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Abstract. We present a methodology for mapping faults that
constitute a potential hazard to structures, with an empha-
sis on ground shake hazards and on surface rupture nearby
critical facilities such as dams and nuclear power plants. The
methodology categorises faults by hierarchic seismo-tectonic
criteria, which are designed according to the degree of cer-
tainty for recent activity and the accessibility of the informa-
tion within a given region. First, the instrumental seismicity
is statistically processed to obtain the gridded seismicity of
the earthquake density and the seismic moment density pa-
rameters. Their spatial distribution reveals the zones of the
seismic sources, within the examined period. We combine
these results with geodetic and pre-instrumental slip rates,
historical earthquake data, geological maps and aerial pho-
tography to define and categorise faults that are likely to
generate significant earthquakes (M ≥ 6.0). Their mapping
is fundamental for seismo-tectonic modelling and for prob-
abilistic seismic hazard analyses (PSHAs). In addition, for
surface rupture hazard, we create a database and a map of
Quaternary capable faults by developing criteria according
to the regional stratigraphy and the tectonic configuration.
The relationship between seismicity, slip dynamics and fault
activity through time is an intrinsic result of our analysis that
allows revealing the dynamic of the deformation in the re-
gion. The presented methodology expands the ability to dif-
ferentiate between subgroups for planning or maintenance of
different constructions or for research aims, and it can be ap-
plied in other regions.

1 Introduction

The global population growth and the establishment of sensi-
tive facilities, such as nuclear power plants or dams, increase
the seismic risk to higher levels and require profound un-
derstanding of the seismic hazard (e.g. Marano et al., 2010).
Probably the most famous example is the destruction of the
Fukushima nuclear power plant by the tsunami caused by
the 2011 Mw = 9.0 Tōhoku earthquake, which has been a
basic step in seismic hazard evaluation in defining and char-
acterising faults that constitute a potential hazard. Because
earthquakes are stochastic processes that trigger different
hazards (such as ground shaking, tsunamis, landslides, liq-
uefaction and surface rupture) and the planning of different
infrastructures requires different safety standards, mapping
and categorising hazardous faults is generated according to
specific requirements.

In this paper, we present a methodology for mapping and
categorising faults, which can be applied for the evaluation of
different seismic hazards. To generate our maps and to clas-
sify the faults in them, we combine seismological analysis
with geologic and geodetic information. The methodology is
implemented for generating regional maps of the “main seis-
mic sources” and of “capable faults”. The former are the re-
gional faults that should be considered for ground shaking
models and probabilistic seismic hazard analysis (PSHA),
and the latter constitute surface rupture hazards that should
be considered for siting facilities with environmental impact,
such as dams and nuclear plants, or other vulnerable facili-
ties. We apply hierarchic criteria for categorising faults ac-
cording to the specific hazard.
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Figure 1. Plate configuration in the eastern Mediterranean. Arrows
show relative motion. SR – Suez rift; GEA – Gulf of Elat (Aqaba);
DST – Dead Sea Transform fault system; CTF – Carmel-Tirza fault
zone; LRB – Lebanon restraining bend; CA – Cyprian Arc; DSB –
Dead Sea basin; SG – Sea of Galilee.

We demonstrate our methodology for the seismically ac-
tive region of Israel, which is mainly affected by the Dead
Sea Transform fault system (DST; Fig. 1). First, we deter-
mine the main seismic sources, focusing on faults that are
likely to generate significant earthquakes. Subsequently, we
present the procedure to determine and map faults that con-
stitute a potential hazard of surface rupture for sensitive fa-
cilities. We design the criteria according to the likelihood of
surface rupture along specific faults.

Despite the limited duration of the instrumental record, it
constitutes one of the main direct sources of evidence of fault
activity in the current tectonic configuration. Probabilistic
analyses of seismicity can constrain fault locations, kinemat-
ics and activity rates (e.g. Woo, 1996; Atkinson and Goda,
2013). Moreover, the Gutenberg–Richter empirical law can
aid in assessing the frequency of strong shocks by extrapo-

lating lower-magnitude earthquakes. Since surface ruptures
are usually associated with M ≥∼ 6.0 (Wells and Copper-
smith, 1994; Stirling et al., 2002), the concentration of seis-
micity along faults strongly suggests that surface ruptures oc-
curred in the recent geological history. However, due to the
scarcity of large earthquakes in the instrumental era, comple-
mentary information is required for further constraining the
location of the main sources of significant earthquakes and
for characterising them. This information can come from ar-
chaeological and paleo-seismological investigations, as well
as from historical documents (Ambraseys, 2009; Agnon,
2014; Marco and Klinger, 2014; Zohar et al., 2016). Geodetic
measurements of relative displacements and velocities pro-
vide further crucial kinematic information (Baer et al., 1999;
Hamiel et al., 2016, 2018a, b).

Detailed geological investigation of faults further extends
the necessary information, in particular for long-term activ-
ity. From a seismic hazard perspective, faults that were ac-
tive in the recent geological periods have a higher proba-
bility for future faulting. Field relations between faults and
geological units, as revealed in geological maps, can con-
strain the location, timing and the amount of offset of the rel-
evant faults. However, these sources of evidence are limited
to places where faults cross or abut young geological forma-
tions and landforms. Since the spatial distribution of young
formations can be limited, additional criteria are required for
mapping potentially hazardous faults.

2 Tectonic settings

The continental crust in the eastern Mediterranean region
was formed during the pan-African orogeny of the late Pre-
cambrian age, and it was later subjected to alternating peri-
ods of sedimentation and erosion during the Paleozoic (Gar-
funkel, 1998). Continental breakup and the establishment
of passive margins along the Tethys–Mediterranean coast
of the Levant occurred during the Triassic–Jurassic time.
Widespread carbonate platform developed during the mid-
Cretaceous. Since the Upper Cretaceous, the region was sub-
jected to∼WNW compression of the Syrian Arc system, de-
forming the sedimentary sequence into a series of asymmet-
ric folds, strike-slip faults and monoclines (Eyal and Reches,
1983; Sagy et al., 2003). Regional uplift began from the end
of the Eocene, and the area was intermittently exposed to ero-
sional processes (Picard, 1965). The African–Arabian plate
broke along the suture of the Gulf of Aden–Red Sea during
the Miocene, generating the Suez rift and the DST, which
separate the Sinai sub-plate from the African and the Arabian
plates (Fig. 1). The Suez rift, however, has shown relatively
minor signs of deformation since the end of the Miocene
(Garfunkel and Bartov, 1977; Joffe and Garfunkel, 1987;
Steckler et al., 1988). In the easternmost Mediterranean Sea,
the deformation concentrates along the convergent Cyprian
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Arc (Fig. 1), where the Anatolian plate overrides the plates
of Africa and Sinai (e.g. McKenzie, 1970).

