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In lakes and oceans, links between modern sediment density flow processes and deposits preserved in 
long-term geological records are poorly understood. Consequently, it is unclear whether, and if so how, 
long-term climate changes affect the magnitude/frequency of sediment density flows. One approach to 
answering this question is to analyze a comprehensive geological record that comprises deposits that 
can be reliably linked to modern sediment flow processes. To address this question, we investigated the 
unique ICDP Core 5017-1 from the Dead Sea (the largest and deepest hypersaline lake on the Earth) 
depocenter covering MIS 7-1. Based on an understanding of modern sediment density flow processes in 
the lake, we link homogeneous muds in the core to overflows (surface flood plumes, ρflow<ρwater), and 
link graded turbidites and debrites to underflows (ρflow>ρwater). Our dataset reveals (1) overflows are 
more prominent during interglacials, while underflows are more prominent during glacials; (2) orbital-
scale climate changes affected the flow magnitude/frequency via changing salinity and density profile of 
lake brine, lake-level, and source materials.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Modern field measurements, laboratory experiments, and the 
geological record demonstrate that subaqueous sediment den-
sity flows (ρflow < ρwater, overflows or hypopycnal flows; ρflow >

ρwater, underflows or hyperpycnal flows, including turbidity cur-
rents and debris flows) are major processes for transporting ter-
restrial sediments and organic carbon from rivers, coasts or con-
tinental shelves into deep basins (Sturm and Matter, 1978; Van 
Rooij, 2004; Lamb et al., 2010; Talling et al., 2012; Pope et al., 
2017; de Leeuw et al., 2018; Zhang et al., 2018; Liu et al., 2020). It 
has been shown that over glacial cycles the physical and chemical 
properties of water bodies, water levels, and the catchment areas 
and sediment supply can vary greatly (Thunell and Williams, 1989; 
Lisiecki and Raymo, 2005; Grant et al., 2012; Torfstein et al., 2013; 
Lazar et al., 2014). This raises the question of whether long-term 
climate changes can affect the magnitude/frequency of sediment 
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density flows entering a specific water body, and if so what con-
trols the variability.

One possible approach to explore these questions is by investi-
gating a comprehensive geological record from past glacial cycles 
from a specific water body. However, the links between modern 
sediment density flows and resulting deposits in long-term geo-
logical records are poorly understood and have rarely been inves-
tigated so far (Piper and Savoye, 1993; Maier et al., 2019). This 
is because it is rare that both comprehensive long-term geologi-
cal records (with ages well-constrained and sediment facies inten-
sively investigated) and modern flow monitoring data are available 
for a specific water body.

The Dead Sea is the largest and deepest hypersaline lake 
(ρwater: 1240 kg/m3) on Earth. Floods and turbid water have been 
monitored here (Levy, 1981; Stiller et al., 1997; Herut et al., 2002; 
Nehorai et al., 2013), meaning these and related subaqueous sed-
iment density flow processes are relatively well-understood. In 
addition, paleoenvironments in the region have been intensively 
investigated (Bar-Matthews et al., 2003; Torfstein et al., 2013; 
Miebach et al., 2019). ICDP (International Continental Drilling Pro-
gram) Core 5017-1 from the hypersaline lake depocenter provides 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. Location of the ICDP Core 5017-1 and modern sediment density flow processes in the Dead Sea. a: Tectonic setting of the Dead Sea Basin (Bartov et al., 2006; Ben-
Avraham et al., 2008). b: Dead Sea tributaries (Greenbaum et al., 2006). c: Flood plume observed in the western lakeshore (Nahal Arugot; Fig. 1b) (Belmaker et al., 2019). d: 
Lake surface reflectance (remote sensing) map of the lake following flash floods (adapted from Nehorai et al., 2013). e: Schematic model showing flow processes that may 
result from floods in the salty lake.
a geological record covering marine oxygen isotope stage 7-1 (MIS 
7-1; 220-0 ka) (Torfstein et al., 2015; Goldstein et al., 2020). The 
combination of the well-constrained regional paleoenvironment 
around the lake and the completeness of ICDP Core 5017-1 make 
this record ideal for: (1) understanding the links between modern 
sediment density flow processes and ancient deposits; (2) detect-
ing whether the magnitude and/or frequency of the flows are sta-
ble or not through glacial cycles; and (3) if not, revealing how the 
changing environment has affected the magnitude/frequency of the 
flows.

2. Geological setting and hypothesis

2.1. Geography of the Dead Sea

The Dead Sea Basin, the largest pull-apart basin along the Dead 
Sea Transform (Fig. 1a), has been occupied by a sequence of ter-
minal water bodies during the Quaternary such as the Dead Sea 
(MIS 1) and Lake Lisan (MIS 4-2) (Stein, 2001). Lake Lisan, which 
existed during the Last Glacial Maximum, is the largest known la-
custrine system (Fig. 1a), had a lake level at 180 m below mean 
sea-level (−180 m) and a surface area of ∼3200 km2 (Hall, 1997; 
Torfstein et al., 2013). The Dead Sea currently has a water level at 
−435 m and a surface area of ∼600 km2.

