Chapter 7

Review of On-Fault Palaeoseismic Studies
Along the Dead Sea Fault

Shmuel Marco and Yann Klinger

Abstract The aim of this short note is to provide a summary over on-fault
palaeoseismic works on the behavior of the Dead Sea fault (DSF). Key achievements
of these studies include: the determination of slip rate of the DSF across different
space and time resolutions, which converges at around 4-5 mm/a, confirmation of
the sinistral relative motion between the Arabia Plate and the Sinai Subplate and of
thrust motion and normal faulting associated with restraining bends and pull apart
grabens respectively, and the verification of historical accounts on several strong
earthquakes that were associated with surface ruptures. The comparison between
the state-of-the-art slip-rate determinations along the DSF and the total motion
accommodated by the known historical and instrumental earthquakes shows that
current seismicity rates cannot account for the full slip rate. As previously proposed,
the short-term rate of seismicity is not necessarily representative of the long-term
seismic activity along the DSF. Assuming the historical records of the last two millennia
are complete for strong earthquakes, we note long periods of quiescence in the sections
of the northern Yammouneh, the Jordan Valley, and the southern Araba.
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7.1 Introduction

As early as 1869 Lartet suggested that Arabia and Africa have drifted apart to open
up the Red Sea. Dubertret (1932) followed this idea suggesting a 160 km sinistral
shear along the Dead Sea Fault associated with a 6° rotation between Arabia and
Africa. Wellings (cited in Willis 1938) noted that this hypothesis corresponds to the
offset of the marine Cambrian and Jurassic beds across the rift south of the Dead
Sea. Willis (1938) rejected this hypothesis. During the following years, it was
largely ignored until systematic research by Quennell (1956) provided evidence
for 107 km sinistral slip. Later, with the advent of the plate tectonics, Freund and
collaborators (Freund 1965; Freund et al. 1970, 1968) and Wilson (1965) recognized
the Dead Sea rift as a transform fault zone that transfers the opening at the Red Sea
to the collision zone at the Taurus-Zagros mountain belt.

The evidence for left-lateral shear along the Dead Sea Fault (DSF) since the
early-middle Miocene is based on observations from four independent sources:
regional plate tectonics, local geology, seismology, and geodesy. The plate tecton-
ics shows that the opening of the Red Sea, where the Arabian plate is breaking
away from Africa, is transferred to the collision with Eurasia via sinistral shear
along the DSF (Freund 1965; Garfunkel 1981; Joffe and Garfunkel 1987; Quennell
1956). Sinistral motion explains the systematic offset of numerous pre-Miocene
geologic features by a total of ~105 km, south of the Lebanon Restraining Bend
(LRB) (Bartov et al. 1980; Freund 1965; Quennell 1956). Garfunkel et al. (1981)
mapped the active fault traces of the DSF and associated these scarps with historical
earthquakes that are reported from the region. Later research revealed prehistoric
seismicity as well (Table 7.1 and Fig. 7.1). Focal mechanisms of moderate-to-large
earthquakes show sinistral motion along the DSF (e.g. (Baer et al. 1999; Klinger
et al. 1999; Salamon et al. 1996), Hofstetter et al. 2007). Geodetic measurements
for the very short-term deformation are consistent with overall geologic observa-
tions of a sinistral slip-rate of 4-5 mm/year (Le Beon et al. 2008; McClusky et al.
2003; Reilinger et al. 2006; Wdowinski et al. 2004). In a review of the slip and
seismicity of the DSF, Garfunkel (2011) concludes that the slip rate is slowing
from an average rate of 67 mm/year over the last 5 Ma to 4-5.5 mm/year in the
Pleistocene together with a slight eastward shift of the Euler pole of rotation
between Sinai and Arabia.

