Improving the method of low-temperature anisotropy of magnetic susceptibility (LT-AMS) measurements in air

R. Issachar1,2, T. Levi2, V. Lyakhovsky2, S. Marco1, and R. Weinberger2,3

1Department of Geosciences, Tel Aviv University, Tel Aviv, Israel, 2Geological Survey of Israel, Jerusalem, Israel, 3Department of Geological and Environmental Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel

Abstract
This study examines the limitations of the method of low-temperature anisotropy of magnetic susceptibility (LT-AMS) measurements in air and presents technical improvements that significantly reduce the instrumental drift and measurement errors. We analyzed the temperature profile of porous chalk core after cooling in liquid nitrogen and found that the average temperature of the sample during the LT-AMS measurement in air is higher than 77K and close to 92K. This analysis indicates that the susceptibility of the paramagnetic minerals are amplified by a factor ~3.2 relative to that of room temperature AMS (RT-AMS). In addition, it was found that liquid nitrogen was absorbed in the samples during immersing and contributed diamagnetic component of ~9 × 10^-6 SI to the total mean susceptibility. We showed that silicone sheet placed around and at the bottom of the measuring coil is an effective thermal protection, preventing instrument drift by the cold sample. In this way, the measuring errors of LT-AMS reduced to the level of RT-AMS, allowing accurate comparison with standard AMS measurements. We examined the applicability of the LT-AMS measurements on chalk samples that consist <5% (weight) of paramagnetic minerals and showed that it helps to efficiently enhance the paramagnetic fabric. The present study offers a practical approach, which can be applied to various types of rocks to better delineate the paramagnetic phase using conventional equipment.

1. Introduction
Anisotropy of magnetic susceptibility (AMS) reveals various geological processes such as deformation [Oertel, 1983; Borradaile and Alford, 1988; Borradaile, 1991; Borradaile and Henry, 1997; Parés et al., 1999; Borradaile and Jackson, 2004; Soto et al., 2007; Levi and Weinberger, 2011; Cifelli et al., 2013; Levi et al., 2014; Braun et al., 2015; Issachar et al., 2015], sedimentation [Borradaile and Tarling, 1981; Pennec et al., 1998; Gautam and Rösler, 1999; Ort et al., 2003; Petronis and Geissman, 2009] and flow [Cagnoli and Tarling, 1997; Zanella et al., 1999; Palmer and MacDonald, 1999; Rochette et al., 1999; Morris, 2000; Wang et al., 2001; Porreca and Mattei, 2003; Levi et al., 2006a,b; LaBerge et al., 2009; Dedzo et al., 2011]. The AMS measurement averages the orientation-distribution of all minerals and associated diamagnetic, paramagnetic, and ferromagnetic phases. Hence, it is essential to develop techniques to identify the contribution of each of the magnetic phases to the total AMS.

Measuring the AMS at low temperature has a great potential to characterize the paramagnetic fabric [Martin-Hernandez and Ferre, 2007]. Low temperature AMS (LT-AMS) enhances the effect of paramagnetic minerals. According to Curie-Weiss law the volume susceptibility k increases as temperature decreases (T) as k = C/(T-θ); where C is the specific mineral Curie constant and θ is the paramagnetic Curie temperature, which is zero for pure paramagnetic materials [e.g., Cullity, 1972]. Accordingly, at 77K (boiling temperature of liquid nitrogen) the paramagnetic susceptibility increases by a factor of ~3.8 relative to room temperature AMS (RT-AMS) at 295K. Diamagnetic susceptibility does not show temperature dependence [Cullity, 1972], whereas ferromagnetic minerals often show susceptibility changes at low temperatures, (e.g., Verwey transition in magnetite-titanomagnetite or Morin transition in hematite [Verwey, 1939; Morin, 1950; Morrish, 1994; Cowgill et al., 2004; Özdemir et al., 2008]). Nevertheless, in rocks with very low ferromagnetic components relative to the paramagnetic component, the paramagnetic minerals dominantly govern the susceptibility changes at low temperatures. Consequently, the measurements at LT-AMS amplify the contribution of the
paramagnetic minerals in the rock sample. Hence, the LT measurements may help in separating the AMS into its paramagnetic, diamagnetic and ferromagnetic components [Martin-Hernandez and Ferre, 2007].