Climate zones in the drainage area range from Mediterranean to 
hyperarid, and fluctuate dramatically through glacial cycles (Bar-
Matthews et al., 2003; Miebach et al., 2019). The region is char-
acterized by a relatively dry climate during the Holocene and a 
humid climate during the Last Glacial. Consequently, the Holocene 
Dead Sea is at low-stand with higher salinity in contrast to high-
stand conditions with lower salinity during the Last Glacial (Torf-
stein et al., 2013; Lazar et al., 2014). The current Dead Sea water 
2

has a salinity of 340 � (240 kg/m3) (∼9 times greater than sea-
water) and a density of 1240 kg/m3 (Arnon et al., 2019). By com-
parison, the salinity and density of central-southern Lake Lisan wa-
ter are estimated to be 70-130� (50-100 kg/m3) and 1050-1100 
kg/m3, respectively (Begin et al., 2004; Lazar et al., 2014). Ther-
mohaline stratification is observed in the Dead Sea during summer 
but disappears during winter (Arnon et al., 2019).

2.2. Flash flood and surface plume monitoring

Flash floods play a key role in sediment delivery and Dead Sea 
basin filling. Due to the sparse vegetative cover in the lake catch-
ment, suspended sediment concentrations of flash floods in the 
region are extremely high (Cohen and Laronne, 2005). Suspended 
sediment concentrations of floods that occurred during the rainy 
season (winter) of 1997 and 2000 were measured near to river 
mouth of the Nahal Qanna’im-Rahaf (Fig. 1b). Among the seven 
measurements, one flood had a maximum sediment concentration 
of 270 kg/m3; another three floods had maximum sediment con-
centrations >50 kg/m3 (Cohen and Laronne, 2005).

Flood plumes are common in the lake during the rainy sea-
son and can reach the lake center (Fig. 1c-d). Surface water mea-
surements near to the river mouths of Jordan River and the Na-
hal Qidron (Fig. 1b) after floods have revealed suspended particle 
concentrations decrease with distance offshore (Levy, 1981; Herut 
et al., 2002). Surface reflectance mapping of the entire Dead Sea 
through remote sensing applications following floods revealed that 
sediment concentrations are typically high along the shore and de-
crease with distance from shore (Fig. 1d) (Nehorai et al., 2013).
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Fig. 2. Basic sediment facies in the ICDP Core 5017-1. a: Halite. b-c: Gypsum. d-f: AAD (Aragonite-detritus laminae). g-h: Earthquake-deformed AAD (Lu et al., 2020b). i-n, 
Seismogenic turbidites (Lu et al., 2021a), and seismogenic slump and chaotic deposits (Lu et al., 2017b). Depth of core intervals: (a), 24715-24755 cm; (b), 32751-32760 cm; 
(c), 33058-33086 cm; (d), 10578-10588 cm; (e), 11004.5-11009.5 cm; (f), 34024-34043 cm; (g), 33902-33924 cm; (h), 37515-37530 cm. (i), 14488-14499 cm; (j), 33499.5-
33505.0 cm; (k), 11014-11019; (l), 10914.5-10920 cm; (m), 12710-12744; (n), 15353-15387 cm. The vertical scale bar in (a) is valid for (b-n). All the core images have an 
aspect ratio of 1:1.
2.3. ICDP Core 5017-1 and previous lithofacies studies

The 457 m-long ICDP Core 5017-1 was drilled from the Dead 
Sea depocenter (31◦30′29′′ N, 35◦28′16′′ E) under a water depth 
of 297.5 m (lake level: −424 m) during 2010-2011. A hydraulic 
piston coring tool was used to recover the upper 30 meters of the 
core, while the deeper sections were cored by using the rotating 
extended-nose bit coring system (Stein et al., 2011). The recov-
ery rate is about 90% (Neugebauer et al., 2014). The sedimentary 
sequence covers the past 220 kyr and its age model is built on 
a combination of 14C (Kitagawa et al., 2017) and U-Th (Torfstein 
et al., 2015) dating, and δ18O stratigraphy correlation (Goldstein 
et al., 2020). The recovered sequence comprises seven basic facies 
which can be classified into four groups, (I) evaporites and related 
facies: halite, gypsum, and aragonite-detritus laminae (including in 
situ deformed ones) (Fig. 2), (II) slump facies (Fig. 2), (III) debrite 
facies (Figs. 2, 3) and graded turbidite facies (Figs. 2, 3), and (IV) 
homogeneous mud (Fig. 3).