Several authors noted explicitly that the detailed shape of the DSF had changed
through time e.g. (Garfunkel 1981; Heimann and Ron 1987, 1993; Rotstein et al.
1992; ten Brink et al. 1999; ten-Brink and Ben-Avraham 1989). For the section
south of the LRB, the widest zone of distributed faulting is about 50 km wide. It is
found in the Galilee, where the early-stage (Miocene) faults were associated with
formation of basins (Freund et al. 1970; Shaliv 1991) and with rotation of rigid
blocks about sub-vertical axes (Ron et al. 1984), although the linkage to the trans-
form movement is not well established. In this region, subsequent post-Miocene
deformation took place mostly in the form of normal faulting on E-W trending
faults with some strike-slip motion currently localized in a very narrow zone.
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Fig. 7.1 Location

of palaeoseismic studies
along the Dead Sea Fault.
Numbers refer to entries
in Table 7.1
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The deformation further south is characterized by a 20-30-km-wide zone with
primarily strike-slip and some normal slip on faults trending sub-parallel to the
main transform fault. The location of the active fault strands along the Dead Sea
Transform fault zone (DSF) changed through time. In the western margins of Dead
Sea basin, the early activity began a few kilometers west of the present shores and
moved toward the center of the basin in four stages. Similar basinward migration of
faulting is apparent in the Hula Valley north of the Sea of Galilee as well as in the
Negev and the Sinai Peninsula. In the Arava Valley, seismic surveys reveal a series
of buried inactive basins whereas the current active strand is located along the eastern
margin. In general, the faulting along the DSF became localized by the end of the
Miocene. The subsidence of fault-controlled basins in the early stage, stopped at
the end of the Miocene. During the Plio-Pleistocene, new faults were formed in the
Negev west of the main transform, possibly manifesting another cycle that has
begun with the widening of the fault zone (Marco 2007).

This paper reviews the contribution of recent studies on the most recent activity
of the DSF (mostly its southern section, south of the LRB) and its subsidiary faults.
These studies contributed to the recognition of the active strands in the fault zone,
constrained the slip rates and recurrence intervals of the various fault segments, and
determined the time of the last slip event after which the segment had remained
locked. The offset geological and archaeological bodies confirm the plate tectonics
paradigm and provide an independent examination of the structural complexities
such as restraining bends, pull-apart basins, and distributed slip among fault branches.
The fault was characterized as a “leaky transform” because of these pull-aparts
(Garfunkel 1981). The temporal overlap of geological and historical-archaeological
information provides important crosschecks of the sources of data. On-fault research
requires the identification of faults. This is relatively easy where the fault zone is
narrow and exposures are good. It is less complete where the fault zone is wide and
consists of many branches, or where the faulting activity shifts location and young
sediments or basalt flows cover the faults.