With Quaternary slip rates of 4–5 mm yr−1, evaluated from
geological reconstructions, paleo-seismological and geode-
tic measurements (e.g. Garfunkel, 2011; Marco and Klinger,
2014; Hamiel et al., 2018a, b), the 1000 km DST is the largest
fault system in the eastern Mediterranean region (Fig. 1).
Its northern section crosses northwest Syria in a N–S ori-
entation; several recent large earthquakes were attributed to
this section during the past two millennia (Meghraoui et al.,
2003). The middle section of the DST is the Lebanon re-
straining bend (LRB; Fig. 1), characterised by transpression
deformation (Quennell, 1959). This section is branched to a
few segments that transfer the main component of the strike-
slip motion in the Lebanon area (Gomez et al., 2003, 2007).
The core of our study area is located along the southern sec-
tion of the DST, but seismically it is also affected by the ac-
tivity of the middle part.

The southern part of the DST (Fig. 1) is dominated by
a sinistral displacement of ∼ 105 km over the last ∼ 16–
20 million years (Quennell, 1959; Garfunkel, 1981, 2014).
It is marked by a pronounced 5–25 km wide topographic val-
ley, mostly with uplifted flanks, bordered by normal faults
that extend along the valley margins. The lateral motion oc-
curs on longitudinal left-stepping strike-slip and oblique-slip
fault segments. The strike-slip segments delimit a string of
en-echelon-arranged rhomb-shaped narrow and deep releas-
ing bends that are associated with orthogonal separation of
the transform flanks on the surface (Garfunkel, 1981; Gar-
funkel and Ben-Avraham, 2001; Wetzler et al., 2014). The
seismic potential is clearly expressed by the 1995 Mw = 7.2
Nuweiba earthquake in the Gulf of Elat (Aqaba), the largest
seismic event documented instrumentally on the DST, as well
as by historical and prehistorical large earthquakes (e.g. Amit
et al., 2002; Marco et al., 2005; Marco, 2008). Deep-crust
seismicity is significant along the southern part of the DST
in correlation with areas of low heat flow, particularly in the
Dead Sea basin, probably indicating a cool and brittle lower
crust (Aldersons et al., 2003; Shalev et al., 2007, 2013).

The Sinai sub-plate south of Lebanon displays some inter-
nal deformation expressed by a few fault systems, which are
associated with Quaternary activity. The Carmel-Tirza fault
zone (CTF; Fig. 1) consists of a few normal and oblique fault
segments generally striking SE–NW. The system is charac-
terised by low heat flow and by relatively deep seismicity
(Hofstetter et al., 1996; Shalev et al., 2013). The CTF di-
vides the Sinai sub-plate into two tectonic domains (Neev et
al., 1976; Sadeh et al., 2012), where the southern part is as-
sumed to be relatively rigid, while northward, normal faults
orientated E–W generate the S–N extension expressed by
graben and horst structures (Ron and Eyal, 1985). South of
the CTF, E–W-to-WSW–ENE-trending faults constitute the
Sinai–Negev shear belt (SNB; see Fig. A3). Geological evi-
dence reveals different activity phases of mainly dextral slip
with some vertical motions also during the Neogene (Ben-

tor and Vroman, 1954; Bartov, 1974; Zilberman et al., 1996;
Calvo and Bartov, 2001). The DST post-dates the SNB, but
the present tectonic interaction between them is not entirely
clear (Garfunkel, 2014).

3 Geological database

The database of faults that were active in the recent geo-
logical history is mainly based on high-resolution geological
maps. As of January 2019, 71 geological map sheets in the
scale of 1 : 50000 are available for this study. The 1 : 200000
geological map of Israel (Sneh et al., 1998) is utilised, where
1 : 50000 data are absent. Included also are faults defined as
active or potentially active during the last 13 000 years for
the Israel Standard 413 (building code) “Design provisions
for earthquake resistance of structures” (Sagy et al., 2013).
In addition, some faults, which have not been mapped (or
not updated yet) crossing Quaternary units in the geological
maps, are marked here as Quaternary faults based on evi-
dence presented in scientific publications, reports and theses
(see Table A1).

The establishment of the Quaternary formation database
(Table A2) to constrain fault activity in this study is com-
plicated due to poorly constrained geochronology of some of
the formations. In some cases, the age uncertainty is in the or-
der of millions of years. Moreover, the Pliocene–Pleistocene
boundary (Neogene–Quaternary) was shifted in 2009, from
∼ 1.8 to ∼ 2.6 Ma (Gibbard et al., 2010). Thus, some for-
mations that had previously been assigned the Pliocene age
became part of the Pleistocene. Therefore, geological periods
attributed to some formations, mentioned in pre-2009 publi-
cations, might be misleading. Many stratigraphic charts of
the pre-2009 geological maps are outdated. Furthermore, as
recent research provides better geochronological constraints,
the most-up-to-date information is required in order to cor-
rectly select Quaternary formations. In Appendix A (Ta-
ble A1) we present references to Quaternary faults that can-
not be directly deduced from the geological maps.

Besides the surface traces of mapped faults, offshore and
subsurface continuation of faults, as well as faults extending
beyond the Israeli borders, were added to the database (Ta-
ble A3). The latter are limited to the extensions of mapped
faults that are within Israel and/or the main DST segments.
The criteria for selecting these faults are discussed in Sect. 6.

4 Seismological analysis

We analyse the spatial distribution of seismic events in or-
der to reveal the regional seismic pattern, which helps to de-
fine the main seismic sources and develop an independent
criterion for Quaternary active faults. So as to define the
seismicity-based criterion, we design seismic criteria that are
based on the distribution of two parameters that are, to a large
extent, independent: the earthquake kernel density and the
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seismic moment kernel density. We demonstrate the method-
ology and then present the results below.