Halite and gypsum deposits in the core imply a negative wa-
ter balance, increasing salinity, and thus indicating a relatively arid 
climate (Torfstein et al., 2015; Kiro et al., 2016). The aragonite-
detritus laminae couplet reflects the input of runoff freshwater and 
a relatively humid climate (Lu et al., 2017a, 2020a; Ben Dor et 
al., 2018). Furthermore, units of in situ deformed aragonite-detritus 
3

laminae indicate seismic activity along the central Dead Sea Fault 
(Lu et al., 2020b).

Slumps are characterized by intensely folded and fragmented 
aragonite-detritus laminae without gravel or coarse sands (Fig. 2m). 
The debrites comprise two sub-types (I) cohesive muddy debrites 
(Fig. 2n), and (II) poorly-cohesive clean sandy debrites (Fig. 3d-
g). Type I debrites are muds that contain gravel, intraclasts, and 
coarse sands that show poorly-sorted chaotic structures, which 
were previously named chaotic deposits (Lu et al., 2017a). Slumps 
and Type I debrites (chaotic deposits) have been identified as 
seismically-triggered deposits by temporal correlation with previ-
ously established earthquake records on the Dead Sea Margin (Lu 
et al., 2017a).

Homogeneous mud facies are characterized by massive clay-fine 
silts without aragonite lamina (pelagic sediments) or particle grad-
ing. Thousands of graded sandy and muddy turbidites are observed 
in the core. Some of them are overlying in situ seismites without 
intervening background sediments, and some are temporally corre-
lated with historic earthquakes, and thus identified as seismogenic 
turbidites (Lu et al., 2021a). However, for the rest of the turbidites, 
all homogeneous muds, and clean sandy debrites, the trigger(s) is 
unclear. Here, we focus on these three types of deposits with un-
clear triggers, analyze their thickness and frequency, and compare 
them to climate proxies.
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Fig. 3. Typical homogeneous mud, graded turbidite, and debrite with triggers unclear in the ICDP Core 5017-1. a-c, Homogeneous muds and graded turbidites. d-g, Debrites 
(See Fig. S1 for more examples). h-l: Core images showing different transitions between graded turbidite and upper and lower sediment layers in interglacial (h-j) and glacial 
(k, l). Depth of core intervals: (a), 8941-8975 cm; (b), 13940-13953 cm; (c), 17162.5-17180.5 cm; (d), 7863-7869.5 cm; (e), 16821.5-16827.5 cm; (f), 16917-16922 cm; (g), 
17205.5-17213 cm; (h), 2097.5-2107.5 cm; (i), 2620-2641 cm; (j) 1391-1425 cm; (k), 11369-11382 cm; (l), 12941-12959 cm. The vertical scale bar in (a) is valid for (b-l). All 
the core images have an aspect ratio of 1:1.
2.4. Hypothesis

Climate in the Dead Sea area has changed substantially over 
glacial cycles. The lake was in a low-stand phase (<−380 m) 
with higher salinity (∼300� or ∼200 kg/m3) and water den-
sity (∼1200 kg/m3) during the Holocene. In contrast, it was in 
a high-stand condition (>-300 m), with lower salinity (70-130�
or 50-100 kg/m3) and water density (1050-1100 kg/m3) during 
the Last Glacial (Begin et al., 2004; Lazar et al., 2014; Torfstein, 
2019). In oceanic environments (salinity: ∼35� or 35 kg/m3, 
ρseawater: ∼1025 kg/m3), sediment concentrations of ∼40 kg/m3

are required for river plumes to trigger turbidity currents at the 
river mouth directly (hyperpycnal plunging) (Mulder and Syvitski, 
1995). Based on the threshold of 40 kg/m3 assumed for oceanic 
environments, the threshold of sediment concentration of ∼200 
kg/m3 and ∼50-100 kg/m3 are inferred for the Holocene and Last 
Glacial, respectively in the Dead Sea. It is therefore expected that 
overflows (ρflow < ρwater) are more prominent during interglacials 
than in glacials, while underflows (ρflow > ρwater) are more promi-
nent during glacials. This paper will test this hypothesis by an-
alyzing overflow and underflow sedimentation preserved in the 
high-resolution ICDP Core 5017-1 from the Dead Sea depocenter.

3. Methods

3.1. Magnetic susceptibility and XRF scanning

A Multi-Sensor Core Logger with a Bartington MS2E sensor was 
used for magnetic susceptibility logging at 1 mm resolution. Ele-
4

ment data at 1 mm resolution was obtained by ITRAX XRF scan-
ning (equipped with a line-scan camera at GFZ Potsdam) using a 
Chromium tube at 30 kV voltage, 30 mA current, and exposure 
time of 1 s (Neugebauer et al., 2014). The high-resolution core im-
ages were also obtained during the non-destructive analyses. The 
abundance of titanium (Ti) and calcium (Ca) in the core have been 
used as proxies for clastic input and carbonate and gypsum, re-
spectively (Lu et al., 2021a, 2021b). Here, we also use trends in 
these proxies to investigate sediment facies. Chloride (Cl) abun-
dance was also used to indicate the relative variation of salinity 
since it can be linked to variability in halite content at orbital 
scales in the Dead Sea (Lazar et al., 2014). To counter the effects of 
grain size, water content, etc. and get a more reliable geochemical 
picture, we apply the method of centered-log ratios (CLR) to cal-
ibrate the intensity of Ti and Ca. The reliably measured elements 
of K, Ca, Ti, Fe, Cl, Ar, Br, and Sr are selected for geomean calcu-
lation and centered-log ratios transformation (Weltje et al., 2015). 
The method is not applicable to core intervals of halite and gyp-
sum since the content of Ti is around 0 (Fig. 2a-c).