7.1.1 Detailed Mapping of the Fault Zone

The first detailed maps of the DSF zone that emphasized the offset of Pleistocene to
sub-recent units were published by Garfunkel et al. (1981). Various structures such
as pull apart grabens, restraining bends, branching faults, and folds, which comprise
the fault zone were also described and analyzed at the same time (Eyal et al. 1981;
Garfunkel 1981). The recognition of small displacements of young geological
features such as alluvial fans or lake deposits opened the road for neotectonics and
palaeoseismic research. These studies showed that the fault consists of numerous
segments separated by discontinuities or sharp changes in their strike. A GIS-based
map of the faults suspected as being “active” (Bartov et al. 2002) was generated by
defining active faults as those that either cross or bound Pliocene and younger
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stratigraphic units. It is not clear yet whether the strong earthquake ruptures are
arrested at the mapped segment ends. This question is important because the length
of the ruptures correlates with the earthquake size (e.g., Wells and Coppersmith
1994). The detailed maps reveal that the structure of the DSF is variable (described
from south to north): The southernmost part is the Gulf of Aqaba-Elat, where a
series of left-stepping, en-echelon fault arrangement forms three elongate deep pull-
apart basins separated by shallow thresholds (Ben-Avraham and Garfunkel 1979).
The largest earthquake (M7.2) ever recorded instrumentally occurred in the gulf on
November 22, 1995 (Klinger et al. 1999; Pinar and Turkelli 1997; Shamir et al.
2003). The next section toward the north is the Araba Valley, characterized by a narrow
fault zone that offsets a series of Pleistocene-Holocene alluvial fans (Garfunkel
et al. 1981). Several palacoseismic studies quantify the displacements (Klinger
et al. 2000a; Le Beon et al. 2010, 2012; Niemi et al. 2001). Seismic reflections
reveal that the subsurface structure of the Araba Valley includes buried Miocene
grabens (Frieslander 2000). The next section is the pull-apart basin of the Dead Sea,
where two sub-parallel faults bound the deepest place on the Earth continents. The
Dead Sea pull-apart structure is bounded by the Amaziahu Fault on the south, where
a sharp scarp in Late Pleistocene lake deposits reaches a height of up to 30 m. The
northern boundary does not have a surface expression. The western fault continues
due north along the Jordan Valley, where it is recognized as a narrow fault zone in
Pleistocene sediments (Ferry and Meghraoui 2008; Ferry et al. 2007; Garfunkel
et al. 1981). Two faults branch off the main fault zone. One at the northeastern end
of the Dead Sea a NE-striking fault scarp manifests normal slip component, and the
second, further north, a NW-striking fault branches off the Bet She’an Valley, also
has a normal slip component with Mount Gilboa at the footwall. The northern end
of the Jordan Valley section is where the fault zone consists of two parallel faults,
which form the graben structure of Kinarot and the Sea of Galilee further north. The
western boundary fault of the southern Sea of Galilee bends westward, making the
northern part of the basin wider. This branch crosses the town of Tiberias (Hazan
et al. 2004; Marco et al. 2003). The eastern boundary fault bends northeastward. In
contrast to the dual fault at the south there is a single fault to the north of the Sea of
Galilee, known as the Jordan Gorge Fault, which offsets manmade structures
(Ellenblum et al. 1998) and Holocene stream channels (Marco et al. 2005; Wechsler
et al. 2011). The Hula pull-apart basin to the north of the Jordan Gorge section
is also where the fault system splays into several branches, namely (east to west)
the Rachaia Fault, Serghaia Fault, Yammouneh Fault, and Roum Fault (Fig. 2). The
Yammouneh, which takes up most of the plate motions, continues northward to
the triple junction in southern Turkey, where it joins the East Anatolian Fault on the
northeast and the Eastern Mediterranean collision zone on the west.

The on-fault studies resolve the debate revolving around the identification of the
active branch. The suggestions that the main active fault is the Carmel Fault (Girdler
1990) or the Roum Fault (Butler et al. 1997, 1999) are not supported by the observa-
tions. Although they do take a small portion of the plate motions, the Yammouneh
exhibits the major activity as well as the most prominent topographic feature,
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with some local contribution of the Lebanon Bend-related Rachaya-Serghaia
fault branches (Daéron et al. 2005, 2007; Fleury et al. 1999; Gomez et al. 2003).
Palaeoseismic records from the DSF in Syria and in southern Turkey also reveal
major earthquake ruptures along the northern extension of the DSF (Akyuz et al.
2006; Altunel et al. 2009; Karabacak et al. 2010; Meghraoui et al. 2003). The analysis
of three GPS campaigns between 1996 and 2008 shows an oblique motion along
the Carmel Fault with about 0.7 mm/year left-lateral and about 0.6 mm/year N-S
extension (Sadeh et al. 2012).