LT-AMS measurements are carried out by two different approaches: In approach (1) the measurement is carried out while immersing the sample in liquid nitrogen [Parés and van der Pluijm, 2002]. In approach (2) the sample is cooled in liquid nitrogen and subsequently measured in air [Lüneburg et al., 1999]. Approach (1) has the advantage of keeping the sample at homogeneous and constant temperature but requires a custom-made holder, which is not suitable for most susceptibility meters. In approach (2) the measurement procedure is much simpler but an increase in temperature during the measurement is inevitable.

Parés and van der Pluijm [2002, 2014] have demonstrated the applicability of the LT-AMS for characterization of phyllosilicate fabrics. They used approach (1) with a custom-made dewar glass flask, which was placed into a thin styrofoam jacket to protect the instrument from cooling. They placed the flask inside a ‘Sapphire Instruments’ susceptibility meter with a large coil (internal diameter of 45 mm).

Schmidt et al. [2007] introduced a modification of approach (1), in which the LT-AMS measurements were conducted in high field up to 1.5 Tesla using a torque magnetometer. They also used a custom dewar (cylindrical Pyrex, double-walled, silver coated) allowing measurements while immersing the sample in liquid nitrogen. In this way, they have managed to separate the paramagnetic contribution from the total AMS of synthetic calcite–muscovite aggregates. The main advantage of the torque method is that the high field allows measurements above saturation of most ferromagnetic minerals and, hence, subtracting their contribution to the total AMS. Schmidt et al. [2007] reported that the sensitivity of instrument is 3×10^{-8} SI and the measuring time is around 1 hour for each sample. A disadvantage of torque measurements is that only the deviatoric susceptibility tensor is determined, while the mean susceptibility could not be resolved [Jelinek, 1985].

Lüneburg et al. [1999] were the first to report on LT-AMS measurements of slates in air (approach 2) using an AGICO Kappabridge with a manual holder method. Each sample was immersed in liquid nitrogen for 30 minutes before the first measurement, and repeatedly for 1 minutes between each of the following 15 position measurements. Oliva-Urica et al. [2010] and Oliva-Urica and Roman-Berdiel [2010] followed Lüneburg et al. [1999] and measured LT-AMS of marls and phyllites, modifying the measuring protocol for the use of the spinning sample holder in the Kappabridge.

Many studies [Cifelli et al., 2004, 2005, 2009, 2011; Debacker et al., 2009; Oliva-Urica et al., 2012, 2013, 2011; Soto et al., 2012, 2014; Garcia-Lasanta et al., 2013; Haerinck et al., 2013; Izquierdo-Llavall et al., 2013; Garcia-Lasanta et al., 2014; Santolaria et al., 2015] followed Lüneburg et al. [1999], Oliva-Urica et al. [2010], and Oliva-Urica and Roman-Berdiel [2010] protocols, characterizing the LT-AMS of rocks, mainly due to the standardization of the equipment used and the popularity of the Kappabridge susceptibility meter.

2. Challenges in LT-AMS Measurements

Although low-field LT-AMS measurements in air are frequently used, the implementation of the method encounters obstacles that can lead to large measurement errors and questionable interpretations.

This method tackles four main obstacles:

1. Estimating and considering the temperature profile in the sample during measurement [Parés and van der Pluijm, 2002, 2014; Martin-Hernandez and Ferre, 2007]. After cooling in liquid nitrogen, the sample is taken out for measurement in air, and immediately the temperature within the sample starts to increase heterogeneously from 77K to room temperature (295K). The temperature distribution in the sample volume and its changes with time depends on the physical properties of the studied rock and the geometry of the sample. Hence, estimating the temperature profile of the sample during measurement is not straightforward and hampers the possibility to simply refer to the paramagnetic amplification factor.

2. Enlarged errors due to temperature increase during measurement. In the slowly spinning specimen method the directional susceptibilities are measured for 5 or 8 revolutions of the specimen around each spinning axis [Jelinek, 1995; Gee et al., 2008]. Susceptibilities are recorded in 64 positions per revolution and averaged for all revolutions [Gee et al., 2008]. The signal between two revolutions may decrease and...
accordingly the measuring error might increase, due to the increase of the sample temperature during the measurement.