3.2. Grain size

Several representative intervals of homogeneous muds and 
graded turbidites from the core were chosen for grain size mea-
surement at 1 cm intervals. The total organic carbon content of ho-
mogeneous mud layers and turbidites from the ICDP Core 5017-1 
is generally between 0.3% and 1% (Neugebauer et al., 2016). Sam-
ples are pre-treated with H2O2 to remove organic matter (Konert 
and Vandenberghe, 1997; Lu et al., 2018), but without dissolu-
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tion of carbonate minerals because remobilized calcite particles 
are common in the lake. The measurements were taken by using a 
Beckman-Coulter LS 230 laser particle sizer in the Environmental 
Sedimentology Lab at the University of Haifa.

3.3. Age calculation for sediment layers

We have noted that normally used event-free age model-
ing method is not feasible. This is because meter-thick energetic 
slumps and debrites are common in ICDP Core 5017-1. It is im-
possible to estimate the amount of eroded originally accumulated 
sediments at the drilling site (Lu et al., 2017a, 2021a). Thus, we 
apply linear interpolation to the age calculation of sediment layers 
between dated horizons. By using 14C (Kitagawa et al., 2017), U-Th 
(Torfstein et al., 2015), and δ18O stratigraphy correlation (Goldstein 
et al., 2020) methods, more than 50 dated horizons in the ICDP 
Core 5017-1 are available for age interpolation during the past 220 
kyrs. The dated horizons have been previously summarized in Lu 
et al. (2020b) (Table S1).

4. Results

4.1. Characteristics of homogeneous muds, graded turbidites, and 
debrites (triggers unclear)

The different deposits are identified through their grain size, 
magnetic susceptibility, and chemical features. The units of ho-
mogeneous mud are composed of clay-fine silts (mean grain size 
<16 μm) without graded bedding. They show only relatively small 
variations in grain size, magnetic susceptibility, Ti and Ca (Fig. 3a, 
h, i). In contrast, the lower parts of graded turbidites are made 
up of coarse silts to fine sands and exhibit upward-fining particle 
sizes, increasing magnetic susceptibility and Ti, and large variations 
in Ca from bottom to top (Fig. 3a-c).

Thick intervals of homogeneous mud that exhibit sharp changes 
in magnetic susceptibility, Ti and Ca were interpreted as multiple 
sediment layers deposited in short succession, i.e. there was insuf-
ficient time between floods to deposit an identifiable thickness of 
the pelagic sediments (Fig. 4h-i). Low content of Ti and Ca, and 
small values in magnetic susceptibility characterize debrites that 
are composed of coarse sands and are predominantly ungraded 
(Fig. 3d-g). In total, we identify 3241 units of homogeneous mud, 
1761 graded turbidites, and 39 debrites both with unclear triggers 
in the 457 m-long core.

4.2. Separating the unit of homogeneous mud from turbidite tail (TE)

During interglacials, some graded turbidites are overlaid by 
thick homogeneous mud (Fig. 3a, i, j; Fig. 4). Typical units of ho-
mogeneous mud in the ICDP Core 5017-1 have only minor varia-
tions in grain size, magnetic susceptibility, Ti and Ca. In contrast, a 
gradual decrease or increase in grain size, magnetic susceptibility, 
Ti and Ca from graded bedding (TA-TD) to tail (TE) of turbidites are 
expected. These key features are used to separate the unit of ho-
mogeneous mud from turbidite tail (Fig. 4a, c-d, h-i). In addition, 
according to the classical Bouma sequence (Bouma, 1962) and the 
revised Bouma sequence of Talling et al. (2012), the ratio between 
the thickness of turbidite tail (TE) and graded bedding (TA-TD) is 
<1. In our Dead Sea case study, the typical units of overlying ho-
mogeneous mud are several times thicker than the graded bedding 
(TA-TD) and turbidite tail (TE) of underlying turbidites (Fig. 4a, c-d, 
h-i), supporting our approach. We estimate the potential uncer-
tainties in the thickness measurement for turbidite tails (TE) are of 
minor importance when compared with the thickness of overlying 
thick units of homogeneous mud.
5

4.3. Records of homogeneous mud and graded turbidite compared to 
climate proxies

The Dead Sea 220 kyr-long record of sediment flow deposits 
comprises more than 5, 000 layers of homogeneous mud, graded 
turbidite, and debrites with unclear triggers. This is probably the 
largest dataset of sediment flow deposits that have ever been 
reported. The record of homogeneous mud and graded turbidite 
cover the MIS 7c-1, i.e. two glacial cycles (Fig. 5). The extremely 
long time span of record enables us to compare the return time 
and thickness of homogeneous mud and turbidite layers to orbital-
scale climate changes (Fig. 5). The record of debrites was not com-
pared to climate proxies due to a small number (N=39) of deposits 
layers.