4.1 Dataset

We use an earthquake catalogue from 1 January 1983 un-
til 31 August 2017 within 28–34 ◦N and 33–37◦ E, recorded
by ∼ 140 stations whose distribution has changed in time
and space. Most of the data are from the Israel Seis-
mic Network (ISN), the Comprehensive Nuclear-Test-Ban
Treaty (CTBT) and the Cooperating National Facility (CNF).
Some additional data were incorporated from other re-
gional networks: GE; the GEOFON global network of
Deutsches GeoForschungsZentrum, Potsdam (GFZ); the Jor-
danian Seismic Observatory (JSO); and the seismic network
of Cyprus (CQ). These earthquakes, which have been moni-
tored by the Seismological Division of the Geophysical Insti-
tute of Israel, comprise a catalogue of ∼ 17600 earthquakes.
They were relocated (Fig. 2) to generate a new catalogue
with more precise locations of hypocentres (Wetzler and Kur-
zon 2016). As part of the relocation process, ∼ 900 earth-
quakes were excluded for various reasons, e.g. events that
were recorded by less than four stations and large location
errors (including the Md = 5.8 1993 event in the Gulf of
Elat, which does not affect our marking of faults since it
was nucleated outside our high-resolution geological data).
Before 1983 the locations are less reliable. Hence, the relo-
cated catalogue consists of∼ 16700 events of 0.1≤M ≤ 7.2
(Fig. 2). Earthquakes with unknown magnitudes received a
default value of M = 0.1. The magnitude and the location of
the Mw = 7.2 1995 Nuweiba earthquake were fixed accord-
ing to Hofstetter et al. (2003).

In order to assess the applicability of the following seismic
processing and analysis, we define the network coverage area
as the zone in which the hypocentres are relatively well con-
strained. This is examined and determined here as the poly-
gon that covers all seismic stations that recorded at least 350
arrivals and consists of the smallest number of polygon sides
that link between the stations (Fig. A1 in Appendix A).

4.2 Spatial data processing

In order to quantitatively characterise the regional seismic-
ity and associate the earthquakes with mapped faults, we
examine two parameters: (a) earthquake kernel density and
(b) seismic moment (M0) kernel density. Both parameters
are obtained through the following spatial data processing.
A regional scan is carried out in a 0.5 km interval 2-D grid,
in the horizontal coordinates. For each grid point, both pa-
rameters are calculated utilising all recorded events within a
6 km radius. The parameters are calculated based on the ker-
nel density estimation as an approach to obtain the spatial
distribution through a probability density function, using the
distance to weight each event from a reference point (each

Figure 2. Epicentres in Israel and surrounding areas between the
years 1983 and 2017, based on the relocated earthquake catalogue.
Circle size and colours indicate the magnitude. Black lines repre-
sent the main fault segments of the DST and the CTF. The shaded
relief background of this figure and the following ones is based on
a digital elevation model of Earth (Farr et al., 2007).

grid point, the common centre of its adjacent events). This
circular-shape-based approach prevents any directional bias.

The 6 km limitation, the Gaussian function and its stan-
dard deviation of 2 (for the kernel estimation) were tuned and
chosen to (a) capture different seismic patches along active
faults, (b) be significantly larger than the location horizontal
median error (∼ 1.2 km; Wetzler and Kurzon, 2016), (c) as-
sign a higher weight to events closer to the evaluated grid
point and (d) include as many events as possible for achiev-
ing statistical significance at each of the grid points.

The earthquake kernel density parameter, ρNk , is calcu-
lated by counting all the weighted events within a 6 km ra-
dius from each grid point, dividing their sum by the sampler
area (πr2) and normalising by the duration of the earthquake
catalogue:
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ρNk =

N∑
n=1

e
−
d(n)2

2σ2

T πr2 , (1)

where N is the total number of events within the radius r ,
d(n) is the distance between an event n and the circle centre,
σ is the standard deviation of the Gaussian function and T is
the duration of the earthquake catalogue. Units are events per
squared kilometre per year (events km−2 yr−1).

TheM0 kernel density parameter, ρM0k , is obtained by first
calculating the seismic moment released by each event sep-
arately, using the empirical relation between M0 and ML, as
obtained by Shapira and Hofstetter (1993) after converting
units from dyne× cm to N ×m:

log[M0]= 10+ 1.3ML. (2)

Secondly, each amount of energy is weighted according to
the distance of the corresponding event from the circle centre
(like the calculation of the earthquake kernel density). Then,
we sum the weighted M0 released from all the events within
a 6 km radius, divide the sum by the circle area (πr2) and
normalise by the duration of the catalogue:

ρM0k =

N∑
n=1

M0(n)e
−
d(n)2

2σ2

T πr2 , (3)

where N is the total number of events within the radius r ,
M0(n) is the seismic moment released from an event n ac-
cording to Eq. (2), d(n) is the distance between an event n
and the circle centre, σ is the standard deviation of the
Gaussian function and T is the duration of the earthquake
catalogue; units are joules per squared kilometre per year
(J km−2 yr−1).

4.3 Distribution maps of the spatial processing
parameters

4.3.1 Earthquake kernel density

The earthquake kernel density (Fig. 3) captures the main
active tectonic sources and seismic patches, according to
∼ 35 years of instrumental seismicity. As expected, most of
the earthquakes are concentrated along the main fault zone of
the DST, and to a lesser extent along the CTF, including its
offshore continuation in the Mediterranean Sea. In the south-
west, seismicity is observed in the area of the Gulf of Suez.
Small patches appear in different spots, mainly west of the
DST, raising the issue of the detectability of the network east
of it. We note that the International Seismological Centre cat-
alogue reveals a large portion of events recorded east of the
DST as well (Palano et al., 2013). The most prominent zone
of seismicity that is not associated with known active tectonic
feature is northwest of the Gulf of Elat.

Figure 3. The earthquake kernel density distribution, accord-
ing to the relocated catalogue. Colours and corresponding num-
bers indicate the value in events per squared kilometre per year
(events km−2 yr−1).

A more detailed scan of the seismicity from the south
shows that the prominent patches of seismicity along the
DST are located in the Gulf of Elat, the Arava valley and
the Dead Sea basin. Northwards, seismicity becomes more
distributed, reflecting the intersection between the DST and
the CTF (Fig. 1). North of the intersection, the Jordan Valley
segment of the DST is sparse with seismicity. However, fur-
ther north, dominant seismicity patches are seen in the Sea of
Galilee and in the Hula valley. Northwest of the Hula valley,
another zone of intense seismicity is captured, which might
be associated with faults related to the Roum fault, west of
the LRB (Meirova and Hofstetter, 2013).

4.3.2 Seismic moment kernel density

The distribution of the average annual moment density re-
leased from all earthquakes, assuming them to be point
sources, is shown in Fig. 4. Since the amount of energy re-
leased by each earthquake differs significantly according to
its magnitude, this parameter is presented on a logarithmic
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Figure 4. The seismic moment kernel density distribution, accord-
ing to the relocated catalogue. Colours and corresponding numbers
indicate the value in log(J km−2 yr−1).

scale. Overall, theM0 kernel density distribution emphasises
the seismic activity along the DST, with similarity to the
earthquake kernel density distribution (Fig. 3). Still, the dis-
tribution is less smooth due to single events differing signifi-
cantly from each other in their corresponding M0 release.