7.1.2  Test Plate Tectonic Paradigm

The debates on the nature of movement along the DSF (e.g., Vroman 1973) have
been replaced by widely-agreed consensus on its left-lateral sense. Euler’s theorem
provides the means for resolving the relative motion on any one of three plate bound-
aries in a triple junction given the motions of the other two. The DSF connects the
northern Red Sea spreading center to the collision zone located in South Eastern
Turkey. If the fault were a pure transform, i.e., along a perfect small circle, the calcu-
lated DSF motion should be the same when solved for either junction, and this should
conform to results from the DSF itself. In practice, the determination of accurate slip
rates at both the southern end of the DSF, where it connects with the Red Sea and the
Gulf of Suez, and at the northern end, where it connects with the East Anatolian fault
and the subduction zone of the Cyprus arc, are poorly constrained and do not allow
for such theoretical proof. Qualitative and quantitative confirmation for sinistral
movement along the DSF, however, are validated by numerous observation of sinis-
tral displacements of geological and archaeological bodies, as well as normal dis-
placements of strata at the margins of pull-apart basins and all along the DSF itself.
At present, the slip rates determined by the palacoseismic studies alone (Table 7.3) are
too variable to provide a definite quantitative confirmation of the plate tectonic models.
Many of the on-fault palacoseismic studies document the vertical components of slip.
The few locations with suitable markers for measuring strike slip invariably confirm
the sinistral nature of the motion. These data include offset alluvial fans (Garfunkel
et al. 1981; Klinger et al. 2000a; Le Beon et al. 2010, 2012; Niemi et al. 2001),
stream channels (Ferry et al. 2007; Marco et al. 2005; Wechsler et al. 2011), and
archaeological structures (Table 7.1).

7.1.3 Earthquake Activity — History, Prehistory

Instrumental seismology along the DSF is limited to only one strong earthquake, the
My7.2, 1995 Nuweiba, and one moderate, M, 6.1, 1927 Jericho earthquake. In order
to recover earthquake history we must combine historical records, archaeological
observations, and geological evidence for earthquake fault ruptures. All three kinds
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of data can either relate to off-fault or on-fault phenomena. The off-fault effects are
reviewed by A. Agnon in Chapter 8. The on-fault research essentially relies on
identification of surface, or near-surface, disruptions of geomorphic features, soil
layers and man-made structures, either naturally outcropping or exposed in man-
made trenches.

The first palaoeseismic trench was opened near Jericho across the fault trace
identified by Garfunkel et al. (1981). Offset strata were dated using indicative
archaeological artifacts (Reches and Hoexter 1981) and interpreted as the ruptures
of the historically-recorded earthquakes of 31 BCE and 747 CE. Another set of
pioneering palaeoseismic research trenches explored slip on normal faults and the
development desert soils as a means to decipher tectonics at the western border of
the fault zone in the southern Arava (Amit et al. 1995; Gerson et al. 1993). Several
studies were aided with geophysical detection of faults, e.g., by GPR (Basson et al.
2002), high-resolution seismic reflection (Marco et al. 2005; Agnon et al. 2006),
and magnetic field (Altunel et al. 2009). These, and later on-fault palacoseismic
observations, are summarized in Table 7.1.

7.2 Achievements of DST On-fault Studies

7.2.1 Test Reliability of Historical Records

Abundant accounts on historical earthquakes have been catalogued (e.g., Ambraseys
2009; Ambraseys and Finkel 1995; Ambraseys et al. 1994; Amiran et al. 1994;
Guidoboni and Comastri 2005; Guidoboni et al. 1994; Russell 1985; Sbeinati
et al. 2005). The catalogues include descriptions of damage to property, natural
phenomena, human reactions, and fatalities. Reference to fault ruptures are usually
missing. It is assumed that this lack of reference is not because there were no surface
ruptures but rather because the contemporary reporters of these accounts were
not aware of the association between earthquakes and faulting. Hence, pairing an
historical earthquake to a specific fault often remains difficult. A major uncertainty
is related to dating because the commonly used methods in palacoseismic research,
namely radiocarbon and luminescence, have large error margins and these need to
be correlated with the often-uncertain dates of reported earthquakes. Several authors
have pointed out the pitfalls of potential circular reasoning (e.g., Ambraseys 2005;
Marco 2008; Rucker and Niemi 2010). Commonly, the geologists who find evidences
for past earthquakes look for records of historical earthquakes listed in catalogues
whose dates fall within the geological dating ranges. This practice works fine for
the section south of the Hula Valley, where the fault zone is relatively simple. It is
less certain for the fault zone farther north, where several branches, in addition to
the Yammouneh fault that continues northward to Turkey, may be associated with
strong earthquakes.
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Table 7.2 Historical DSF earthquakes confirmed by surface ruptures observed in palacoseismic

investigations

Locations

Fig. 7.1 Date Segment References

1 31 BCE Jordan Valley Reches and Hoexter (1981)