The thicknesses of homogeneous muds (layers) range between 
0.1 and 188 cm. Homogeneous muds are frequent (25-30 lay-
ers/kyr; Mean: 27) and thick (3-10 cm/layer; Mean: 5.9) during 
interglacials, and less frequent (8-12 layers/kyr; Mean: 10) and 
thinner (2-4 cm/layer; Mean: 3.3) during glacials (Fig. 5d-e; Table 
S2; Text S1). The thicknesses of graded turbidites range from 0.1 
to 109 cm. Graded turbidites are frequent (7-14 layers/kyr; Mean: 
10) but thin (2-4 cm/layer; Mean: 3.0) during interglacials, and 
less frequent (4-12 layers/kyr; Mean: 8) but thicker (3-5 cm/layer; 
Mean: 3.4) during glacials (Fig. 5f-g; Table S2; Text S1).

At orbital scales, over MIS 7-1, the periods with thick and 
frequent homogeneous muds correlate to interglacial low-stand 
phases with high salinity (Fig. 5a-e) and a higher sedimentation 
rate (Fig. S2). The periods with thicker graded turbidites correlate 
to glacial high-stand conditions with low salinity (Fig. 5f, g). More-
over, the variations in return time and thickness of homogeneous 
mud layer are generally following the change in the global benthic 
foraminiferal δ18O stack and the Dead Sea salinity (Fig. 5a, b, d, e). 
The homogeneous mud layers are thicker and more frequent when 
the climate was warmer and water salinity was higher.

4.4. Thickness distribution of seven facies during individual glacials and 
interglacials

Halite units are mainly formed during interglacials, while gyp-
sum and aragonite-detritus laminae are mainly deposited during 
glacials (Fig. 6). The fraction of homogeneous mud during inter-
glacials (MIS7a-c: 49%, MIS5e: 45%, and MIS1: 52%) is much higher 
than during glacials (MIS6: 23% and MIS2-5d: 26%). In addition, the 
fraction of turbidites and debrites during glacials (MIS6: 44% and 
MIS2-5d: 24%) is much higher than during interglacials (MIS7a-c: 
23%, MIS5e: 12%, and MIS1: 5%). Furthermore, during individual 
interglacials, the thickness fraction of homogeneous mud is one to 
ten times higher than turbidites and debrites (MIS7a-c: 49% vs. 
23%, MIS5e: 45% vs. 12%, and MIS1: 52% vs. 5%). In contrast, dur-
ing individual glacials, the fraction of turbidites and debrites is one 
to two times as much as homogeneous mud (MIS6: 44% vs. 23% 
and MIS2-5d: 24% vs. 26%).

5. Discussion

5.1. Linking deposits in geological record to sediment density flows

Field in situ measuring in the Dead Sea reveals that flash flood-
generated overflows can reach the lake center, and sediment con-
centrations of 0.05-0.3 kg/m3 were measured at 5 km offshore 
(Fig. 1b) (Nehorai et al., 2013). Moreover, sediment traps deployed 
in the lake center captured sediment accumulation rates of 17, 12, 
and 11 g/m2/day at water depths of 70, 120, and 170 m following 
floods that occurred during February 9-March 8 1983, respectively 
(Fig. 1b, e) (Stiller et al., 1997). According to Stokes’ Law, more 
time is needed for particles settling for a deeper water depth. The 
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Fig. 4. Core images showing turbidite tails, different transitions between turbidite and upper and lower sediment layers, and multiple sediment layers in single thick interval 
of homogeneous mud. Core depth: (a), 21900-21980 cm; (b), 17515-17530 cm; (c), 18035-18061 cm; (d), 26680-26713 cm; (e), 32890-32970 cm; (f), 35828-35860 cm; (g), 
36300-36345 cm; (h), 39994-40074 cm; (i), 42602-42682 cm. The vertical scale bar in (a) is valid for (b-i). All the core images have an aspect ratio of 1:1.
6
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Fig. 5. Records of homogeneous (homo.) mud and graded turbidite (triggers unclear) from the ICDP Core 5017-1 compared to global and regional climate proxies. a, Global 
benthic foraminiferal δ18O stack (Lisiecki and Raymo, 2005). b, Dead Sea lake-level (Bookman et al., 2006; Torfstein et al., 2013; Torfstein, 2019). c, Chloride (Cl) was used 
as a proxy of salinity (Lazar et al., 2014). d-e, Return time and thickness of homogeneous mud. f-g, Return time and thickness of graded turbidite. h-k, Return time and 
thickness distribution of homogeneous mud and graded turbidite during interglacials (h, j) and glacials (i, k).
decrease in sediment accumulation from 70 to 170 m water depth 
in a fixed time period indicates vertical settling of suspended clay-
fine silts, which supports the interpretation that floods generate 
sediment-laden overflows that can reach the center of the hyper-
saline lake. Flood-related surface plumes thus can represent a ma-
jor process for delivering clay and fine silts to the lake depocenter. 
We therefore link the homogenous muds in the ICDP Core 5017-
1 to flood-generated overflows. Flood-related sediment transport 
via interflows is considered negligible because the Dead Sea is not 
7