The Gulf of Elat includes the largest event recorded
in the catalogue, the MW = 7.2 1995 Nuweiba earthquake
(Hofstetter et al., 2003), 2 orders of magnitude larger than
the second-largest event (Md = 5.6), hence the significantly
higher values in its vicinity. The spatial distribution of the
M0 kernel density reveals a wide zone of deformation sur-
rounding the gulf flanks, which is much wider than the rel-
atively narrow gulf. This can be partially explained by the
poorly constrained epicentre locations, far away from the net-
work coverage (Fig. A1). The seismic moment kernel density
strongly reflects the most significant events that occurred in
the past 35 years; among them are the Mw = 5.1 2004 event
in the Dead Sea (Hofstetter et al., 2008) and the Md = 5.3
1984 event associated with the CTF. In contrast with the
distribution of the earthquake kernel density, the M0 kernel
density does not reflect seismic swarms, unless they consist

of high magnitudes. This contrast is predominant in the Sea
of Galilee, which contains a high earthquake kernel density
(Fig. 3) but is less significant in the seismic moment kernel
density (Fig. 4).

5 The main seismic sources

Figures 3 and 4 show a strip of dense seismic events and
moment release along the DST and its main branches. We
now combine these data with geologic, geodetic and paleo-
seismologic measurements to generate the main-seismic-
source map, which displays regional faults that demonstrate
slip rates inferred as ≥ 0.5 mm yr−1 during the Holocene.
Tectonic and geometric characteristics (i.e. segment length
and orientation) are also considered. We define the main
seismic sources as faults that are likely to generate signif-
icant earthquakes (M ≥ 6.0), which can impact Israel (and
also neighbouring countries) and constitute potential sources
for different sorts of damages (i.e. ground shaking, land-
slides, liquefactions and tsunamis). These faults and their
map (Fig. 5) are essential for seismo-tectonic modelling of
Israel, for probabilistic seismic hazard analysis (PSHA) and
eventually for generating ground motion maps. Below, we
define two subgroups of faults divided by their tectonic char-
acteristics and their slip rates. Offshore inferred continua-
tions of the main faults are also presented (dashed lines in
Fig. 5).

5.1 Main strike-slip segments of the DST

This category (solid black in the map) includes potential
sources for large to major earthquakes in the region. Accord-
ing to paleo-seismic and/or geodetic investigations (Table 1;
Fig. A2), these faults are associated with Holocene average
sinistral slip rates of 1–5 mm yr−1. Equally important, all the
faults in this category are relatively long with a preferable
slip orientation according to the present stress field (Jaeger
et al., 2007; Eyal and Reches, 1983). Our database (Fig. 5)
includes fault segments from this subgroup that are located
up to 150 km away from Israel. As noted in Sect. 4, the only
recorded large earthquake, the 7.2 Mw Nuweiba event, oc-
curred on the Aragonese fault and was associated with mean
slip of 1.4–3 m (Baer et al., 1999).

South of Lebanon, geodetic measurements show ∼ 4–
5 mm yr−1 sinistral slip rate (Masson et al., 2015; Hamiel et
al., 2016, 2018a, b). Faulting in Lebanon is partitioned to
a few branches (Fig. 5) and the specific rates are less con-
strained. While the Yammuneh and the Serghaya faults can
undoubtedly be considered as independent sources for sig-
nificant earthquakes, the status of the shorter Rachaiya and
Roum fault branches is less clear. Nevertheless, according
to the present state of information (for example, Nemer and
Meghraoui, 2006), we cannot rule them out and they remain
part of this group.
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Figure 5. The main seismic sources in Israel and adjacent areas. Colours indicate the two categories of faults according to the criteria.
Inferred subsurface faults are marked by dashed lines. Abbreviations are for the DST main strike-slip segments, its main branches and
marginal faults. Numbers indicate geodetic slip rates (mm yr−1) for strike-slip components according to recent studies (for longer-term slip
rates, see Tables 1 and 2; Fig. A2). Brackets indicate slip rates accommodated by an entire fault zone. Asterisks denote segments of unknown
slip rates, where the fault splits into a few (sub-)parallel segments.

Previous analyses of maximum earthquake magnitude
based on historical earthquakes or on background seismicity
predicted magnitudes of ≤ 7.8Mw for the largest segments
(e.g. Stevens and Avouac, 2017; Klinger et al., 2015; Hamiel
et al., 2018a).

5.2 Main marginal faults and branches

This subgroup (pale blue lines in the map) consists of fault
zones with lengths of several to dozens of kilometres that are
associated with the DST. Based on several previous works
(Table 2), we estimated the slip rates along these fault zones
as 0.5–1 mm yr−1. All the fault segments are located inside
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Figure 6. The seismicity polygons: earthquake kernel density of
values>∼ 0.001 events km−2 yr−1 and M0 kernel density of val-
ues>∼ 9.5 log(J km−2 yr−1); the product is the overlap polygon
(in brown).

(or partly inside) the overlap zone defined by the two seis-
mological analyses (Fig. 6).

The subgroup includes the Hasbaya fault in Lebanon, the
fault zone in the western and eastern margins of the Dead
Sea, the marginal faults of the Hula basin, the Carmel-Tirza
fault zone (CTF) and the Elat fault (Fig. 5). The partitioning
of the slip rate across parallel segments in any given fault
zone is usually below the geodetic measurement (or the in-
formation) resolution. Therefore, the segments presented in
Fig. 5 are representative but not necessarily the most active
within a given system.

Due to the lack of reliable historical and paleo-
seismological evidence, the evaluation of maximum possible
magnitude on these faults is less certain and requires sev-
eral assumptions. First, we consider here a local rupture on
segments from a given system and disregard a rupture of the
entire system as part of an extremely large earthquake on the
main strike-slip faults (as evaluated separately in Sect. 5.1).
In addition, we assume that the longest possible subsurface
rupture length is similar to the length of the segment’s surface

trace. For example, the Carmel fault, the northern fault in the
CTF, is up to 40 km in length (on- and offshore). Accord-
ing to some published scaling relationships, rupturing along
its entire length can be associated with up to ∼ 7Mw earth-
quakes (Wells and Coppersmith, 1994; Stirling et al., 2013).
However, here we assume again that such magnitudes must
be interconnected with an earthquake along a much larger
DST segment (Agnon, 2014) and not confined to a local seg-
ment. We therefore assume a maximum rupture length of
∼ 10–20 km along faults from this subgroup and correspond-
ingly to maximum magnitudes ofMw < 6.5 (Wells and Cop-
persmith, 1994). We note that the data on the Elat fault is
based only on evidence from its northern edge (e.g. a catas-
trophic event at 2.3 ka inferred by Shaked et al., 2004), while
the rates at its offshore parts are less constrained. Further
work on its subsurface section and the connection to the main
sinistral displacement is required for better evaluation of its
seismic potential.

