In the instructional part, Ron demonstrates some techniques and accompanies
his demonstrations with verbal explanations. When he spots misunderstanding
or confusion he repeats his demonstration, sometimes demonstrating a different
technique more adequately. He is also attentive to Danny’s frustration or fatigue
and tries to deal with it. He foresees the obstacles and relaxes the balancing task
by holding the bike while Danny tries to balance himself.

9. Danny, on the other hand, is watching, asking questions, listening to his father
and tries to extract as much as possible. He wants to be taught. He has confidence
that his father can teach him, and he attempts to follow his father’s instructions.

10. Finally after a number of hours, Danny is skilled enough to ride his bike on his
own, and both Ron and Danny are satistied with the results.

Given the above ride-a-bike teaching example, consider the following description
of a human teaching event. We argue that there are at least 5 different distinct sub-tasks
performed by the teacher along the timeline:

1. Identification of a teaching potential situation. (start condition)

2. Creating the required environment for the knowledge transfer to be feasible (bike,
park, Danny and Ron) (prerequisites)

3. Planning a teaching strategy.

4. Executing a teaching strategy while dynamically evaluating and adjusting it according
to expected and unexpected events. (teaching actions)

5. Evaluating the learner’s final knowledge to measure the success of the knowledge
transfer event, and to decide that no more teaching is necessary. (stop condition).

Note that some of these sub-tasks may be trivial and take practically no time for
certain tasks, e.g., the environment is setup properly.

We suggest that although teaching is an extremely complex task, at least some of
the different sub-tasks can be naturally mapped onto an ALife experiment in a way
that it will preserve some of our intuitive notions of teaching. If we are able to show
a proper mapping of these 5 sub-tasks onto ALife, we will then have the benefits of
using ALife as a research tool for careful, rigid analysis of teaching.

For simplicity sake, we now concentrate on finding a valid mapping only for exe-
cuting a teaching strategy (task 4 above). The mapping of the other four is omitted.
To be more explicit, we present a valid mapping between the objects and actions that
play a role within the task of executing a teaching plan in real life onto ALife. More
specifically, we have to come up with a mapping that precisely states for each object or
action involved in Ron’s execution of his teaching strategy, an A-object or an A-action
in the ALife environment.

At first glance, the task of mapping seems extremely difficult. Ron’s execution of
the teaching strategy is remarkably complex. It is dynamic in that it changes according
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to Danny’s performance, and involves numerous different actions and sophisticated
cognitive processing in Ron’s mind. It would be very helpful if we could, say, create a
ride-a-bike ALife experiment and use it as basis for the mapping. However, its extreme
complexity makes a full description impossible here, given space constraints. Instead,
we make a slight detour from the ride-a-bike example and briefly describe a typical,
relatively simple and well-studied ALife experiment that will serve as a ride-a-bike
analogy to base our mapping upon.

Ruppin (2002) describes a prototypical ALife experiment in which simple agents live
in a 30 x 30 cell arena. “Poison” is randomly scattered all over the arena. Consuming
“Poison” results in a negative reward. “Food”, the consumption of which results in
a positive reward, is randomly scattered in a restricted “food zone” in the southwest
corner of the arena.

The agents’ behavioral task is to “eat” as much of the food as they can while avoiding
the poison. The agents are equipped with a set of sensors, motors, and a fully recurrent
artificial neural network controller. The agents have 5 sensor systems, 4 of which sense
the grid cell the agent is located on and the three cells immediately ahead of it. Each
of these probes can sense the difference between an empty cell and a cell containing a
resource (either food or poison, with no distinction between them). The fifth probe
can be thought of as a smell probe, which can discriminate between food and poison
if either is present in the cell occupied by the agent.

The motor system allows the agents to go forward, turn 90 degrees in each direction,
and attempt to “eat”. Eating is a costly action, as it requires a time-step in a lifetime
of limited time-steps. It has been shown that from the evolutionary algorithm agents
emerge that learn to find food and avoid poison in this environment.

A partial mapping

Table 1 explicitly defines a partial mapping between the ride-a-bike example in real
life and the food-poison experiment in ALife. We now spend some time explaining
the details and rationale of this partial mapping, leaving the more complicated task of
completing the mapping for later.