stratified during winter (Arnon et al., 2019) when most floods oc-
cur in the catchment.

Previous studies have revealed that turbidity currents can be 
generated via three basic mechanisms, (a) plume settling (Lintern 
et al., 2016; Hage et al., 2019), (b) hyperpycnal river plunging 
(Mulder and Syvitski, 1995; Heerema et al., 2022), and (c) sub-
aqueous slope failures (Piper and Savoye, 1993; Mulder et al., 
1997). Laboratory experiments have suggested that turbidity cur-
rents can be triggered by surface plume settling (convective fin-
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Fig. 6. Thickness distribution of seven facies (regardless of triggers) through glacial cycles and mechanisms for flow processes. a-b, Thickness distribution of facies during 
the last glacial cycle (Table 1). c, Flood plume on top of the dense Dead Sea brine. d-e, Schematic model illustrating mechanisms for flow processes under interglacial (d) 
and glacial (e) conditions. f: Lake-level (Bookman et al., 2006; Torfstein et al., 2013). g: δ18Ospeleo record from the Soreq Cave (Fig. 1a) (Grant et al., 2012). h-j, Thickness 
distribution of facies over MIS 7-5e.
gering) when sediment concentrations reach 1 kg/m3 (Parsons et 
al., 2001). This is significantly lower than the concentration re-
quired for hyperpycnal flows to occur (>40 kg/m3 when ρseawater: 
∼1025 kg/m3) (Mulder and Syvitski, 1995). However, other direct 
monitoring studies at a fjord-head delta in British Columbia, have 
shown that turbidity currents can be triggered by plume settling 
where concentrations are as low as 0.07 kg/m3 (Hage et al., 2019).

In the Dead Sea, sediment concentrations of 0.6-3.9 kg/m3 were 
measured for surface plumes at 50 m offshore (water depth: 9 
m), following more intense floods feeding through Nahal Aru-
got (Fig. 1b) during February 29 and March 3, 2012 (Nehorai 
et al., 2013). Such concentration levels (>0.6 kg/m3) are esti-
mated to be enough to generate turbidity currents in the Dead 
Sea (ρbrine: ∼1200 kg/m3) via the plume settling mechanism 
(oceanic: ρseawater: ∼1025 kg/m3, concentration ≥0.07 kg/m3). 
Much higher sediment concentrations for the same floods are ex-
pected at the river mouth. In addition, suspended sediment con-
centrations of 50-270 kg/m3 have been previously measured near 
the river mouth of Nahal Rahaf-Qanna’im (Fig. 1b) (Cohen and 
Laronne, 2005). Such high sediment concentrations favor the trig-
gering of turbidity currents via the hyperpycnal plunging mecha-
nism. Hundreds of seismogenic turbidites resulting from subaque-
ous slope failures have been identified in the ICDP Core 5017-1 
(Lu et al., 2021a). Debrites which containing gravel and sands in 
the core result from debris flows that relate to small delta failures 
which may be triggered by earthquake shaking (Lu et al., 2017a) or 
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other mechanisms. We thus link the graded turbidites and debrites 
in the core to underflows.

5.2. Testing hypothesis

The ICDP Core 5017-1 was drilled from the lake center and 
depocenter which receives sediments arriving from the shores sur-
rounding the lake. The thickness of flow deposits preserved in 
such a core generally indicates the relative duration and magnitude 
of sediment flows, and thus their total capacity for transporting 
sediments (Kämpf et al., 2015). The prominence of thicker, more 
frequent homogenous muds which make up a high proportion 
of clastic deposits during interglacials implies that overflows are 
more prominent during interglacials than in glacials. This is likely 
a consequence of the greater density of the lake brine during in-
terglacials preventing floodwater from plunging and reducing the 
rate of suspended particle settling. Furthermore, the upper slopes 
of high-stand lakes during glacials which accumulated unconsoli-
dated aragonite-detritus laminae, were exposed to erosion during 
interglacial low-stands. These fine-grained sediments are less likely 
to develop into underflows, but rather tend to support the devel-
opment of overflows (surface plumes) during interglacials.