3. Reducing instrument drift that is caused by the low temperature of the sample. The cold sample is placed in the coil leads to cold air convection and drift of the electrical components. This leads to significant errors and halt of measurements.

4. Correcting additional and artificial susceptibility values that are introduced by absorption of liquid nitrogen into the sample. Liquid nitrogen has low diamagnetic susceptibility \(k_m \approx 2.35 \times 10^{-6} \text{ SI} \), which might add negative susceptibility to the total AMS.

In this study, we examined the limitation and precision of the LT-AMS measurements in air and present technical improvements that reduce the instrument drift and measurement errors. The applicability of the technical solutions were tested on chalk samples of the Maresha and Adulam Formations, which contain small amounts of paramagnetic minerals, mainly palygorskite and smectite (<5% by weight) [Nathan and Flexer, 1977], high porosity (>20% [Palchik and Hatzor, 2002], and low mean susceptibilities (this study).

3. Correction for Absorption of Liquid Nitrogen

To determine the addition of liquid nitrogen susceptibility in the rock samples, the weight of three samples of Maresha and five samples of Adulam were measured before and after 50 minute immersion in liquid nitrogen (Table 1). The weight of the sample immediately after immersion was ~20% higher than the initial weight and then steadily decreased. Almost all the absorbed liquid nitrogen evaporated after 120 s and the sample returned to its original weight. The weight after immersion reported in Table 1 is the average weight between 10 and 20 s after immersion. Then, the additional susceptibility values were calculated, and the LT-AMS measurements corrected (see chapter 6). These tests showed that for the present samples the liquid nitrogen adds diamagnetic susceptibility of ~\(-9 \times 10^{-6} \text{ SI}\) to the total LT-AMS.

4. Sample Temperature Profile

We analyzed the temperature profile of a standard cylinder sample with radius of 12.5 mm \(r_0 \) and height of 25.4 mm. The temperature was measured by a thermocouple in three holes drilled in the sample at \(r=0, r=0.7 r_0 \) and \(r=0.85 r_0 \) (Figure 1). The sample with the thermocouple in its central hole was immersed in liquid nitrogen for 50 minutes and then removed out to the air. The temperature was recorded every 30 s for 30 minutes afterward. In order to estimate the sample temperature profile we solved an analytical model of conductive heat transfer and calibrated it using the measured temperatures. We treated the cylinder as a sphere, and solved the heat equation for spherical symmetric temperature distribution \(T(r,t) \):

\[
\frac{\partial T}{\partial t} = \alpha \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial T}{\partial r} \right) \text{ for } 0 < t < t_0,
\]

where \(t \) is the time, \(r \) is the radius and \(\alpha \) is thermal diffusivity. Equation 1 considers the conductive heat transfer and neglects the advection, which is associated with the absorbed liquid nitrogen motion and evaporation. These processes might be important during the early stage of heating, and will be estimated in comparison with the direct temperature measurements.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Volume ((\text{cm}^3))</th>
<th>Weight Before Immersion ((g))</th>
<th>Weight After Immersion ((g))</th>
<th>Weight Difference ((g))</th>
<th>LN Volume ((\text{cm}^3))</th>
<th>Susceptibility Due to LN ((\times 10^{-6} \text{ SI}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>MR-2</td>
<td>10.8</td>
<td>16.3</td>
<td>19.6</td>
<td>3.3</td>
<td>4.1</td>
<td>(-9.0)</td>
</tr>
<tr>
<td>MR-12</td>
<td>10.8</td>
<td>17.0</td>
<td>20.4</td>
<td>3.4</td>
<td>4.2</td>
<td>(-9.1)</td>
</tr>
<tr>
<td>MR-18</td>
<td>10.8</td>
<td>16.1</td>
<td>19.5</td>
<td>3.4</td>
<td>4.2</td>
<td>(-9.2)</td>
</tr>
<tr>
<td>AD-7</td>
<td>10.3</td>
<td>15.2</td>
<td>18.3</td>
<td>3.1</td>
<td>3.8</td>
<td>(-8.8)</td>
</tr>
<tr>
<td>AD-15</td>
<td>10.3</td>
<td>14.5</td>
<td>17.7</td>
<td>3.2</td>
<td>3.9</td>
<td>(-8.9)</td>
</tr>
<tr>
<td>AD-17</td>
<td>10.3</td>
<td>13.4</td>
<td>16.9</td>
<td>3.5</td>
<td>4.4</td>
<td>(-10.0)</td>
</tr>
<tr>
<td>AD-18</td>
<td>10.3</td>
<td>13.6</td>
<td>16.7</td>
<td>3.1</td>
<td>3.8</td>
<td>(-8.8)</td>
</tr>
<tr>
<td>AD-19</td>
<td>10.3</td>
<td>13.6</td>
<td>17.2</td>
<td>3.6</td>
<td>4.5</td>
<td>(-10.2)</td>
</tr>
</tbody>
</table>
Constant initial temperature, $T_i=77\text{K}$, was set as the initial condition:

$$T(r, 0) = T_i.$$ \hspace{1cm} (2)

Heat flux at the surface was set as the boundary condition:

$$-k \frac{\partial T}{\partial r} = h(T-T_{\infty}) \quad \text{for} \quad r=r_0,$$ \hspace{1cm} (3)

where k is thermal conductivity, h is the heat transfer coefficient for the system and $T_{\infty}=295\text{K}$ is the final temperature. Introducing dimensionless variables, $\theta=(T-T_{\infty})/(T_i-T_{\infty})$, $\tau=zt/r_0^2$ and $\xi=r/r_0$, the solution is [Ozisik, 1993]:

$$\theta(\tau, \xi) = \sum_{n=1}^{\infty} C_n \exp(-\lambda_n \tau) \frac{1}{\xi} \sin(\lambda_n \xi),$$ \hspace{1cm} (4)

where λ_n are the roots of:

$$1 - \lambda_n \cot(\lambda_n) - B_i = 0$$ \hspace{1cm} (5)

and:

$$C_n = 4 \frac{-\sin(\lambda_n) + \cos(\lambda_n) \lambda_n}{(\sin(2\lambda_n) - 2\lambda_n) \lambda_n},$$ \hspace{1cm} (6)

where $B_i=hr_0/k$, known as the Biot Number. To obtain greater accuracy in the initial times, 16 terms were considered ($n=1$ to 16).

Figure 2 shows the results of the temperature measurements over time. For the associated calculated curves, values of x and B_i were obtained by using a best fit procedure between the measured data and the calculated solution (equations (4)–(6)) at $r=0$, $r=0.7r_0$ and $r=0.85r_0$. The calculated temperature profile using the conductive heat flux model (equation 1) with $x=8.8 \times 10^{-7} \text{m}^2\text{s}^{-1}$ and $B_i=4$ fits well the measured temperatures starting from 120 s after immersion (Figure 2a). Since almost all of the absorbed liquid nitrogen evaporates during the first 120 s (as described in the previous section), the conductive heat transport dominates the heating at relatively late stages. However, during the first 120 s, the measured temperatures near the sample surface slightly deviate from the calculated curve (Figure 2b). This early stage discrepancy is probably due to motion and evaporation of the absorbed liquid nitrogen.

Figure 3 shows the calculated temperature curves, as a function of the sample volume, after 10 and 20 s (mean susceptibility measurement last 10–20 s after the sample is removed from liquid nitrogen bath, see section 5 below). The average temperatures are 87K and 96K respectively and accordingly, the average
temperature of the sample for the time period 10–20 s after immersion is 92K. We note that the model provides a reasonable estimate for the sample temperature during LT-AMS which is certainly higher than 77K and close to 92K. Following the Curie-Weiss law, the paramagnetic amplification factor for the LT-AMS measurements in air is practically 3.2 (295K divided by 92K).

5. LT-AMS Measurements in Air

LT and RT AMS were measured at low magnetic field of 300 A/m with a KLY-4S Kappabridge (AGICO Inc.) using the spinning sample method [Jelinek, 1995] at the Geological Survey of Israel. Directional susceptibilities measurements lasts ~20 s, and mean susceptibility (k_m) ~10 s. Another ~10 s are required to fix the sample in the holder, i.e., the measurements of directional susceptibilities last 10–30 s and of mean susceptibility 10–20 s after the sample is removed from liquid nitrogen bath.