12 115 CE Misyaf, Yammouneh  Meghraoui et al. (2003)

21 551 Lebanon thrust Elias et al. (2007)

13,1 749 Jordan Valley Marco et al. (2003) and Reches and Hoexter (1981)

18 859 Northern Yammouneh Akyuz et al. (2006)

15 3/1068  South Arava Zilberman et al. (2005)

12 1170 Missyaf, Yammouneh Meghraoui et al. (2003)

14,4 1202 South Yammouneh Daéron et al. (2005), Ellenblum et al. (1998),
and Marco et al. (1997, 2005)

8,9 1212 Northern Arava Klinger et al. (2000b) and Niemi et al. (2001)

18 1408 Northern Yammouneh Akyuz et al. (2006)

8 1458 Northern Arava Klinger et al. (2000b)

11 1705 Serghaya Fault Gomez et al. (2001)

4,16 10/1759 Jordan Gorge Ellenblum et al. (1998), Marco et al. (1997),
and Marco et al. (2005)

14, 11,25 11/1759 Serghaya Fault Daéron et al. (2005), Gomez et al. (2001),
and Nemer et al. (2008)

19 1837 Roum Fault Nemer and Meghraoui (2006)

18 1872 Northern Yammouneh Akyuz et al. (2006)

An example of successful matching between geological and archeological data is
found at the site of Ateret, where structures were built on top of the active fault.
There, accurate measurements of the slip associated with the earthquakes of 1202
and 1759 CE were possible (Ellenblum et al. 1998; Marco et al. 1997). Palacoseismic
trenches dug some 10 km southward confirmed these archaeoseismic results (Marco
et al. 2005; Wechsler et al. 2011), while trenches along the Yammouneh fault
(Daéron et al. 2005, 2007) were crucial to determine the northward extension of the
ground ruptures associated with these two events. The rupture sizes and locations
are remarkably in accord with independent analysis of historical reports on these
earthquakes (Ambraseys and Barazangi 1989; Ambraseys and Melville 1988;
Sieberg 1932). Table 7.2 lists all the historical records that were confirmed by direct
observations. The observations include faulted strata and archaeological structures.
The evidence for surface ruptures indicates that the earthquakes magnitudes were
greater than M6, and that the historical records are largely reliable in such magni-
tude range.

Assuming the historical earthquake catalogues of earthquakes that were not
confirmed yet by geological studies are also reasonably reliable, we illustrate their
locations along the DSF system (Fig. 7.2). We interpret the locations to be close to
the maximum reported damage area, although ideally it would be better if more data
were available and more robust objective methods could be used (e.g., Bakun and
Wentworth 1998; Sirovich et al. 2002; Zohar and Marco 2012).
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Fig. 7.2 Historical earthquakes distribution in space and time. Each bar corresponds to an approximate
earthquake location along the DSF at the map. Red dates are earthquakes whose ruptures were
found in palaeoseismic studies (see Table 7.2). Abbreviations: EAF East Anatolia Fault, RC Rachaya
Fault, RM Roum Fault, SG Sea of Galilee, DS Dead Sea (Partly based on Garfunkel et al. 1981)