The greater proportion of turbidites and debrites during glacials 
suggests that underflows and the triggering of sediment gravity 
flows are more likely. The less-dense lake brine during glacials 
is more favorable for developing turbidity currents via hyper-
pycnal plunging and plume settling. In addition, the high-stand 
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Table 1
Thickness distribution of seven basic facies (regardless of triggers) through glacial cycles.

MIS stage Homogeneous mud Turbidite Debrite Slump AAD∗ Gypsum Halite Total

MIS 1 51.8% 4.7% 0.1% 0.3% 10.4% 0.4% 30.4% 100%
MIS 2-5d 26.0% 18.1% 5.4% 17.4% 29.5% 0.6% 3.0% 100%
MIS 5e 44.8% 10.7% 1.0% 1.7% 4.3% 0.5% 37.5% 100%
MIS 6 23.5% 37.1% 6.7% 4.8% 26.0% 1.4% 0.1% 100%
MIS 7a-c 49.0% 19.5% 3.8% 3.1% 9.8% 0.7% 14.2% 100%

Note: *AAD, aragonite-detritus laminae; including in situ deformed ones.
glacial lakes submerged steeper marginal slopes and preceding in-
terglacial fluvial fans (Fig. 6d-e), making the triggering of slope 
failures that can transform downslope into debris flows and tur-
bidity currents more likely (Lu et al., 2021b).

The deposit thickness comparison also suggests that the relative 
importance for sediment transport volumes varies between glacials 
and interglacials. During interglacials, homogeneous muds are >2 
times thicker than turbidites and debrites but represent <50% of 
sedimentation during glacials (Fig. 6; Table 1). This also suggests 
that overflows dominate sediment transport to the basin depocen-
ter during interglacials but this is reversed during glacials. There-
fore, the long sediment core dataset confirmed our hypothesis.

5.3. Implications for mechanisms of turbidite generating over glacial 
cycles

During glacials, 60-90% of turbidites are graded sandy tur-
bidites. The contact between such units and upper sediment layers 
is usually sharp rather than gradual (Fig. 3k, l; Fig. 4). These units 
always have distinct erosional bases. However, during interglacials, 
50-70% of turbidites are graded muddy turbidites. These units are 
usually overlaid by thick homogeneous mud with gradual transi-
tions (Fig. 3i, j; Fig. 4). Such units usually have less distinct erosion 
bases.

We infer that the hyperpycnal plunging mechanism is more 
dominant for generating turbidity currents during glacials when 
water salinity and density are lower (ρwater: 1050-1100 kg/m3). 
During these time periods, sand particles (>100 μm), which 
formed the lower parts of graded sandy turbidites, are more likely 
to be carried directly by hyperpycnal river plunging from the river 
mouth rather than by surface flood plumes. The role of the plume 
settling mechanism is thought to be minor in forming sand-rich 
turbidity currents during glacials.

In contrast, during interglacials when water salinity and den-
sity are higher (ρwater: ∼1200 kg/m3), medium to coarse silts 
(<50 μm) that formed the lower parts of graded muddy turbidites 
can be carried by offshore surface plumes. This condition is fa-
vorable for developing turbidity currents via the plume settling 
mechanism. At the same time, the greater lake brine salinity and 
density could prevent floodwater from plunging and weakening 
the strength of hyperpycnal flows. Larger particle size, higher sedi-
ment concentration, and density are required to generate turbidity 
currents via the hyperpycnal plunging mechanism. The plume set-
tling mechanism is inferred to be more dominant for generating 
turbidity currents during the interglacials. Consequently, more fre-
quent but thinner turbidites are recorded during interglacials in 
the ICDP Core 5017-1 (Fig. 5f-g).

6. Wider implications

A better understanding of the linkages between modern sed-
imentary processes, sedimentary dynamics, and the stratigraphic 
record is essential for subaqueous paleoseismology and paleocli-
mate research. Our study bridges the gap between our understand-
ing of modern sedimentary processes and the stratigraphic record 
9

in a hypersaline lake. Dead Sea is a hypersaline lake in a tec-
tonically active region (Dead Sea Rift Zone), as a result, the lake 
deposits were controlled by both climate change and geodynamic 
activity. It therefore has the potential to inform our wider un-
derstanding of turbidite paleoseismology as well as paleoclimatic 
reconstructions in tectonically active subaqueous environments.

6.1. Implications for turbidite paleoseismology

Turbidites from lake and ocean sediments located in tectoni-
cally active regions have been widely used for geohazard assess-
ments (Goldfinger et al., 2007; Polonia et al., 2013; Moernaut et 
al., 2014; Hubert-Ferrari et al., 2020). The use of turbidites as a 
paleoearthquake indicator normally requires a demonstration that 
seismicity, rather than other factors (e.g., floods), is the most plau-
sible trigger. However, it is common that prehistoric turbidites are 
used as a proxy without reliable demonstration that an earthquake 
is the most plausible trigger. Our present study shows that even in 
an active graben like the Dead Sea, the occurrence of turbidites in 
the sedimentary archive within a deep central depocenter is mod-
ulated by climate change and climate-driven factors (e.g., water 
level, water density).