We additionally note that large earthquakes along the
Cyprian Arc (Fig. 1) can also generate tsunamis that might
affect the coastline of Israel (Salamon et al., 2007). This
source is not analysed and mapped here but should be taken
into account in regional seismo-tectonic models.

6 Capable faults

6.1 Framework and principles

The hazard of surface rupture is defined as the likelihood of
an earthquake that will rupture the surface within a certain
time window. This likelihood is based on knowledge about
the past and present fault kinematics and dynamics. The de-
termination of the relevant time reference for young faulting
is usually dictated by different constrains and applications.
In the United States, faults are commonly considered to be
active for planning constructions if they have ruptured the
surface at least once in the past 10 kyr. However, regional
conditions, such as sedimentary cover or available age dat-
ing of pertinent geological units, can affect this determina-
tion. For example, faults that are defined as “Active” in the
“Design Provisions for Earthquake Resistance of Structures”
in Israel are those that ruptured the surface in the past 13 kyr
(Heimann, 2002). This is the age of the top of the lake for-
mation that covers significant parts of the Dead Sea valleys.

The time reference for special constructions such as dams
and nuclear power plants is usually much longer, because
the possible damage to the construction has severe regional
implications. According to the International Atomic Energy
Agency (IAEA) Safety Fundamentals (IAEA, 2010), capa-
ble faults are those with evidence of displacement over thou-
sands or millions of years, depending on how tectonically
active is the area. Here, the Quaternary period is selected
as the time reference for sensitive facilities due to two main
reasons: (a) we assume that faults that were active during
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Table 1. Main strike-slip faults: average slip rate details.

Fault Lateral Data Period Reference
slip rate
(mm yr−1)

Arava (AF) 4.9± 0.5a GPS Recent Masson et al. (2015)
4.7± 1.3a Geology ∼ 15 kyr Niemi et al. (2001)
4± 2a Geology ∼ 120 kyr Klinger et al. (2000)

Evrona (EF) 5.0± 0.8a GPS Recent Hamiel et al. (2018a)
5.4± 2.7a Geology Holocene Le Béon et al. (2010)

Gulf of Elat zone 4.5± 0.3b GPS Recent Reilinger et al. (2006)
(E 2.2± 0.4)

Jericho (JF) 4.8± 0.7a GPS Recent Hamiel et al. (2018b)

Jordan Valley 4.9± 0.2a Geology ∼ 48 kyr Ferry et al. (2007)
(JVF) (south)

Jordan Valley 4.9± 0.3a Geology ∼ 25 kyr Ferry et al. (2011)
(JVF) (centre)

Jordan Valley 4.1± 0.6a,c GPS Recent Hamiel et al. (2016)
(JVF) (north)

Jordan Gorge 4.1± 0.8a GPS Recent Hamiel et al. (2016)
(JGF) ∼ 4.1a Geology 3.4 kyr Wechsler et al. (2018)

∼ 2.6a Archaeology ∼ 3 kyr Ellenblum et al. (2015)

Lebanon 3.8± 0.3b GPS Recent Gomez et al. (2007)
restraining bend (C 1.6± 0.4)
(LRB) zone

Qiryat Shemona 3.9± 0.3b GPS Recent Gomez et al. (2007)
(E 0.9± 0.4)

Roum (RF) 0.86–1.05a Geology Holocene Nemer and Meghraoui
(2006)

Serghaya (SF) 1.4± 0.2a Geology Holocene Gomez et al. (2003)

Yammuneh (YF) 6.9± 0.1a Geology 2 kyr Meghraoui et al. (2003)
(north of LRB) 4.2± 0.3b GPS Recent Gomez et al. (2007)

a Geodetic or geological measurements on a specific segment. b According to geodetic-based model; E and C are
extension and convergence, respectively, normal to the fault. c Creeping from a depth of 1.5± 1.0 km to the surface at a
rate of 2.5± 0.8 mm yr−1.

the present regional stress regime (Zoback, 1992) are more
likely to activate in the near future. The regional stress state
within the Quaternary period represents the current stress
field well (Eyal and Reches, 1983; Hofstetter et al., 2007;
Garfunkel, 2011; Palano et al., 2013). We note that “regional
stress field” (Zoback, 1992) as a criterion for active faulting
is closely related to the “tectonic regime” suggested by Gala-
dini et al. (2012). (b) Quaternary geological units are mostly
well defined in the region.

The primary and secondary criteria for sorting the faults
are listed in a descending order of categorisation, meaning
that faults are initially examined according to the first crite-
rion, and, only if they do not match it, they are examined

according to the second criterion, and so on. Where geo-
logical evidence is absent, we utilise a seismological crite-
rion (Fig. 6), under the assumption that faults associated with
seismically active subzones are more likely to have ruptured
the surface in the Quaternary compared to others.

Finally, because of the limitation of our database, mapped
capable faults (Fig. 7) are limited to Israel and its vicinity.

6.2 Primary criteria

1. Main strike-slip faults of the DST are identified here as
the main sources for large regional earthquakes (Fig. 7).
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Table 2. Marginal faults and branches with integrated slip or subsidence of ~0.5–1 mm yr and references.

Fault Slip rate Data Period Reference
(mm yr−1)

Dead Sea basin ≥ 1 Geology Pleistocene– Bartov and Sagy
marginal faults Based on basin Geophysics Holocene (2004), Torfstein et

subsidence rates al. (2009), ten Brink
and Flores (2012)

Carmel 0.9± 0.45 GPS Recent Sadeh et al. (2012)
Total slip rate
(0.7± 0.45
lateral; 0.6± 0.45
extension)
< 0.5 Geology 200 kyr Zilberman et al. (2011a)

Hula western ∼ 0.4 Geology ∼ 1 Myr Schattner and
border Based on basin Geophysics Weinberger (2008)

subsidence rates

Elat ? Geology Holocene Porat et al. (1996),
Amit et al. (2002),
Shaked et al. (2004)

2. Faults with direct evidence of Quaternary activity are
faults that have been mapped offsetting Quaternary for-
mations or that have been interpreted by scientific publi-
cations (Table A1) to rupture the Earth’s surface at least
once since the Quaternary. This criterion is mainly re-
lated to zones covered by Quaternary units.

6.3 Secondary criteria

Faults that have no field relationship with Quaternary forma-
tions consequently show no direct evidence for Quaternary
faulting. We therefore designed the next criteria under the
rationale that they expand the database with faults that rea-
sonably have been active since the Quaternary, based on the
following criteria.