During the LT-AMS measurements in air, the measurement errors increased dramatically due to instrument drift (see section 2). We adopted the solution suggested in previous studies [e.g., Soto et al., 2014] and wait 10 minutes between measurements, allowing the instrument recovery. Nevertheless, the errors on the LT-AMS measurements have remained large. To overcome this obstacle, we tested several improvements that could isolate the coil from excessive cooling (e.g., isolating the sample with a styrofoam jacket, gas circulation). We found that a thin silicone sheet (1.5 mm) made of high quality LSR silicone was very effective for thermal protection (LSR is an industrial technique of injection molding of liquid silicone rubber, commonly used in cookware). The silicone sheet was placed around and at the bottom of the measuring coil (Figure 4).

To obtain reliable holder corrections, the holder with the silicone protection was measured separately before measurements. We found that the silicone sheet protection reduced the measuring errors significantly from 265.91 to 15.33 $\times 10^{-9}$ SI, the latter value is comparable to that of the RT-AMS measuring errors (Figure 5).

Figure 3. Calculated temperature profile along the sample volume after 10 (green) and 20 s (blue). For 10 and 20 s curves temperature at the center is 77K and at surface 135K and 154K, respectively. The dashed line is the average temperature between 10 and 20 s.

Figure 4. LT-AMS measurements setup using the AGICO Inc. KLY-4S Kappabridge. The yellow arrows show the sample covered with the ‘Teflon’ protection and the thin silicone sheet inserted into the measuring coil.
We also noticed that during the LT-AMS measurements, an ice layer was formed around the cold sample immediately after removing it from the liquid nitrogen bath. This ice layer affected the accuracy of the measurements but could be prevented by wrapping the samples with a thin polytetrafluoroethylene (‘Teflon’) layer (Figure 4), reducing significantly the ice condensation around the sample during measurements.

6. Application

To test the applicability of the above improvements, the RT-AMS and LT-AMS of 19 samples of Adulam and Maresha chalks were measured and compared (Table 2). Figure 6a shows the \(k_m \) values of LT (\(LT-k_m \)) versus that of RT (\(RT-k_m \)). The high positive linear correlation (\(R^2 = 0.94 \)) indicates that \(RT-k_m \) and \(LT-k_m \) growth is related to increase in paramagnetic mineral contents. The point on the graph where \(k_m \) values of LT and RT are equal represents a hypothetical \(k_m \) value that excludes the contribution of paramagnetic minerals, namely the \(k_m \) of diamagnetic and ferromagnetic phases. The linear regression suggests that \(k_m \) values of LT and RT measurements are equal for \(-11.3 \times 10^{-6} \) SI (Figure 6a). This value is close to the susceptibility of single calcite crystal (\(k_m \approx -12.87 \times 10^{-6} \) SI) [Nye, 1957; Owens and Rutter, 1978; Schmidt et al., 2006], suggesting the dominancy of diamagnetic phase and the negligible ferromagnetic contribution to \(k_m \) in the samples. Figure 6b presents \(|LT-k_m/RT-k_m| \) versus \(RT-k_m \) values (see example in Ciffeli et al. [2005]). For pure paramagnetic sample, \(|LT-k_m/RT-k_m| \) should be \(\approx 3.2 \) (see section 3). For the present samples, the \(|LT-k_m/RT-k_m| \) ratios range between 5 and 10, with inverse correlation to positive values of \(RT-k_m \). This confirms that the diamagnetic phase has a significant contribution to \(k_m \), because the susceptibility of a sample at RT is the sum of the ferromagnetic, paramagnetic and diamagnetic components (\(k_f, k_p, k_d \) respectively) [Henry and Daly, 1983; Hrouda et al., 2000]:

\[
RT \ k_m = c_f k_f + c_p k_p + c_d k_d \equiv K_f + K_p + K_d \tag{7}
\]

where \(c_f, c_p \) and \(c_d \) are the respective percentages.