7.2.2 Slip Rate — Miocene to Holocene

Dated geological slip markers of two kinds are used for constraining slip rate
(Table 7.3). One kind is pre-Miocene, which determines the total offset and thus
the long-term slip rate. The other kind uses features that formed while the DSF
was active, which determine short-term rates of individual sections of the fault.
Palaecoseismic studies aim in particular at the Pleistocene-Recent activity. The
short-term slip rate may be used for estimating the slip deficit by assuming that
the total slip is represented either by the long-term slip rate, and/or the geodeti-
cally measured velocity away from the plate boundary. Along the southern section
of the DSF, a minimum long-term rate is determined by dividing the 107-km total
slip that is determined from the offset of pre-DSF geologic features visible both
in the Negev and in Jordan, by the time of earliest faulting, about 20-25 Ma ago.
The youngest rock unit that is offset by the full 107 km are 20-Ma dikes exposed
in Sinai and Arabia (Bartov et al. 1980), providing a minimum long slip rate of
about 5.35 mm/year. The motion post-dates the dikes but the precise initiation
time is unclear yet.
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The consistency of instantaneous GPS rates (Le Beon et al. 2008), Quaternary
rates (Klinger et al. 2000a; Niemi et al. 2001; Le Beon et al. 2010, 2012) and several-
millions-years-long slip rates (Bartov et al. 1980) stands out. However it contrasts
with the large variability of rates determined by paleoseismological studies and archae-
ological markers. For example, offset of a Roman period aqueduct is interpreted to
show 7 mm/a (Meghraoui et al. 2003) whereas offset walls from the late twelfth century
are offset only 2.1 m (Ellenblum et al. 1998). This may be explained either by distrib-
uted deformation unaccounted for by on-fault palaeoseismic investigations or, more
probably, by too short time-windows of observation along some fault segments spans.

The discrepancy between short-term slip rates calculated by adding earthquake
ruptures, and long-term rates is referred to as slip deficit. The long-term rate of
105 km slip in 20-25 Ma is 4-5 mm/year, in agreement with GPS results. Garfunkel
et al. (1981) assigning sinistral slip to most of the historical earthquakes along the
DSF, estimated that the sum of the seismic slip accounts for about two thirds of the
long-term slip. Salamon et al. (1996) focusing only on the twentieth century seismic-
ity found that only 7 % of the long-term slip was accommodated by earthquakes,
leaving 83 % of the slip needed to match the long term slip-rate unexplained.
Hence, such calculations show with little ambiguity that one needs to be able to docu-
ment earthquake time series significantly longer than one earthquake cycle to be able
to know something sensible about slip-rates from paleoseismology (Wechsler et al.
2011). This is particularly evident where the seismic activity might not be homoge-
neous but rather clustered, as it has been suggested for the DSF (Marco et al. 1996).
And yet, the results of the palaecoseismic studies on the main strand of the DSF, which
span enough time, are also in agreement with the geodetic and with the long-term rates
(Ferry et al. 2011; Klinger et al. 2000a; Le Beon et al. 2010; Niemi et al. 2001).

7.2.3 Structural Details, Pull-Aparts, Thrusts

Structurally complex sections along the DSF include overlapping segments, com-
monly associated with pull-apart basins, right jogs where push-up swells occur, and
splay faults of various strike directions. These complexities give rise to a variety of
types of faults.

Thrust faults are mostly common along the Lebanese Restraining Bend (Elias
et al. 2007) and the nearby Palmyride folds range, in Syria (Abou Romieh et al.
2012; Alchalbi et al. 2010; Chaimov and Barazangi 1990). Also the slip rates on
the different thrust faults outcropping in these two areas is still subject to active
discussion, the thrust associated to the LRB seems to be currently the most active
with several large historical earthquakes associated with these structures.

Normal faults are usually associated with the occurrence of pull-apart basins
(Garfunkel 1981), although several normal faults are also visible in the region of
Galilee. Morphological analyses and palaeoseismic trench studies at the margins of
the southern Arava confirm the normal nature of the fault on the west (Amit et al.
2002, 1999; Zilberman et al. 2005) and on the east (Thomas et al. 2007). Holocene
activity of normal faults has been documented at the eastern boundary fault of the
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Hula pull-apart valley (Zilberman et al. 2000). In Tiberias city, on the western shore
of the Sea of Galilee, a normal fault offset early eighth century CE buildings, whereas
late eighth century buildings located on top of the fault are not affected, bracketing an
earthquake during the eighth century (Marco et al. 2003). Late Pleistocene normal fault
zones were documented as active during the deposition of the Lisan Formation, at the
western margins of the Dead Sea Basin (Bartov and Sagy 2004; Marco and Agnon
1995, 2005). On the western bounding fault of the Gulf of Aqaba Shaked et al. (2004,
2012) reconstruct vertical movements by dating buried coral reefs and submerged
archaeological site. These palacoseismic studies confirm the “leaky” nature of the DSF
(Garfunkel 1981) and the paradigm of pull-apart structures (rhomb grabens) along
strike-slip faults.