1. First-order branches and the marginal faults of the DST.

a. First-order branches of faults that are mapped fol-
lowing the primary criteria. A fault branch is de-
fined here as splitting at an acute angle from an-
other fault. The throw direction of the fault and its
branches are also taken into account.

b. Faults that bound the DST basins, separating Qua-
ternary formations from older rocks, and are asso-
ciated with a sharp topographic boundary of at least
100 m.

c. Faults that emerge from Quaternary sediments that
infill the DST valleys and are likely to branch off
the main DST segments.

2. Faults associated with recent seismicity. It is challeng-
ing to match the faults and recent seismicity and assume

they ruptured the surface at least once since the begin-
ning of the Quaternary, because there are thousands of
mapped faults, the high-resolution geophysical data on
fault structures in depth are scarce and the hypocentres’
location uncertainties are large. In order to define the
seismicity-based criterion, we create polygons for each
of the parameters. The polygons are defined by thresh-
old values, so that each of them is the smallest to cover
continuously the whole length of the most active tec-
tonic feature in the region. In our case study, this feature
is the DST, but we exclude the relatively silent north-
ern section of the Jordan Valley segment (I in Fig. 6).
Therefore, the overlap area (Fig. 6) of the two polygons
consists of at least the minimum level of both seismic
moment kernel density and earthquake kernel density
along the southern part of the DST, nearby or within
the network coverage area (Fig. A1). Hence, if a fault
is within the overlap area, it means that it is associated
with at least a minimum level of seismicity along the
most active tectonic feature, and thus it is likely to be
seismogenic. We further assume a relation between a
fault mapped surface trace and a possible past surface
rupture for selecting the most prominent faults. Con-
sidering scaling relations between fault dimensions and
source parameters, faults that contain surface traces of
at least 6 km (corresponding to Mw ≥ 6.0 earthquakes;
Wells and Coppersmith, 1994; Stirling et al., 2002; Mai
and Beroza, 2000) within the overlap area are assumed
here as Quaternary faults.

3. Subsurface faults. Subsurface and offshore continua-
tion of the main DST strike-slip segments as well as
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Figure 7. Quaternary fault map of Israel. Colours indicate the corresponding criterion for each fault. Inferred subsurface faults are marked
by dashed lines. Abbreviations are for the main strike-slip segments of the DST.

and a few other faults with published details for both
their subsurface extension and their Quaternary activ-
ity are marked (the majority are in Fig. 5). In addi-
tion, we map other faults that offset dated Quaternary
units, with well-constrained near-surface location in-
ferred from high-resolution seismic data. We exclude
subsurface faults when their exact location and activ-
ity period are less constrained. Fault segments that were
mapped as concealed (mostly by thin alluvium) in the

1 : 50000 maps and are the continuation of Quaternary
faults are marked as ordinary surface traces.

www.nat-hazards-earth-syst-sci.net/20/125/2020/ Nat. Hazards Earth Syst. Sci., 20, 125–148, 2020



136 M. Sharon et al.: Assessment of seismic sources and capable faults through hierarchic tectonic criteria

7 Discussion

7.1 Methodological aspects and applications for hazard
evaluations

Regions with intermediate seismicity rates present a chal-
lenge for hazard evaluation; whilst the hazard might be per-
ceptible, the seismic data and the geological evidence for
recent surface rupture are sparse compared to very active
zones. Considering that the earthquake phenomenon is a
stochastic process and its predictability is limited, we de-
velop a methodology for mapping and characterising haz-
ardous faults by taking advantage of incorporating interdis-
ciplinary information with statistical seismological analyses.

Two regional fault maps are presented: one is relevant for
regional ground shaking models (Fig. 5) and the other for
surface rupture near facilities that are particularly vulnerable
to this hazard (Fig. 7). In addition to the approach of clas-
sifying faults by the recency of faulting or by their recur-
rence intervals (Machette, 2000, and references therein), we
utilise other criteria such as seismological patterns (Sect. 4)
and tectonic configuration (Sect. 6.3). In particular, we use
the distribution of the earthquake kernel density and the seis-
mic moment kernel density to test the relevancy of faults for
different hazards. Figure A3 reveals that most of the capable
faults, which are mapped based on the geological criteria,
could have entered the map also by the seismological crite-
rion (ignoring its 6 km fault length limitation). The match be-
tween the geologically categorised faults and the area defined
by the seismological analysis reinforces the methodological
concept of utilising the two seismological distributions that
are, to a large extent, independent of one another. Moreover,
faults that are defined here as “main seismic sources” accord-
ing to specific tectonic conditions (i.e. slip rate, geometry,
structure) are well correlated with the zone defined by our
seismological analysis (Fig. 6). This emphasises the signifi-
cance of this analysis, especially when slip rates are slow or
under debate (as in Sect. 5.2).

The internal hierarchic categorisation of faults in both
maps (Figs. 5 and 7) enables separating different fault groups
and can later be implemented if a specific hazard is con-
sidered or if risk evaluation is applied. However, we note
that although faults are marked by hierarchical criteria, the
different categories in many cases complement each other
rather than show the hierarchy of the activity level. The grid-
based distributions of the obtained seismicity parameters are
utilised here together with fault geometry parameters (length
and orientation) for defining capable faults. The advantage
of this integration is expressed where the seismological crite-
rion (Sect. 6. 3) defines capable faults in zones where young
formations are scarce (Fig. 7). Just as important, our database
of gridded seismicity, with possible adjustments, can be im-
plemented as an independent source for hazard evaluations,
and as a complement to the regional databases of mapped
faults in zones of subsurface faults.

Although our methodology is demonstrated for Israel and
its vicinity, the approach is universal and is particularly use-
ful in domains of intermediate seismicity rates or limited
field evidence. The criteria, when implemented in other re-
gions, should be adjusted according to the regional and local
seismo-tectonic settings. For example, our seismicity-based
analysis is not considering the orientation and the inclina-
tion of the fault surface when epicentre locations and fault
traces are correlated together, because most of the faults in
the study area are characterised by steep dips. This cannot
be neglected in low-angle fault zones or the convergence
regime. Finally, our approach of hierarchic tectonic criteria
for categorising faults can be applied in principle also when
local siting of an infrastructure is considered. However, faults
with extremely long recurrence intervals, located along zones
that are not covered by young formations, might be difficult
to detect, even when seismo-tectonic criteria are considered.
Moreover, faults that constitute a mechanical potential for
slip, such as conjugate fault sets (Eyal and Reches, 1983) or
old faults that can be reactivated by stress triggering (Stein
et al., 1997), are not defined as capable in our regional anal-
ysis, unless further geological or seismological evidence for
Quaternary activity exists. Therefore, local siting, in partic-
ular of sensitive infrastructure, might require stricter criteria
both for surface rupture and ground shaking, depending on
the specific requirements.