Table 1. Mapping from real life to Alife

Role Real life AlLife
Task Ride-A-Bike Find “food”, avoid “poison”.
Participants Ron (teacher) A-ron — an agent from generation
10000.
Danny (Learner) A-danny — an agent from generation 0.
Environment and utility Park, bicycles. Arena, food and poison.
objects
Learning Sophisticated human Artificial Neural Network learning
learning algorithm.
Teaching strategy Explaining Demonstrating, To be shown later.

other teaching activities
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The mapping described in Table 1 preserves three important relationships between
the participants and the task, namely:

1. Ron can initially ride-a-bike. A-ron can initially find food and avoid poison (A-ron
is a member of an already trained population).

2. Danny initially does not know how to ride-a-bike. A-danny is initially a poor finder
of food (since he is of generation0).

3. Danny is capable of learning to ride-a-bike. A-danny has been shown in food-poison
Alife experiments to be skillful enough to eventually learn to find food.

This mapping preserves the relationship between the participants, Ron and Danny,
who are two distinct figures in real life, A-ron and A-danny are two distinct agents in
AlLife. The park and the bicycle are mapped to the ALife arena as are the food-poison
items. Finally, the learning process and activities Danny is undergoing in real life is
mapped to the A-learning process that A-danny is undergoing in the ALife experiment.
Fortunately, learning in ALife is rigidly defined as the change of connection weights
in A-danny’s neural network, so the mapping is, therefore, still valid.

Completing the mapping

We believe that the partial mapping described is proper; however, we still haven’t
accomplished what we are really after, i.e., creating a mapping that will enable us to
observe the execution of teaching in ALife. We now face the complicated task of
mapping the set of actions and available perceptual input that the teacher, Ron, has to
his representative in ALife, A-ron.

While we cannot present a complete solution, we suggest one approach that may
yield a feasible, proper mapping for this part. The idea is this: we set some constraints
on Ron’s teaching strategy, simplifying it as much as possible. To be more explicit,
we try to simplify Ron’s actions and perceptual input in real life as much as possible,
while keeping his now-simplified behaviors within the confined domain of what we
intuitively think of as teaching.

The first constraint we suggest is that Ron executes a very basic teaching strategy,
namely, a sequence of demonstrations. Let’s analyze what a demonstration is in real
life. A demonstration is an explicit act that is similar to, yet different from, a non-
demonstration action in the following ways:

1. The demonstration’s goal is different from the non-demonstration’s action’s goal.
Let’s take opening a jar as an example. The goal of a demonstration is to show
another how to perform an action, such as how to open the jar, whereas a non-
demonstration action’s goal is to achieve an end (opening the jar) that the action is
performed to reach. The actions may be similar and in both cases the jar is opened,
but the goal of the demonstration was to show how to do it to someone else,
whereas the goal of the non-demonstration actions was to do it.

2. The demonstration actions may, in all likelihood, be slightly different than the non-
demonstration action, e.g., it might be slower, emphasizing important aspects of
how to perform the task at hand.
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3. The demonstration actions sometimes require special technical alteration of equip-
ment in order to deliver the important aspects of what is being demonstrated.

The above obviously too complex to preserve all these properties of differences, so
we decided to build a mapping that will preserve the following differences:

1. A demonstration will give no reward to the performer.
2. A demonstration will retain its distinction from the non-demonstration action it is
aimed to demonstrate.

For simplicity, let’s further constrain Ron’s teaching strategy to be composed of only a
finite set of demonstration steps. For example, assume that holding the handlebar, riding
in a straight line and turning right or left safely are the four available demonstrations
Ron can perform during his execution of teaching.

We are now ready to complete our mapping. Specifically, we show a mapping
between demonstrating in real life and A-demonstrating in ALife. Note that as opposed
to the partial, rather trivial mapping in Table 1, which did not require any changes in
the ALife experiment, this part does require some technical changes and rewiring of
the ALife agents.

In real life, Ron has 4 distinct demonstration actions, and these are clearly dis-
tinguished from the non-demonstration actions. Following this property, we extend
A-ron, such that for each action it can perform, it can also perform a demonstration
action. For example, if A-ron can perform a Go-Left, we can tweak its neural network
to allow it to also perform another distinct action namely A-Demonstrate-go-left. All
in all, the altered, extended version of A-ron has exactly twice as many distinct actions
compared to the original A-ron. Table 2 partially illustrates these categories.