The structural role and history of activity of apparently “incongruent” faults that
strike NE but show normal displacement instead of reverse motion that is expected
to conform with NW-SE shortening, are not explored yet. These include the Sheikh
Ali Fault at the NE end of the Sea of Galilee, a fault at the NE corner of the Dead Sea,
and the NE corner of the Gulf of Aqaba. The NW-SE extension there is incompatible
with the maximum horizontal compression that is inferred on the basis of analysis
of meso-structures in the region (Eyal and Reches 1983).

7.3 Discussion

On-fault studies have confirmed the location of the main active strands of the DSF.
In many cases, those studies have also brought new information about past earth-
quakes, documented, or not, in historical records. Building on these observations,
we try to interpret the space-time distribution of earthquakes over the last two
millennia (Fig. 7.2) and to suggest that a short-term pattern, periods without significant
seismicity alternating with periods of intense activity, might exist.

Several earthquakes appear to define a seismic sequence rupturing from north to
south. The most conspicuous series starts with the 1114/1115 CE earthquakes on
the East Anatolian Fault and continues with the earthquakes of 1157, 1170, and 1202
CE. If these sequences indeed happen as outlined above, we do not see a similar or
repeat pattern in the past. If this is correct, the famous North Anatolian Fault
sequence of the 20™ century, when a sequence of strong earthquake ruptures began
on the east and propagated westward (Barka 1996; Stein et al. 1997) may not be a
recurring sequence either.

Striking quiescence periods, of the order of several hundreds of years, appear to
indicate imminent ruptures of several section of the fault. The segment between the
Sea of Galilee and the Dead Sea ruptured in 31 BCE, 363 CE, 749 AD, and 1033
CE, followed by a millennium-long quiescence in which only moderate earthquakes
occurred. The northern segment in Syria has been quiet for over 8 centuries
(Meghraoui et al. 2003). Finally, the southern segment of the DSF along the Wadi
Araba, has apparently not ruptured significantly for at least six hundred years. One
might wonder if the Mw7.3 Nuweiba earthquake in 1995 in the Gulf of Agaba
marks the beginning of a new seismic sequence that could rupture a longer section
of the DSF in the near future.



7 Review of On-Fault Palaeoseismic Studies Along the Dead Sea Fault 199

The estimated Late Pleistocene — Holocene slip rates seem to converge between
4 and 5 mm/year. The long-term rates that are based on offset Miocene and Pliocene
geological bodies are in agreement with plate motion rates as determined geodetically.
We therefore regard the variation in palacoseismically-determined rates as indications
of insufficient temporal coverage for some segments. The conversion of modern
seismicity to slip also does not amount neither to the long-term slip nor to the geodetic
slip rate (Garfunkel 2011), most probably because it represents a short time.

7.3.1 Future Targets

More data are needed to examine whether ruptures stop at mapped segment boundaries.
We can at least confirm that several large earthquakes, such as the 1202 rupture, went
through segment boundaries. Smaller earthquakes such as the October 30, 1759 were
probably confined to a single segment but there are no data from the adjacent
segments that could definitely rule out ruptures there as slip partitioning occurs
where parallel or sub-parallel fault segments occur, e.g., the bounding faults of
pull-apart grabens and where there are branches that split off the main fault, e.g., the
Carmel Fault, Serghaya Fault, and Roum Fault.

The rupture history of transverse faults that connect overlapping faults at the
boundaries of pull-apart basins is also unknown. To date none of the palacoseismic
studies addressed faults such as the Amatzyahu Fault that forms the southern
boundary of the Dead Sea. These faults may either act independently or as rupture
terminations of longer strike-slip faults. Comparisons of palaeoseismic records can
reveal which is correct.

The structural role of the extension features at the NE corners of the Gulf of Aqaba,
the Dead Sea, and the Sea of Galilee is unclear yet. Exploring the NE-SW-striking
normal faults that appear in all these locations and express “incongruent” ~NW-SE
extension can shed light on these structures.
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