Similar climate-driven cycles of turbidite deposition from tec-
tonically active regions have also been found in marine settings. 
Studies from the Peru-Chile Trench (South-Chilean active margin) 
have identified reduced frequencies of turbidite deposition dur-
ing interglacials (i.e. MIS 1 and MIS 5). The reduced frequency of 
turbidites, despite the seismically active nature of the region, is 
attributed to reduced export of terrestrial sediment to the conti-
nental slope as a consequence of interglacial sea level highs and 
onshore aridity (Blumberg et al., 2008; Bernhardt et al., 2015).

Nonetheless, long-term Turbidite paleoseismology records re-
main rare. Numerous studies have been carried out on marine 
(Goldfinger et al., 2007; Polonia et al., 2013; Howarth et al., 2021) 
and lacustrine (Moernaut et al., 2014; Ghazoui et al., 2019; Hubert-
Ferrari et al., 2020) sediments. However, many of these do not ex-
tend beyond the Holocene. In many cases, the impacts of climate-
driven changes to lake inputs (sediment delivery, water level etc.) 
on long-term turbidite frequency and therefore the sedimentation 
regime in which earthquakes are triggering slope failures remains 
unclear. Establishing the long-term record of changes of sediment 
dynamic processes therefore appears important when considering 
paleoseismicity records as this may impact the apparent frequency 
of turbidity currents triggered by large earthquakes. This under-
lines the value of comprehensive modern sediment flow monitor-
ing to understand the role of different flow types in contrasting 
lacustrine and marine environments (Thunell et al., 1999; Hsu et 
al., 2008; Arai et al., 2013; Henry et al., 2021).

6.2. Implications for paleoclimate research

This study shows that variations in thickness and return period 
for homogeneous mud layers generally follow changes in the global 
benthic foraminiferal δ18O stack during the past 220 kyrs (Fig. 5d, 
e). Homogeneous mud layers occur more frequently and are thicker 
when climate is warmer. They are less frequent and thinner when 
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climate is colder. This implies that the thickness and/or return pe-
riod of homogeneous mud layers could be a promising proxy for 
paleoclimate reconstruction in hypersaline lake and ocean envi-
ronments. Indeed, changes in the number and thickness of these 
deposits have the potential to inform our understanding of changes 
to processes which control sediment delivery to these environ-
ments as well as the nature of sedimentation.

In tectonically active subaqueous environments, like the Dead 
Sea Graben, turbidites and debrites that result from underflow 
deposits can be triggered by both climate-induced environmental 
changes and geodynamic activity (e.g., earthquakes and volcanic 
activity). Indeed, turbidites generated by different triggers have 
been reported in sedimentary archives which have been used for 
long-term climatic reconstructions, such as Lake Baikal (Russia) 
(Nelson et al., 1999), Lake Van (Turkey) (Stockhecke et al., 2014), 
and the Gulf of Corinth (De Gelder et al., 2022). In such environ-
ments, the overall thickness fraction of turbidites and debrites can 
be up to 10% of the entire drilled sequence. Paleoclimate recon-
structions in these environments would therefore benefit from the 
removal of these instantaneous event deposits from the sediment 
sequence.

7. Conclusions

We present a large dataset of sediment flow deposits (N 
>5,000) from the 457 m-long and 220 kyr ICDP Core 5017-1 
from the hypersaline Dead Sea depocenter. Homogeneous muds 
from the core were linked to overflows, and graded turbidites and 
debrites were linked to underflows. Orbital-scale climate change 
has affected the magnitude/frequency of sediment density flows 
via changing salinity and density profile of lake water, lake level, 
submerged area, and source materials. As a result, overflows are 
more prominent during interglacials, while underflows are more 
prominent during glacials. In addition, regarding the generating of 
turbidity currents, the hyperpycnal plunging mechanism is more 
dominant during glacials, while the plume settling mechanism is 
more dominant during interglacials.

The present research bridges the gap between our understand-
ing of modern sediment density flow processes and deposits pre-
served in a long-term geological record in the Dead Sea, a tecton-
ically active subaqueous environment (Dead Sea rift zone). It has 
wider implications for turbidite paleoseismology and implies that 
in some cases to develop prehistoric turbidites as a reliable pale-
oearthquake indicator, comprehensive modern sediment flow mon-
itoring is essential. It also has wider implications for paleoclimate 
research in a tectonically active subaqueous environment. Firstly, 
the thickness and/or return period of homogeneous mud layers 
in hypersaline lake and ocean environments could be a promising 
proxy for paleoclimate. Secondly, a sedimentary archive is filtered 
to remove significant instantaneous event deposits such as thick 
turbidites and debrites could help paleoclimatologists to better re-
construct paleoclimate change.
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