Further, at LT, the paramagnetic phase is amplified by factor of \(\approx 3.2 \):
In order to overcome the kappabridge drift when cold samples are measured, we tested a suitable thermal protection, which (1) fits the 2 mm gap between the holder and the coil, and (2) has a weak

7. Discussion

In order to overcome the kappabridge drift when cold samples are measured, we tested a suitable thermal protection, which (1) fits the 2 mm gap between the holder and the coil, and (2) has a weak
magnetic response that does not interfere with the measurements. We found that high quality LSR silicone sheet is efficient thermal insulator. The susceptibility of LSR silicone is $\approx 90 \times 10^{-6}$ SI, but has negligible contribution when placed around the coil. Another advantage to using the LSR silicone sheet protection is that it can easily be removed, allowing quick switching between RT and LT-AMS measurements. We show that by using this protection the measurement errors of LT-AMS decrease significantly, and are similar to that of RT-AMS errors (Figure 5). This allows us to achieve a reliable comparison between LT and RT fabrics.

In order to assess the temperature heterogeneity within the sample and determine the paramagnetic amplification factor, we calculated the temperature profiles within the rock volume (see section 4). We calibrated the conductive heat transfer model using temperature measurements of one representative sample. If needed it is possible to calibrate the model based on more than one representative sample. The analysis shows that after the sample is removed from the liquid nitrogen bath to air, the upper bound for the sample temperature during LT-AMS measurements is 92K. This value is higher than the 77K assumed in most studies that use LT-AMS measurements in air. These differences are expressed by differences in the paramagnetic amplification factor, which is ≈ 3.8 and ≈ 3.2 at 77K and 92K, respectively. This indicates that the theoretical paramagnetic amplification factor is reduced by $\approx 15\%$ for practical LT-AMS measurements in air. The small measurement errors suggest that the concern of enlarged errors due to temperature increase during measurement (see section 2) is insignificant and, hence, the fabric measured by the LT-AMS method in air is reliable. The tested samples in this study represent an extreme case, in which they have low susceptibility values (k_m ranges between 4 and 10×10^{-6} SI) and $>20\%$ porosity. We found that the additional susceptibility due to liquid nitrogen absorption is $\approx 9 \times 10^{-6}$ SI. Hence, the addition of the diamagnetic...
susceptibility of the liquid nitrogen to the AMS in rock samples with weak susceptibility values should not be overlooked. In rocks with high susceptibility values this addition may be less significant.

The paramagnetic amplification factor and the addition of liquid nitrogen susceptibility reported in this study were tested only on chalk. In rocks with high thermal diffusivity, the temperature increase rate in the sample is expected to be higher and as a result, the paramagnetic amplification factor will reduce significantly. Therefore, in order to obtain reliable results by LT-AMS measurements in air for other rock types, it is recommend determining the temperature profile and liquid nitrogen absorption for each rock type specifically, following the procedure presented in this study.

8. Conclusions

1. Using LSR silicone protection in the instrument coil reduces the high measuring errors caused by excessive cooling of the instrument to normal. This improvement helps to obtain reliable results in LT-AMS measurements in rocks containing <10% of paramagnetic content, and to compare them to RT-AMS measurements.

2. The paramagnetic amplification factor of LT-AMS measurements in air for the tested chalks is ~3.2 (T=92K), which is lower by 15% compared with the theoretical value of ~3.8 calculated for liquid nitrogen temperature (T=77K).

3. Liquid nitrogen absorption in low susceptibility and porous rocks adds significant component of diamagnetic susceptibility to the LT measurements. This artificial susceptibility component can be corrected by weighting the samples before and after the immersion in liquid nitrogen.

4. The present study offers a practical approach to improve the accuracy of the low-temperature AMS measurements using conventional equipment. The suggested approach can be applied to various types of rocks in order to better define their paramagnetic phase.

References

Jelinek, V. (1985), The physical principles of measuring magnetic anisotropy with the torque magnetometer, Travaux Géophysiques, 33, 177–198.

LaBerge, R., M. Porreca, and M. Mattei (2009), Meandering flow of a pyroclastic density current documented by the anisotropy of magnetic susceptibility (AMS) in the quartz latite ignimbrite of the, Tectonophysics, 466(1), 64–78.

Morin, F. J. (1950), Magnetic Susceptibility of Fe_2O_3 and Fe_2O_3 with Added Titanium., World Scientific, 192 pp., Singapore.

Verwey, E. J. W. (1939), Electronic Conduction of Magnetite (Fe3O4) and its Transition Point at Low Temperatures, *Nature*, 144(3642), 327–328. [Available at http://www.nature.com/nature/journal/v144/n3642/abs/144327b0.html, last accessed 7 July 2014.]