What remains for us to do is to alter the ALife experiment in such way that: (1) if
A-ron takes one of the demonstration actions, it will not be explicitly rewarded and
(2) it A-ron takes a demonstration action, it can be identified and distinguished from
the non-demonstration action.

Dealing with the reward issue is relatively simple to accomplish. The AlLife envi-
ronment allows us to simply ignore food items eaten in an A-demonstration action,
and the same applies to his demonstrating a movement action. We can simply make

Table 2. Original and altered A-ron for A-demonstrations

Original A-ron behavioral Altered A-ron behavioral

repertoire repertoire

Go-Right Go-Right
A-Demonstrate-Go-Right

Go-Left Go-Left
A-Demonstrate-Go-Left

Go-Forward Go-Forward
A-Demonstrate-Go-Forward

Eat-Resource Eat-Resource

A-Demonstrate-Eat-Resource
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sure the environment and his location are rolled back as if the action never occurred.
Distinguishing the A-demonstration actions and the A-non-demonstration actions in
a-Ron is a by-product of the non-trivial technical alterations in the neural network.
It is worth noting that the technical alterations we omit here are non-trivial and may
turn to be rather complex; however, a review of different neural networks used in
Alife experiments lead us to believe that these alterations are feasible.

Let’s sketch a review of what we have done here. We have two extended agents:
A-ron and A-danny. One is skilled in finding food, and the other doesn’t know how
but can learn to find food in the arena. A-ron can also A-demonstrate every action in
his behavioral repertoire.

In sum, we mapped the notion of demonstrating onto ALife, and argued that since
demonstrating is a very basic teaching strategy, the notions of teaching are preserved.
Furthermore, the relationship between Ron and demonstrating is kept across the map-
ping (since A-ron is able to perform an A-demonstrate action).

Although we are almost done, some things are still not quite right. For example,
how can we make sure that A-danny is even aware of these demonstration steps and
uses them as input for his learning process? Fortunately, ALife is not real life. Recall
that in ALife we have full control over the perceptual input of every agent, so we can,
for instance, implement some wiring such that whenever A-ron decides to take an
A-demonstration action, A-danny’s input and output units receive the exact input and
output a-Ron was subject to. This will allow A-danny the ability to benefit from A-
ron’s demonstration. We emphasize, again, that while the technicalities of doing these
alterations are non-trivial, these problems are solvable within the ALife framework.

Let’s assume these technical problems are solvable. We now have an ALife experiment
with notions of a teacher, a learner, a simple teaching strategy (demonstration) and
a learnable task. We have created a well-defined computational model that preserves,
at least partially, the notions of teaching. We can now explore some of the question
raised earlier regarding teaching. For instance, we can explore whether evolution favors
teaching over finding food with different fitness functions. We can evaluate the evo-
lutionary benefits of teaching for the learner, e.g., is teaching helpful for the teacher?
Is teaching an accelerator for learning? Will our teacher agents converge to interesting
demonstration sequences? This is just a small sample of questions that are well defined
within ALife. It is not idle speculation as to whether or not we can get answers for these
questions. These questions should be fully answered by running the ALife experiment.
The questionable part of our analysis is the validity of the reverse mapping of these
results. We argue that while the mapping we described is simplistic, at least for the
moment, it is rigid and feasible. Furthermore, we believe it to be is relatively easy to
expand this mapping or similar mappings to a more complex and interesting one.

SUMMARY

We suggested that by using the research tools provided by the ALife framework, a better
understanding of teaching could be obtained. Mapping teaching research topics onto
the ALife framework is a non-trivial and challenging task that encourages formalization
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and concrete, rigid definitions. Furthermore, the process itself is an incredible oppor-
tunity to rethink and better state the actual research questions in terms that may be
used for other research approaches. We also believe that if our mapping is sufficiently
sophisticated and carefully crafted, some results obtained in the virtual ALife frame-
work may possibly hold in the real world. That could give us an understanding of
a most remarkable social phenomenon — teaching. And we might, perhaps, gain an
understanding of whether or not teaching is a natural cognition that is learned by
individuals and if it evolves in populations across many generations.
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