7.2 Implications for local tectonics and slip dynamics

The DST accommodates most of the seismic activity but also
contains zones of very sparse seismicity (Fig. 6). The seis-
micity distribution maps (Figs. 3 and 4) exhibit enhanced
seismicity in the pull-apart basins and reduced activity in the
long straight segments. The heterogeneous distribution can
be explained by the tendency of stress amplification and fail-
ure to concentrate locally within zones of geometric irregu-
larity, such as releasing bends (e.g. Segall and Pollard, 1980;
Reches, 1987), whereas the long segments can accommo-
date higher stresses that are released in single earthquakes of
more seismic moment release (Sagy and Lyakhovsky, 2019).
At the northern section of the Jordan Valley long segment,
section I is the least active part of the DST during the last
∼ 35 years. Shallow crust creep along the northern part of
this segment at a rate of approximately half the total plate
motion (Hamiel et al., 2016), and potential partitioning of the
DST activity to the CTF (Sadeh et al., 2012; Hamiel et al.,
2018b) might reduce the seismicity rate in section I (Fig. 6).
Sections II and III, at the middle and the northern sections of
the Arava segment, are also associated with sparse seismicity
but to a lesser extent. With no indication for creep, the reduc-
tion of seismicity might be attributed to local locking of the
main fault. Structural and lithological contrasts in fault junc-
tions (e.g. the SNB and ∼NNE striking faults) might also
affect the increasing or decreasing of local seismicity along
the segments.
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Figures 3 and 4 indicate a ∼SE–NW-trending seismo-
logical lineament with intensified seismicity in its southeast
(IV in Fig. 6, referred to here as the east Sinai zone). This
lineament seems to branch off the DST in a zone of a struc-
tural boundary, between the deep tectonic basins of the Gulf
of Elat (Ben-Avraham, 1985) and the Arava valley, a “struc-
tural and topographic saddle with hardly any ‘rift-valley’ in
its centre” (Garfunkel, 1981). Since the seismic activity im-
plies that it may run further northwest, we refer to it as the
Elat–Bardawil lineament (EBL). Its orientation, sub-parallel
to the CTF, the Suez rift and the Red Sea spreading centre,
might indicate a similar extensional feature (see Fig. A4).
This possibility is supported by geodetic analysis (Palano et
al., 2013), a focal mechanism solution within this zone (Ab-
delazim et al., 2016), and by the orientation of nearby Quater-
nary faults (Fig. 6) and other fault traces in Sinai, outside our
high-resolution data (e.g. Eyal et al., 1980). However, cur-
rently there are no available high-resolution maps to confirm
the existence of faults associated with the seismicity in the
east Sinai zone. We interpret the seismicity within the EBL
as related to the reactivation of subsurface faults that were
either formed during the post-Eocene Red Sea rifting or even
older faults. Further research is required for better charac-
terisation of this activity and its relationship to the regional
tectonics.

Finally, relatively long E–W-trending faults (SNB) cross
the south of Israel and Sinai, and some of them are marked
as Quaternary faults (Figs. 7 and A3). However, there are no
geologic or geodetic indications for any activity along them
since the early Pleistocene, and the associated seismic ac-
tivity mostly concentrates in their junctions with the DST.
We therefore assume that these dextral oblique-slip faults are
inactive in the present regional stress field, and their reacti-
vation may generally decrease with increasing distance from
the DST.

8 Conclusions

1. Mapping and characterising faults that pose seis-
mic hazard, particularly in regions with intermediate
seismicity rates and/or where young formations are
sparse, require developing an interdisciplinary regional
database and hierarchical seismo-tectonic criteria. With
respect to the specific dictated requirements, faults that
are potential sources for the far-field and for the near-
field (i.e. surface rupture) hazards should be analysed
by different criteria; both represent seismic hazard of
significant earthquakes but within different time frames.

2. We design a seismicity-based criterion that utilises the
distribution of two parameters: the earthquake kernel
density and the seismic moment kernel density. The suc-
cess of this selection is demonstrated by the match be-
tween the geologically categorised faults and the seis-
micity criterion (Fig. A3). The union zone defined by

these two statistical distributions is efficient in both the
definition of the main seismic sources (Fig. 6) and in
categorising capable faults (Fig. 7).

3. The hierarchic seismo-tectonic criteria ideally reflect
the degree of certainty for recent faulting and can later
be implemented if a specific hazard is considered or if
risk evaluation is applied.

4. The temporal reference for local planning of critical fa-
cilities such as dams and nuclear power plants is usually
long, because the possible damage to the construction
has severe regional implications. We select the Quater-
nary period as the relevant time frame for capable faults
in Israel and its surroundings. While this time frame
(2.6 Myr) is longer than the previous one for defining
capable faults for a potential local nuclear power plant
(IEC and WLA, 2002), it is justified by considering
the regional stress field, the regional stratigraphic con-
figurations and the criteria that focus on surface rup-
ture rather than general fault movements. We suggest
that tectonic and stratigraphic conditions, as well as
the accessibility of geologic maps and their resolutions,
should be considered for defining the time frame for ca-
pable faults.

5. Beyond planning of special constructions, the devel-
oped database and the maps that are generated and pre-
sented here constitute further applications for planning
and research. The regional main-seismic-source map
(Fig. 5) is fundamental for seismotectonic modelling
and eventually for generating ground motion prediction
maps (e.g. by PSHA) that are essential for construc-
tion planning. The capable fault database and the related
maps (Figs. 2–4, 6 and 7) lay the foundation for further
study of the regional Quaternary faulting and tecton-
ics in the eastern Mediterranean region. Furthermore,
the methodology, which is based on categorisation and
sub-categorisation by seismo-tectonic hierarchic crite-
ria, enables differentiation of hazard potential and can
be applied in other regions around the world.

6. The relation between instrumental seismicity, geodetic
slip rates and the internal structure of the main fault
zone enables revealing seismo-tectonic patterns in an in-
vestigated region. Specifically, along the DST we recog-
nise zones of enhanced or reduced seismicity, which can
be controlled by the following factors: slip partition-
ing, creep, geometric irregularities associated with re-
leasing bends, and litho-structural complexities in fault
junctions. In addition, we identify a zone of seismicity
that seems to diverge from the main fault zone towards
∼NW (EBL in Figs. A4 and 6). Its orientation and inde-
pendent evidence imply that it reflects extension-related
activity, accommodated by (subsurface?) fault systems
that branch off the DST.
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Appendix A

Figure A1. Seismic stations utilised for recording the earthquakes of the examined catalogue, and the ensuing seismic network coverage
area. The spatial distribution of the stations is temporally dependent. Stations that recorded less than 350 arrivals are in black, while stations
that recorded more than 350 arrivals are in blue. Green lines mark the borders of the seismic network coverage area as defined in this study.
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Figure A2. The main seismic sources in Israel and adjacent areas as in Fig. 5, with colours indicating the two fault categories according
to the criteria. Inferred subsurface faults are marked by dashed lines. Abbreviations are for the DST main strike-slip segments, its main
branches and marginal faults. Numbers indicate lateral components of slip rates (mm yr−1) according to geodetic investigations (black) and
field measurements of lateral offsets (green), based on recent studies (Tables 1 and 2). Brackets indicate slip rates accommodated by an entire
fault zone. Asterisks denote segments of unknown slip rates, where the fault splits into a few (sub-)parallel segments.
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Figure A3. Quaternary faults superimposed on the seismicity polygons of the seismicity-based criterion. The letter S indicates SNB faults.
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Figure A4. Marked ∼NW trending seismicity lineaments: CTF (north) and the EBL (south), on the distribution maps of the earthquake
density (a) and seismic moment density (b), as in Figs. 3 and 4.
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Table A1. References for faults and fault segments that have been marked based on papers, reports and theses. Faults are listed in Table 3
if their latest mapping is not updated yet in the 1 : 50000 sheets (as of 2018) or if their definition as Quaternary faults cannot be directly
deduced from the geological maps. Fault names are mainly according to the references.

Area Name of fault/ References
group of faults or
segments

Southern Arif-Bator Zilberman et al. (1996), Avni (1998)
Israel Gerofit Ginat (1997)

Gevaot Ziya Avni (1998)
Halamish line Avni (1998)
Har Seguv Avni (1998)
Hiyyon Ginat (1997)
Katzra Avni (1998)
Milhan Ginat (1997)
Mitzpe Sayarim Avni (1998)
Noza Ginat (1997)
Ovda Avni (1998)
Paran Zilberman (1985), Avni (1998), Calvo et al. (1998), Calvo (2002)
Yotam Wieler et al. (2017)
Zhiha Avni (1998)
Zin Enzel et al. (1988), IEC and WLA (2002), Avni and Zilberman (2007)
Znifim–Zihor–Barak Ginat (1997)
Zofar Calvo (2002)

Central Jericho Sagy and Nahmias (2011)
Israel and Masada Plain Bartov et al. (2006)
Dead Sea Modi’in Buchbinder and Sneh (1984)
area Nahal Darga (east) Enzel et al. (2000)

Nahal Kidron (east) Sagy and Nahmias (2011)

Northern Ahihud Kafri and Ecker (1964), Zilberman et al. (2011b)
Israel Beit Qeshet (western part) Zilberman et al. (2009)

Ha’on Katz et al. (2009)
Hilazon Kafri and Ecker (1964), Zilberman et al. (2008)
Kabul Kafri and Ecker (1964), Zilberman et al. (2008)
Nahef East fault Mitchell et al. (2001)
Nesher Zilberman et al. (2006, 2008)
Tiberias Marco et al. (2003)
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Table A2. List of geological formations and units used for the Quaternary fault map of Israel.

Formations Local Local volcanic units Other units∗

sedimentary
units

Ahuzam Fm. (Cgl.∗∗) Amora salt Avital tuff Alluvium
Arava Fm. Betlehem Cgl. Bene Yehuda scoria Beach rocks and reefs
Amora Fm. Biq’at Uvda Cgl. Berekhat Ram tuff Calcareous sandstone (kurkar)
Ashmura Fm. Edom facias Dalton basalt Colluvium
Elot Fm. Egel Cgl. Dalton scoria and tuff Dune sand, sand sheets, red sands
Garof Fm. En Awwazim Cgl. Dalwe flows Loess, fluvial and eolian
Gesher Benot Ya’aqov Fm. En Feshha Cgl. En Awwazim flow Gypsum
Hazor and Gadot Fms. Giv’at Oz Cgl. En Zivan basalt flows Lake sediments
Lisan Fm. Karbolet caprock Golan basalt flows (Muweissa and En Zivan flows) Loam (hamra)
Malaha Fm. Lot caprock Hazbani basalt flows Neogene–Quaternary conglomerate units, terrace Cgl.
Mazar Fm. Mahanayim Marl Keramim basalt Playa
Nevatim Fm. Mearat Sedom caprock Meshki basalt flows Recent fan
Ortal Fm. Nahshon Cgl. Muweisse basalt flows Soil
Pleshet Fm. Ramat Gerofit Cgl. Neogene basalts Tufa, travertine
Samra Fm. Ravid Cgl. Raqad basalt Unnamed clastic unit
Sede Zin Fm. Ruhama Loess and sand Sa’ar basalt flows
Seif Fm. Sabkha soil Shievan scoria
Ye’elim Fm. Si’on Cgl. Yarda/Ruman basalt flows
Ze’elim Fm. Wadi Malih Cgl. Yarmouk basalt
Zehiha Fm. Yehudiyya and Dalwe basalt flows

∗ Geologic and geomorphic descriptions that appear in 1 : 50 000 geological maps for Quaternary deposits. ∗∗ Cgl. means conglomerate.

Table A3. References for faults located beyond Israeli borders and/or subsurface faults.

Geographic area Reference

Gulf of Elat Ben-Avraham (1985), Hartman et al. (2014)
Arava valley Calvo (2002), Le Béon et al. (2012), Sneh and Weinberger (2014)
Sinai Peninsula Sneh and Weinberger (2014)
Northwestern Negev Eyal et al. (1992)
Dead Sea basin Ben-Avraham and Schubert (2006), Sneh and Weinberger (2014)
Jordan Valley Ferry et al. (2007), Sneh and Weinberger (2014)
Gilboa fault (western part) Sneh and Weinberger (2014)
Carmel fault (eastern part) Sneh and Weinberger (2014)
Carmel fault (western part) Schattner and Ben-Avraham (2007)
Zevulun valley Sagy and Gvirtzman (2009)
Sea of Galilee Hurwitz et al. (2002), Reznikov et al. (2004), Eppelbaum et al. (2007), Sneh and Weinberger (2014)
Hula basin Schattner and Weinberger (2008)
Lebanon and Syria Weinberger et al. (2009), Garfunkel (2014), Sneh and Weinberger (2014)
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Data availability. The geological maps are available at the Ge-
ological Survey of Israel’s website at http://www.gsi.gov.il/
_Uploads//ftp/GeologicalMap/map_for_web_2016.pdf (last access:
January 2020) for 1 : 50000 resolution and at https://www.gov.il/he/
departments/general/israel-map-1-200k (last access: January 2020)
for 1 : 200000 resolution. The earthquake catalogue can be ac-
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